1
|
Qian T, Bai F, Zhang S, Xu Y, Wang Y, Yuan S, Liu X, Du Y, Peng B, Zhu WG, Xu X, Pei XH. USP11 deubiquitinates E-cadherin and maintains the luminal fate of mammary tumor cells to suppress breast cancer. J Biol Chem 2024; 300:107768. [PMID: 39270819 PMCID: PMC11497446 DOI: 10.1016/j.jbc.2024.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant forms of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 is bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.
Collapse
Affiliation(s)
- Tao Qian
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Pathology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Shiwen Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuping Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuchan Wang
- Gansu Dian Medical Laboratory, Lanzhou, China
| | - Shuping Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yaru Du
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Pornour M, Jeon HY, Ryu H, Khadka S, Xu R, Chen H, Hussain A, Lam HM, Zhuang Z, Oo HZ, Gleave M, Dong X, Wang Q, Barbieri C, Qi J. USP11 promotes prostate cancer progression by up-regulating AR and c-Myc activity. Proc Natl Acad Sci U S A 2024; 121:e2403331121. [PMID: 39052835 PMCID: PMC11295044 DOI: 10.1073/pnas.2403331121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Androgen receptor (AR) is a main driver for castration-resistant prostate cancer (CRPC). c-Myc is an oncogene underlying prostate tumorigenesis. Here, we find that the deubiquitinase USP11 targets both AR and c-Myc in prostate cancer (PCa). USP11 expression was up-regulated in metastatic PCa and CRPC. USP11 knockdown (KD) significantly inhibited PCa cell growth. Our RNA-seq studies revealed AR and c-Myc as the top transcription factors altered after USP11 KD. ChIP-seq analysis showed that either USP11 KD or replacement of endogenous USP11 with a catalytic-inactive USP11 mutant significantly decreased chromatin binding by AR and c-Myc. We find that USP11 employs two mechanisms to up-regulate AR and c-Myc levels: namely, deubiquitination of AR and c-Myc proteins to increase their stability and deubiquitination of H2A-K119Ub, a repressive histone mark, on promoters of AR and c-Myc genes to increase their transcription. AR and c-Myc reexpression in USP11-KD PCa cells partly rescued cell growth defects. Thus, our studies reveal a tumor-promoting role for USP11 in aggressive PCa through upregulation of AR and c-Myc activities and support USP11 as a potential target against PCa.
Collapse
Affiliation(s)
- Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Hee-Young Jeon
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Hyunju Ryu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Sudeep Khadka
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD21202
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD21201
| | - Arif Hussain
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Baltimore Veterans Affairs Medical Center, Baltimore, MD21201
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA98195
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC27710
| | - Christopher Barbieri
- Department of Urology, Weill Cornell Medical College, Cornell University, New York, NY10065
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| |
Collapse
|
3
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
6
|
Zhu Q, Wang Y, Liu Y, Yang X, Shuai Z. Prostate transmembrane androgen inducible protein 1 (PMEPA1): regulation and clinical implications. Front Oncol 2023; 13:1298660. [PMID: 38173834 PMCID: PMC10761476 DOI: 10.3389/fonc.2023.1298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Prostate transmembrane androgen inducible protein 1 (PMEPA1) can promote or inhibit prostate cancer cell growth based on the cancer cell response to the androgen receptor (AR). Further, it can be upregulated by transforming growth factor (TGF), which downregulates transforming growth factor-β (TGF-β) signaling by interfering with R-Smad phosphorylation to facilitate TGF-β receptor degradation. Studies have indicated the increased expression of PMEPA1 in some solid tumors and its functioning as a regulator of multiple signaling pathways. This review highlights the multiple potential signaling pathways associated with PMEPA1 and the role of the PMEPA1 gene in regulating prognosis, including transcriptional regulation and epithelial mesenchymal transition (EMT). Moreover, the relevant implications in and outside tumors, for example, as a biomarker and its potential functions in lysosomes have also been discussed.
Collapse
Affiliation(s)
- Qicui Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaqian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| |
Collapse
|
7
|
Kim JH, Yang HJ, Lee KW, Park JJ, Lee CH, Jeon YS, Kim JH, Park S, Song SJ, Lee JH, Moon A, Kim YH, Song YS. The Correlations between the Intensity of Histopathological Ubiquitin-Specific Protease 11 Staining and Progression of Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1703. [PMID: 38139829 PMCID: PMC10747236 DOI: 10.3390/ph16121703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Hee Jo Yang
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Kwang Woo Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Jae Joon Park
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Chang-Ho Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Youn Soo Jeon
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jae Ho Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Gumi 39371, Republic of Korea;
| | - Suyeon Park
- Department of Data Innovation, Soonchunhyang University Seoul Hospital, Seoul 04404, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Ahrim Moon
- Department of Pathology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Yon Hee Kim
- Department of Pathology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea
| | - Yun Seob Song
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| |
Collapse
|
8
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
10
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Lin K, Zhou E, Shi T, Zhang S, Zhang J, Zheng Z, Pan Y, Gao W, Yu Y. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res 2023; 42:217. [PMID: 37605223 PMCID: PMC10464189 DOI: 10.1186/s13046-023-02792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Gemcitabine resistance has brought great challenges to the treatment of pancreatic cancer. The N6-methyladenosine (m6A) mutation has been shown to have a significant regulatory role in chemosensitivity; however, it is not apparent whether gemcitabine resistance can be regulated by fat mass and obesity-associated protein (FTO). METHODS Cells with established gemcitabine resistance and tissues from pancreatic cancer patients were used to evaluate FTO expression. The biological mechanisms of the effects of FTO on gemcitabine resistant cells were investigated using CCK-8, colony formation assay, flow cytometry, and inhibitory concentration 50. Immunoprecipitation/mass spectrometry, MeRIP-seq, RNA sequencing and RIP assays, RNA stability, luciferase reporter, and RNA pull down assays were employed to examine the mechanism of FTO affecting gemcitabine resistant pancreatic cancer cells. RESULTS The results revealed that FTO was substantially expressed in cells and tissues that were resistant to gemcitabine. Functionally, the gemcitabine resistance of pancreatic cancer could be enhanced by FTO, while its depletion inhibited the growth of gemcitabine resistant tumor cells in vivo. Immunoprecipitation/mass spectrometry showed that the FTO protein can be bound to USP7 and deubiquitinated by USP7, leading to the upregulation of FTO. At the same time, FTO knockdown significantly decreased the expression level of NEDD4 in an m6A-dependent manner. RNA pull down and RNA immunoprecipitation verified YTHDF2 as the reader of NEDD4, which promoted the chemoresistance of gemcitabine resistant cells. FTO knockdown markedly increased the PTEN expression level in an NEDD4-dependent manner and influenced the chemosensitivity to gemcitabine through the PI3K/AKT pathway in pancreatic cancer cells. CONCLUSION In conclusion, we found that gemcitabine resistance in pancreatic cancer can be influenced by FTO that demethylates NEDD4 RNA in a m6A-dependent manner, which then influences the PTEN expression level and thereby affects the PI3K/AKT pathway. We also identified that the FTO level can be upregulated by USP7.
Collapse
Affiliation(s)
- Kai Lin
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Endi Zhou
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Shi
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Siqing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinfan Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziruo Zheng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuetian Pan
- Medical Faculty of Ludwig Maximilians, University of Munich-Munich, Bayern, Germany
| | - Wentao Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yabin Yu
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| |
Collapse
|
12
|
Gao H, Li Z, Wang K, Zhang Y, Wang T, Wang F, Xu Y. Design, Synthesis, and Biological Evaluation of Sulfonamide Methoxypyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16030461. [PMID: 36986560 PMCID: PMC10054477 DOI: 10.3390/ph16030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays an important role in cell proliferation, survival, migration, and metabolism, and has become an effective target for cancer treatment. Meanwhile, inhibiting both PI3K and mammalian rapamycin receptor (mTOR) can simultaneously improve the efficiency of anti-tumor therapy. Herein, a series of 36 sulfonamide methoxypyridine derivatives with three different aromatic skeletons were synthesized as novel potent PI3K/mTOR dual inhibitors based on a scaffold hopping strategy. Enzyme inhibition assay and cell anti-proliferation assay were employed to assess all derivatives. Then, the effects of the most potent inhibitor on cell cycle and apoptosis were performed. Furthermore, the phosphorylation level of AKT, an important downstream effector of PI3K, was evaluated by Western blot assay. Finally, molecular docking was used to confirm the binding mode with PI3Kα and mTOR. Among them, 22c with the quinoline core showed strong PI3Kα kinase inhibitory activity (IC50 = 0.22 nM) and mTOR kinase inhibitory activity (IC50 = 23 nM). 22c also showed a strong proliferation inhibitory activity, both in MCF-7 cells (IC50 = 130 nM) and HCT-116 cells (IC50 = 20 nM). 22c could effectively cause cell cycle arrest in G0/G1 phase and induce apoptosis of HCT-116 cells. Western blot assay showed that 22c could decrease the phosphorylation of AKT at a low concentration. The results of the modeling docking study also confirmed the binding mode of 22c with PI3Kα and mTOR. Hence, 22c is a promising PI3K/mTOR dual inhibitor, which is worthy of further research in the area.
Collapse
Affiliation(s)
- Haotian Gao
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zaolin Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kai Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhan Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youjun Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Li J, Xiao Y, Yu H, Jin X, Fan S, Liu W. Mutual connected IL-6, EGFR and LIN28/Let7-related mechanisms modulate PD-L1 and IGF upregulation in HNSCC using immunotherapy. Front Oncol 2023; 13:1140133. [PMID: 37124491 PMCID: PMC10130400 DOI: 10.3389/fonc.2023.1140133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
The development of techniques and immunotherapies are widely applied in cancer treatment such as checkpoint inhibitors, adoptive cell therapy, and cancer vaccines apart from radiation therapy, surgery, and chemotherapy give enduring anti-tumor effects. Minority people utilize single-agent immunotherapy, and most people adopt multiple-agent immunotherapy. The difficulties are resolved by including the biomarkers to choose the non-responders' and responders' potentials. The possibility of the potential complications and side effects are examined to improve cancer therapy effects. The Head and Neck Squamous Cell Carcinoma (HNSCC) is analyzed with the help of programmed cell death ligand 1 (PD-L1) and Insulin-like growth factor (IGF). But how IGF and PD-L1 upregulation depends on IL-6, EGFR, and LIN28/Let7-related mechanisms are poorly understood. Briefly, IL-6 stimulates gene expressions of IGF-1/2, and IL-6 cross-activates IGF-1R signaling, NF-κB, and STAT3. NF-κB, up-regulating PD-L1 expressions. IL-6/JAK1 primes PD-L1 for STT3-mediated PD-L1 glycosylation, stabilizes PD-L1 and trafficks it to the cell surface. Moreover, ΔNp63 is predominantly overexpressed over TAp63 in HNSCC, elevates circulating IGF-1 levels by repressing IGFBP3, and activates insulin receptor substrate 1 (IRS1).TP63 and SOX2 form a complex with CCAT1 to promote EGFR expression. EGFR activation through EGF binding extends STAT3 activation, and EGFR and its downstream signaling prolong PD-L1 mRNA half-life. PLC-γ1 binding to a cytoplasmic motif of elevated PD-L1 improves EGF-induced activation of inositol 1,4,5-tri-phosphate (IP3), and diacylglycerol (DAG) subsequently elevates RAC1-GTP. RAC1-GTP was convincingly demonstrated to induce the autocrine production and action of IL-6/IL-6R, forming a feedback loop for IGF and PD-L1 upregulation. Furthermore, the LIN28-Let7 axis mediates the NF-κB-IL-6-STAT3 amplification loop, activated LIN28-Let7 axis up-regulates RAS, AKT, IL-6, IGF-1/2, IGF-1R, Myc, and PD-L1, plays pivotal roles in IGF-1R activation and Myc, NF-κB, STAT3 concomitant activation. Therefore, based on a detailed mechanisms review, our article firstly reveals that IL-6, EGFR, and LIN28/Let7-related mechanisms mediate PD-L1 and IGF upregulation in HNSCC, which comprehensively influences immunity, inflammation, metabolism, and metastasis in the tumor microenvironment, and might be fundamental for overcoming therapy resistance.
Collapse
Affiliation(s)
- Junjun Li
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Yazhou Xiao
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Huayue Yu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Jin
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Liu,
| |
Collapse
|
15
|
Wang C, Meng Y, Zhao J, Ma J, Zhao Y, Gao R, Liu W, Zhou X. Deubiquitinase USP13 regulates glycolytic reprogramming and progression in osteosarcoma by stabilizing METTL3/m 6A/ATG5 axis. Int J Biol Sci 2023; 19:2289-2303. [PMID: 37151889 PMCID: PMC10158027 DOI: 10.7150/ijbs.82081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Reprogramming metabolism is a hallmark of cancer cells for rapid progression. However, the detailed functional role of deubiquitinating enzymes (DUBs) in tumor glycolytic reprogramming is still unknown and requires further investigation. USP13 was found to upregulate in osteosarcoma (OS) specimens and promote OS progression through regulating aerobic glycolysis. Interestingly, the m6A writer protein, METTL3, has been identified as a novel target of USP13. USP13 interacts with, deubiquitinates, and therefore stabilizes METTL3 at K488 by removing K48-linked ubiquitin chains. Since METTL3 is a well-known m6A writer and USP13 stabilizes METTL3, we further found that USP13 increased global m6A abundance in OS cells. The results of RNA sequencing and methylated RNA immunoprecipitation sequencing indicated METTL3 could bind to m6A-modified ATG5 mRNA, which is crucial for autophagosome formation, and inhibit ATG5 mRNA decay on an IGF2BP3 dependent manner, thereby promoting autophagy and the autophagy-associated malignancy of OS. Using a small-molecule inhibitor named Spautin-1 to pharmacologically inhibit USP13 induced METTL3 degradation and exhibited significant therapeutic efficacy both in vitro and in vivo. Collectively, our study results indicate that USP13 promotes glycolysis and tumor progression in OS by stabilizing METTL3, thereby stabilizing ATG5 mRNA and facilitating autophagy in OS. Our findings demonstrate the role of the USP13-METTL3-ATG5 cascade in OS progression and show that USP13 is a crucial DUB for the stabilization of METTL3 and a promising therapeutic target for treating OS.
Collapse
Affiliation(s)
- Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianquan Zhao
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuechao Zhao
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- ✉ Corresponding authors: Xuhui Zhou (), Wei Liu (), Rui Gao ()
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- ✉ Corresponding authors: Xuhui Zhou (), Wei Liu (), Rui Gao ()
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Xuhui Zhou (), Wei Liu (), Rui Gao ()
| |
Collapse
|
16
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
17
|
Chen T, Huo K, Kong D, Su S, Yang T, Zhang W, Shao J. Comprehensive analysis of lncRNA expression profiles in postmenopausal osteoporosis. Genomics 2022; 114:110452. [PMID: 35988655 DOI: 10.1016/j.ygeno.2022.110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
To explore the key lncRNAs affecting postmenopausal osteoporosis (PMOP) progression, the transcriptome sequencing of peripheral blood mononuclear cells from fifteen early postmenopausal women, according to bone mineral density, were divided into groups of osteoporosis, osteopenia and normality, in each of which the expression profiles of lncRNAs was investigated. From the results we observed nine candidates of lncRNAs, which were to be compared with miRBase, and found that MIR22HG as one candidate of lncRNA was most likely to be directly used as miRNA precursor. Based on the KEGG annotation and lncRNA-miRNA-mRNA-KEGG network, we analyzed the potential role of candidate lncRNAs. The results showed that the expression profiles of lncRNAs could help identify the novel ones involved in the progression of PMOP, and that MIR22HG could serve as a miRNA precursor to regulate FoxO signaling pathway in bone metabolism. Our findings can be of great help in predicting and diagnosing early PMOP.
Collapse
Affiliation(s)
- Tianning Chen
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Kailun Huo
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China
| | - Shan Su
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China.
| |
Collapse
|
18
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
19
|
Ataman LM, Laronda MM, Gowett M, Trotter K, Anvari H, Fei F, Ingram A, Minette M, Suebthawinkul C, Taghvaei Z, Torres-Vélez M, Velez K, Adiga SK, Anazodo A, Appiah L, Bourlon MT, Daniels N, Dolmans MM, Finlayson C, Gilchrist RB, Gomez-Lobo V, Greenblatt E, Halpern JA, Hutt K, Johnson EK, Kawamura K, Khrouf M, Kimelman D, Kristensen S, Mitchell RT, Moravek MB, Nahata L, Orwig KE, Pavone ME, Pépin D, Pesce R, Quinn GP, Rosen MP, Rowell E, Smith K, Venter C, Whiteside S, Xiao S, Zelinski M, Goldman KN, Woodruff TK, Duncan FE. A synopsis of global frontiers in fertility preservation. J Assist Reprod Genet 2022; 39:1693-1712. [PMID: 35870095 PMCID: PMC9307970 DOI: 10.1007/s10815-022-02570-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Since 2007, the Oncofertility Consortium Annual Conference has brought together a diverse network of individuals from a wide range of backgrounds and professional levels to disseminate emerging basic and clinical research findings in fertility preservation. This network also developed enduring educational materials to accelerate the pace and quality of field-wide scientific communication. Between 2007 and 2019, the Oncofertility Consortium Annual Conference was held as an in-person event in Chicago, IL. The conference attracted approximately 250 attendees each year representing 20 countries around the world. In 2020, however, the COVID-19 pandemic disrupted this paradigm and precluded an in-person meeting. Nevertheless, there remained an undeniable demand for the oncofertility community to convene. To maintain the momentum of the field, the Oncofertility Consortium hosted a day-long virtual meeting on March 5, 2021, with the theme of "Oncofertility Around the Globe" to highlight the diversity of clinical care and translational research that is ongoing around the world in this discipline. This virtual meeting was hosted using the vFairs ® conference platform and allowed over 700 people to participate, many of whom were first-time conference attendees. The agenda featured concurrent sessions from presenters in six continents which provided attendees a complete overview of the field and furthered our mission to create a global community of oncofertility practice. This paper provides a synopsis of talks delivered at this event and highlights the new advances and frontiers in the fields of oncofertility and fertility preservation around the globe from clinical practice and patient-centered efforts to translational research.
Collapse
Affiliation(s)
- L M Ataman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M M Laronda
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Gowett
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - K Trotter
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - H Anvari
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - F Fei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - A Ingram
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M Minette
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - C Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - Z Taghvaei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M Torres-Vélez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - K Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - S K Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - A Anazodo
- Kids Cancer Centre, Sydney Children's Hospital, Nelune Comprehensive Cancer Centre, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - L Appiah
- Department of Obstetrics and Gynecology, The University of Colorado School of Medicine, Aurora, CO, USA
| | - M T Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - N Daniels
- The Oncology and Fertility Centres of Ekocorp, Eko Hospitals, Lagos, Nigeria
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Av. Mounier 52, 1200, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - C Finlayson
- Department of Pediatrics (Endocrinology), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R B Gilchrist
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - V Gomez-Lobo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - J A Halpern
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Hutt
- Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - E K Johnson
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Urology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - K Kawamura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - M Khrouf
- FERTILLIA, Clinique la Rose, Tunis, Tunisia
| | - D Kimelman
- Centro de Esterilidad Montevideo, Montevideo, Uruguay
| | - S Kristensen
- Department of Fertility, Copenhagen University Hospital, Copenhagen, Denmark
| | - R T Mitchell
- Department of Developmental Endocrinology, University of Edinburgh, Edinburgh, UK
| | - M B Moravek
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - L Nahata
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Endocrinology and Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - K E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M E Pavone
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D Pépin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Pesce
- Reproductive Medicine Unit, Obstetrics and Gynecology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - G P Quinn
- Departments of Obstetrics and Gynecology, Center for Medical Ethics, Population Health, Grossman School of Medicine, New York University, New York, NY, USA
| | - M P Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, CA, USA
| | - E Rowell
- Department of Surgery (Pediatric Surgery), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Smith
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - C Venter
- Vitalab, Johannesburg, South Africa
| | - S Whiteside
- Fertility & Reproductive Health Program, Department of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH, USA
| | - S Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental Health Sciences Institute, Rutgers University, New Brunswick, NJ, USA
| | - M Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - T K Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - F E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Sevdali E, Block V, Lataretu M, Li H, Smulski CR, Briem JS, Heitz Y, Fischer B, Ramirez NJ, Grimbacher B, Jäck HM, Voll RE, Hölzer M, Schneider P, Eibel H. BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Rep 2022; 39:111019. [PMID: 35767961 DOI: 10.1016/j.celrep.2022.111019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.
Collapse
Affiliation(s)
- Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, University of Jena, Leutragraben 1, 07743 Jena, Germany
| | - Huiying Li
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E-Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Jana-Susann Briem
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Yannic Heitz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Beate Fischer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Neftali-Jose Ramirez
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Bodo Grimbacher
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Department of Medicine, Division of Immunology, University of Erlangen, Glückstraße 6, 91054 Erlangen, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Martin Hölzer
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany.
| |
Collapse
|
21
|
Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Dis 2022; 8:292. [PMID: 35715413 PMCID: PMC9205893 DOI: 10.1038/s41420-022-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a critical biological process in post-translational modification of proteins and involves multiple signaling pathways in protein metabolism, apoptosis, DNA damage, cell-cycle progression, and cancer development. Deubiquitinase, a specific enzyme that regulates the ubiquitination process, is also thought to be closely associated with the development and progression of various cancers. In this article, we systematically review the emerging role of the deubiquitinase ubiquitin-specific peptidase 11 (USP11) in many cancer-related pathways. The results show that USP11 promotes or inhibits the progression and chemoresistance of different cancers, including colorectal, breast, ovarian, and hepatocellular carcinomas, via deubiquitinating several critical proteins of cancer-related pathways. We initially summarize the role of USP11 in different cancers and further discuss the possibility of USP11 as a therapeutic strategy.
Collapse
|
22
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
23
|
Bian C, Zhang R, Wang Y, Li J, Song Y, Guo D, Gao J, Ren H. Sirtuin 6 affects glucose reabsorption and gluconeogenesis in type 1 diabetes via FoxO1. Mol Cell Endocrinol 2022; 547:111597. [PMID: 35157928 DOI: 10.1016/j.mce.2022.111597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
AIM The purpose of this study was to explore the expression changes of Sirtuin 6 in diabetic renal tissues and the molecular mechanisms affecting renal tubular gluconeogenesis and reabsorption. METHODS The type 1 diabetic C57BL/6 mice model as well as high glucose cultured proximal tubular cells and cell lines were established. Sirt6 siRNA, the SGLT2 inhibitor (dapagliflozin), and insulin were pre-treated to make Sirtuin 6 levels, gluconeogenesis, and reabsorption changes. Immunofluorescence was used for Sirtuin 6 renal localization, and molecular biological detection was adopted for transcription factors, FoxO1, transporters (SGLT2 and GLUT2) as well as rate-limiting enzyme. Nuclear/plasma proteins were extracted to detect Sirtuin 6 and FoxO1 levels in the subcellular structure. RESULTS Sirtuin 6 was decreased in STZ-induced diabetic renal outer medulla, and lower both in high glucose-induced primary proximal tubular cells and cell lines. Sirtuin 6 reversed the glucose reabsorption and gluconeogenesis effect via regulating FoxO1 and affecting nuclear translocation of FoxO1 in high glucose-induced proximal tubular cells. CONCLUSION Sirtuin 6 affects renal glucose reabsorption and gluconeogenesis in type 1 diabetes by regulating FoxO1 nuclear import.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruijing Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuxia Wang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Li
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Gao
- Department of Gerontology, Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
24
|
Yang Y, Cheng T, Xie P, Wang L, Chen H, Cheng Z, Zhou J. PMEPA1 interference activates PTEN/PI3K/AKT, thereby inhibiting the proliferation, invasion and migration of pancreatic cancer cells and enhancing the sensitivity to gemcitabine and cisplatin. Drug Dev Res 2022; 83:64-74. [PMID: 34189738 DOI: 10.1002/ddr.21844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
To explore the biological activity of transmembrane prostateandrogen induced RNA (PMEPA1) in human pancreatic cancer (hPAC) cells and its drug sensitivity to gemcitabine (GEM) and cisplatin (DDP). Gene Expression Profiling Interactive Analysis (GEPIA) and Cancer Cell Line Encyclopedia (CCLE) were consulted to indicate the expression of PMEPA1 in hPAC tissues and cells. Quantitative real-time PCR (RT-qPCR) and western blot were performed to verify the indication. RT-qPCR and western blot also detected the expressions of PTEN/PI3K/AKT before and after transfection of PMEPA1 siRNA plasmids. Cell counting Kit-8 (CCK-8) and EdU staining were performed to examine cell proliferation before and after transfection of phosphatase and tensin homologue delet2ed on chromosome ten (PTEN) siRNA plasmids. Transwell and wound healing detected the invasion and migration of hPAC cells. The expressions of MMP-2 and MMP-9 were detected by western blot. After GEM or DDP treatment, cell viability was observed by commercial kits and cell apoptosis by flow cytometry. GEPIA and CCLE predicted increased expression of PMEPA1 in hPAC tissues and cells, which was confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot. PMEPA1 was also shown to be associated with disease-free survival. Transfection of PMEPA1 siRNA plasmids affected the expressions of PTEN/PI3K/AKT. PMEPA1 interference inhibited the proliferation, invasion and migration of hPAC cells. Furthermore, PMEPA1 interference also enhanced the sensitivity of hPAC cells to GEM and DDP via PTEN interference. PMEPA1 interference inhibits the proliferation, invasion and migration of pancreatic cancer cells and enhances the sensitivity to GEM and cisplatin by activating PTEN/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Yang Yang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, Jiangsu, China
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Peng Xie
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lishan Wang
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, Jiangsu, China
| | - Hong Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhangjun Cheng
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, Jiangsu, China
| | - Jiahua Zhou
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery Research Institute, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Park MK, Zhang L, Min KW, Cho JH, Yeh CC, Moon H, Hormaechea-Agulla D, Mun H, Ko S, Lee JW, Jathar S, Smith AS, Yao Y, Giang NT, Vu HH, Yan VC, Bridges MC, Kourtidis A, Muller F, Chang JH, Song SJ, Nakagawa S, Hirose T, Yoon JH, Song MS. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab 2021; 33:2380-2397.e9. [PMID: 34879239 PMCID: PMC8813003 DOI: 10.1016/j.cmet.2021.11.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chih-Chen Yeh
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyesu Moon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Sonali Jathar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Laboratory of lncRNA Biology, National Center for Cell Science, Pune, Maharashtra 411007, India
| | - Aubrey S Smith
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nguyen Thu Giang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong Ha Vu
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary C Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Basic M, Hertel A, Bajdzienko J, Bonn F, Tellechea M, Stolz A, Kern A, Behl C, Bremm A. The deubiquitinase USP11 is a versatile and conserved regulator of autophagy. J Biol Chem 2021; 297:101263. [PMID: 34600886 PMCID: PMC8546420 DOI: 10.1016/j.jbc.2021.101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a major cellular quality control system responsible for the degradation of proteins and organelles in response to stress and damage to maintain homeostasis. Ubiquitination of autophagy-related proteins or regulatory components is important for the precise control of autophagy pathways. Here, we show that the deubiquitinase ubiquitin-specific protease 11 (USP11) restricts autophagy and that KO of USP11 in mammalian cells results in elevated autophagic flux. We also demonstrate that depletion of the USP11 homolog H34C03.2 in Caenorhabditis elegans triggers hyperactivation of autophagy and protects the animals against human amyloid-β peptide 42 aggregation-induced paralysis. USP11 coprecipitated with autophagy-specific class III phosphatidylinositol 3-kinase complex I and limited its interaction with nuclear receptor-binding factor 2, thus decreasing lipid kinase activity of class III phosphatidylinositol 3-kinase complex I and subsequent recruitment of effectors such as WD-repeat domain phosphoinositide-interacting proteins to the autophagosomal membrane. Accordingly, more WD-repeat domain phosphoinositide-interacting protein 2 puncta accumulated in USP11 KO cells. In addition, USP11 interacts with and stabilizes the serine/threonine kinase mechanistic target of rapamycin, thereby further contributing to the regulation of autophagy induction. Taken together, our data suggested that USP11 impinges on the autophagy pathway at multiple sites and that inhibiting USP11 alleviates symptoms of proteotoxicity, which is a major hallmark of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mila Basic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Alexandra Hertel
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Justyna Bajdzienko
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Mariana Tellechea
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Kim J, Choi H. The mucin protein MUCL1 regulates melanogenesis and melanoma genes in a manner dependent on threonine content. Br J Dermatol 2021; 186:532-543. [PMID: 34545566 PMCID: PMC9299140 DOI: 10.1111/bjd.20761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Background The regulation of melanogenesis has been investigated as a long‐held aim for pharmaceutical manipulations with denotations for malignancy of melanoma. Mucins have a protective function in epithelial organs; however, in the most outer organ, the skin, the role of mucins has not been studied enough. Objectives Our initial hypothesis developed from the identification of correlations between pigmentation and expressions of skin mucins, particularly those existing in skin tissue. We aimed to investigate the action of mucins in human melanocytic cells. Materials and methods The expression of mucin proteins in human skin was investigated using microarray data from the Human Protein Atlas consortium (HPA) and the Genotype‐Tissue Expression consortium (GTEx) database. Mucin expression was measured at RNA and protein levels in melanoma cells. The findings were further validated and confirmed by analysis of independent experiments. Results We found that the several mucin proteins showed expression in human skin cells and among these, mucin‐like protein 1 (MUCL1) showed the highest expression and also clear negative correlation with melanogenesis in epidermal melanocytes. We confirmed the correlations between melanogenesis and MUCL1 by revealing negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine, mucin‐conforming amino acid, and increased autophagy‐related forkhead‐box O signalling. Furthermore, threonine itself affects melanogenesis and metastatic activity in melanoma cells. Conclusions We identified a significant association between MUCL1 and threonine with melanogenesis and metastasis‐related genes in melanoma cells. Our results define a novel mechanism of mucin regulation, suggesting diagnostic and preventive roles of MUCL1 in cutaneous melanoma. Whatis already known about this topic? Despite considerable advances in radioactive therapeutics or chemotherapeutic approaches for the treatment of abnormal melanogenesis, there are still many caveats to delivery, effectiveness and safety, thus leaving a necessity for more immediate pharmaceutical targets. Mucins have protective and chemical barrier functions in epithelial organs; however, in the skin, mucin has scarce expression and is known only as a diagnostic aid in skin disorders such as mucinosis.
Whatdoes this study add? We provide detailed analysis demonstrating the potential of mucin‐like protein 1 (MUCL1), which showed negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine and increased autophagy‐related forkhead‐box O signalling in epidermal melanocytes and melanoma cells. We established that through an alternative pathway for MUCL1 biosynthesis, threonine supplementation recovers MUCL1 levels in melanoma. Changes, brought on by the essential amino acid threonine, resulted in substantial modulations in melanogenesis and reduced metastasis‐related genes.
Whatis the translational message? This study demonstrates for the first time that the mucin protein of skin cells is compounded by distorted mucin homeostasis, with major effects on melanogenesis and metastasis‐related genes in melanoma. We anticipate that these novel findings will be of keen interest to the community of scientists and medical practitioners examining skin dysfunction.
Linked Comment: C. Casalou and D.J. Tobin. Br J Dermatol 2022; 186:388–389. Plain language summary available online
Collapse
Affiliation(s)
- J Kim
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| | - H Choi
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| |
Collapse
|
28
|
Qiao L, Zhang Q, Sun Z, Liu Q, Wu Z, Hu W, Bao S, Yang Q, Liu L. The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway. Cancer Lett 2021; 514:63-78. [PMID: 34044068 DOI: 10.1016/j.canlet.2021.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Deubiquitinase ubiquitin-specific protease 11 (USP11), a member of the deubiquitinating family, plays an important but still controversial role in cancer development. Namely, USP11 has been shown to promote the proliferation and metastasis of hepatocellular carcinoma (HCC), but the underlying molecular basis is poorly understood. This study aimed to unravel novel functions of USP11 in HCC, especially those related to autophagy. Here, EdU, migration and colony formation assays, and mouse models showed that USP11 played a crucial role in HCC cell proliferation and metastasis in vitro and in vivo. Results from co-immunoprecipitation and ubiquitination assays demonstrated that USP11 interacted with E2F1 and maintained E2F1 protein stability by removing its ubiquitin. Notably, E2F1 regulated USP11 expression at the transcriptional level. Thus, the E2F1/USP11 formed a positive feedback loop to promote the proliferation and migration of HCC cells. Moreover, E2F1/USP11 inhibited autophagy by regulating ERK/mTOR pathway. In addition, the combination treatment inhibition of USP11 and autophagy enhanced the apoptosis of HCC cells and inhibited the tumor growth in mice more effective than either treatment alone. Taken together, these results indicate that the E2F1/USP11 signal axis promotes HCC proliferation and metastasis and inhibits autophagy, which provides an experimental basis for the treatment of HCC.
Collapse
Affiliation(s)
- Lijun Qiao
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiangnu Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhe Sun
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Quan Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Zongze Wu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Weibin Hu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
29
|
He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, Zhao J, Zeng Y, Mao X. The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem 2021; 297:101088. [PMID: 34416231 PMCID: PMC8429974 DOI: 10.1016/j.jbc.2021.101088] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Yuanming He
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuoyi Jiang
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenyu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hui Zheng
- Institute of Biomedical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, China.
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Zhao WX, Tang YL, Wang WH, Bao MW. Up-regulation of circ_0000353 impedes the proliferation and metastasis of non-small cell lung cancer cells via adsorbing miR-411-5p and increasing forkhead box O1. Cancer Biomark 2021; 29:25-37. [PMID: 32568175 DOI: 10.3233/cbm-190812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common malignant tumor worldwide. This work focuses on investigating the role of circ_0000353 in NSCLC and its potential mechanism of action. METHODS The expression levels of circ_0000353 and miR-411-5p in NSCLC and their matched normal lung tissues were detected by real-time PCR (RT-PCR). The correlation between the circ_0000353 expression and the clinicopathological parameters of NSCLC patients was also analyzed. CCK-8, BrdU and colony formation assays were adopted to detect the role of circ_0000353 in the proliferation of NSCLC cells. The metastasis of NSCLC cells was measured by Transwell assay. The dual-luciferase reporter gene assay was used to confirm the targeting relationship between circ_0000353 and miR-411-5p. The expression level of FOXO1 was detected by western blot. RESULTS Circ_0000353 was significantly down-regulated in NSCLC tissues and cell lines, and the decreased expression was significantly linked to the increased clinical stage, larger tumor volume, and metastasis. The circ_0000353 over-expression restrained the proliferation, migration, and invasion of NSCLC cells in vitro. Additionally, up-regulation of miR-411-5p was observed in NSCLC tissues and cell lines, and luciferase assay and RT-PCR assay showed that circ_0000353 over-expression could target miR-411-5p and suppress its expression. Further studies confirmed that circ_0000353 and miR-411-5p modulated the FOXO1 expression. CONCLUSION Circ_0000353 repressed the proliferation, migration, and invasion of NSCLC cells via inhibition of miR-411-5p and up-regulation of FOXO1.
Collapse
Affiliation(s)
- Wei-Xin Zhao
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yan-Lei Tang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wei-Hua Wang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min-Wei Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
31
|
The Multifaceted Roles of USP15 in Signal Transduction. Int J Mol Sci 2021; 22:ijms22094728. [PMID: 33946990 PMCID: PMC8125482 DOI: 10.3390/ijms22094728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.
Collapse
|
32
|
Alves M, Borges DDP, Kimberly A, Martins Neto F, Oliveira AC, de Sousa JC, Nogueira CD, Carneiro BA, Tavora F. Glycogen Synthase Kinase-3 Beta Expression Correlates With Worse Overall Survival in Non-Small Cell Lung Cancer-A Clinicopathological Series. Front Oncol 2021; 11:621050. [PMID: 33767989 PMCID: PMC7985549 DOI: 10.3389/fonc.2021.621050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Glycogen Synthase Kinase-3 beta (GSK-3β) regulates diverse cell functions including metabolic activity, signaling and structural proteins. GSK-3β phosphorylates target pro-oncogenes and regulates programmed cell death-ligand 1 (PD-L1). This study investigated the correlation between GSK-3β expression and clinically relevant molecular features of lung adenocarcinoma (PDL1 score, PTEN expression and driver mutations). Methods We evaluated 95 lung cancer specimens from biopsies and surgical resections. Immunohistochemistry was performed to analyze the expression of GSK-3β, PTEN, and PDL1. Epidemiological data, molecular characteristics and staging were evaluated from medical records. The histologic classification was performed by an experienced pulmonary pathologist. Results Most patients were female (52.6%) and the majority had a positive smoking history. The median age was 68.3 years, with individuals over 60 years accounting for 82.1%. The predominant histological subtype was adenocarcinoma (69.5%), followed by squamous cell carcinoma (20.0%). GSK-3β expression in tumors was cytoplasmic with a dotted pattern and perinuclear concentration, with associated membranous staining. Seven (7.3%) tumors had associated nuclear expression localization. Seventy-seven patients (81.1%) had advanced clinical-stage tumors. GSK-3β was positive in 75 tumors (78%) and GSK3-positive tumors tended to be diagnosed at advanced stages. Among stage III/IV tumors, 84% showed GSK3 positivity (p= 0.007). We identified a statistically significant association between GSK-3β and PTEN in the qualitative analysis (p 0.021); and when comparing PTEN to GSK-3β intensity 2+ (p 0.001) or 3+ expression (> 50%) – p 0.013. GSK-3β positive tumors with a high histological score had a worse overall survival. Conclusion We identified the histological patterns of GSK-3β expression and evaluated its potential as marker for overall survival, establishing a simple histological score to measure the evaluated status in resected tissues. The use of GSK-3β expression as an immune response biomarker remains a challenge. Future studies will seek to explain the role of its interaction with PTEN.
Collapse
Affiliation(s)
- Marclesson Alves
- Department of Pathology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Aline Kimberly
- Department of Pathology, Federal University of Ceará, Fortaleza, Brazil.,Argos Pathology Laboratory, Department of Investigative Pathology, Fortaleza, Brazil
| | - Francisco Martins Neto
- Departments of Patholoy, Oncology and Thoracic Surgery, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Ana Claudia Oliveira
- Departments of Patholoy, Oncology and Thoracic Surgery, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Juliana Cordeiro de Sousa
- Department of Pathology, Federal University of Ceará, Fortaleza, Brazil.,Argos Pathology Laboratory, Department of Investigative Pathology, Fortaleza, Brazil
| | - Cleto D Nogueira
- Department of Pathology, Federal University of Ceará, Fortaleza, Brazil.,Argos Pathology Laboratory, Department of Investigative Pathology, Fortaleza, Brazil
| | - Benedito A Carneiro
- Division of Hematology/Oncology, Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Fabio Tavora
- Department of Pathology, Federal University of Ceará, Fortaleza, Brazil.,Argos Pathology Laboratory, Department of Investigative Pathology, Fortaleza, Brazil.,Departments of Patholoy, Oncology and Thoracic Surgery, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| |
Collapse
|
33
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Mukherjee R, Vanaja KG, Boyer JA, Gadal S, Solomon H, Chandarlapaty S, Levchenko A, Rosen N. Regulation of PTEN translation by PI3K signaling maintains pathway homeostasis. Mol Cell 2021; 81:708-723.e5. [PMID: 33606974 DOI: 10.1016/j.molcel.2021.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/09/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
The PI3K pathway regulates cell metabolism, proliferation, and migration, and its dysregulation is common in cancer. We now show that both physiologic and oncogenic activation of PI3K signaling increase the expression of its negative regulator PTEN. This limits the duration of the signal and output of the pathway. Physiologic and pharmacologic inhibition of the pathway reduces PTEN and contributes to the rebound in pathway activity in tumors treated with PI3K inhibitors and limits their efficacy. Regulation of PTEN is due to mTOR/4E-BP1-dependent control of its translation and is lost when 4E-BP1 is deleted. Translational regulation of PTEN is therefore a major homeostatic regulator of physiologic PI3K signaling and plays a role in reducing the pathway activation by oncogenic PIK3CA mutants and the antitumor activity of PI3K pathway inhibitors. However, pathway output is hyperactivated in tumor cells with coexistent PI3K mutation and loss of PTEN function.
Collapse
Affiliation(s)
- Radha Mukherjee
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kiran G Vanaja
- Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jacob A Boyer
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sunyana Gadal
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hilla Solomon
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andre Levchenko
- Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
35
|
Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 2021; 40:1706-1720. [PMID: 33531626 DOI: 10.1038/s41388-021-01660-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a key role in cancer progression and is tightly regulated by the proteasome pathway. E3 ligases that mediate NRF2 ubiquitination have been widely reported, but the mechanism of NRF2 deubiquitination remains largely unclear. Here, we identified ubiquitin-specific-processing protease 11 (USP11) in NRF2 complexes and confirmed an interaction between these two proteins. We further found that USP11 deubiquitinates NRF2; this modification stabilizes NRF2. Functionally, USP11 depletion contributes to the suppression of cell proliferation and induction of ferroptotic cell death due to ROS-mediated stress, which can be largely abrogated by overexpression of NRF2. Finally, immunohistochemical staining of USP11 and NRF2 was performed using a lung tissue microarray, which revealed that USP11 is highly expressed in patients with NSCLC and positively correlated with NRF2 expression. Together, USP11 stabilizes NRF2 and is thus an important player in cell proliferation and ferroptosis.
Collapse
Affiliation(s)
- Chunjie Meng
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Delin Chen
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jianyuan Luo
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
36
|
Kang X, Wang Y, Liang W, Tang X, Zhang Y, Wang L, Zhao P, Lu Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103904. [PMID: 33245980 DOI: 10.1016/j.dci.2020.103904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Forkhead-box O (FoxO) is the primary transcriptional effector of the insulin-like signaling pathway that enhances gluconeogenesis through transcriptional activation of PEPCK and G6Pase in mammals. We have previously demonstrated the involvement of phosphoenolpyruvate carboxykinase (BmPEPCK-2) in antiviral immunity against the multiplication of Bombyx mori nuclearpolyhedrosisvirus (BmNPV) in silkworm. Therefore, we speculated that BmFoxO might suppress BmNPV by regulating the expression of PEPCK in silkworm. In the present study, we found that the expression of BmFoxO decreased after BmNPV infection in Bombyx mori; this finding was consistent with BmPEPCK-2 expression. In addition, the expression of BmFoxO was altered, and it was found that reduced expression of BmFoxO (dsBmFoxO) downregulated the expression of BmPEPCK-2 and increased the viral fluorescence and content in silkworm embryonic cell line BmE cells, and vice versa. BmFoxO could upregulate the expression of BmPEPCK-2 by binding to the BmPEPCK-2 promoter. Moreover, overexpression of BmFoxO significantly increased the expression of autophagy genes ATG6/7/8 after infection with BmNPV, consistent with BmPEPCK-2. These results indicate that BmNPV downregulates transcription factor BmFoxO to elevate virus infection, and BmFoxO overexpression upregulates BmPEPCK-2 expression and enhances silkworm antiviral resistance.
Collapse
Affiliation(s)
- Xiaoli Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
37
|
Huang YY, Zhang CM, Dai YB, Lin JG, Lin N, Huang ZX, Xu TW. USP11 facilitates colorectal cancer proliferation and metastasis by regulating IGF2BP3 stability. Am J Transl Res 2021; 13:480-496. [PMID: 33594305 PMCID: PMC7868846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The abnormal expression of ubiquitin-specific protease 11 (USP11) is thought to be related to tumor development and progression; however, few studies have reported the biological function and clinical importance of USP11 in colorectal cancer (CRC). Therefore, it is necessary to further explore the role of USP11 in CRC. Immunohistochemical staining was used to explore the association between prognosis and USP11 expression in CRC. Cholecystokinin octapeptide (CCK-8), colony formation, transwell, and animal assays were used to study the abilities of proliferation, migration, and invasion in CRC cells. Co-immunoprecipitation assays, Western blotting, ubiquitination assays, and rescue experiments were performed to elucidate the interaction between USP11 and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). We verified that USP11 was overexpressed in CRC tissues and was associated with the depth of tumor invasion and metastasis. USP11 knockdown or overexpression could weaken or reinforce the abilities of proliferation, migration, and invasion in CRC cells in vivo or in vitro. IGF2BP3 was protected by USP11 from degradation via deubiquitination. The rescue experiments revealed that IGF2BP3 overexpression could effectively reverse the decrease in cell proliferation, migration, and invasion caused by USP11 knockdown. Therefore, USP11 might be involved in CRC tumorigenesis and development through a USP11-IGF2BP3 axis pathway, and USP11 overexpression might be a novel indicator for poor prognosis and a potential therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Ya-Yu Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
- Department of Radiation Oncology, Xiamen Branch, Zhongshan Hospital, Fudan UniversityXiamen 361004, Fujian, China
| | - Chang-Mao Zhang
- Department of General Surgery, Zhongshan Hospital of Xiamen UniversityXiamen 361004, Fujian, China
| | - Yang-Bin Dai
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Jian-Guang Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Na Lin
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Zhong-Xin Huang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Tian-Wen Xu
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| |
Collapse
|
38
|
circFOXO3: Going around the mechanistic networks in cancer by interfering with miRNAs regulatory networks. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166045. [PMID: 33513429 DOI: 10.1016/j.bbadis.2020.166045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNA) have gained recent interest due to their functional versatility due to their interactions with other RNA species and proteins, all of which underline complex regulatory networks involved in pathogenic mechanisms. As a result, recent insights in circRNA biology are investigating their biomarker and therapeutic potential. One such circRNA is CircFOXO3, which consists of the circularized second exon of the FOXO3 mRNA, a member of the forkhead box transcription factor family involved in the regulation of developmental programs. Recent research focused on the role of circFOXO3 in the context of cancer has highlighted several implications in key tumorigenesis mechanisms, thus consolidating its relevance among other identified circRNAs. In this paper, we will focus on the currently identified case-specific implications of circFOXO3 in cancer, with a focus on the circFOXO3-miRNA-mRNA regulatory networks, its interactions with different proteins, and their cumulated biological effects upon tumor development. Therefore, we aim to provide an integrated perspective of the mechanistic implications of circFOXO3 in different cancers while also highlighting its biomarker or therapeutic potential based on the current evidence.
Collapse
|
39
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
40
|
Luo Q, Wu X, Nan Y, Chang W, Zhao P, Zhang Y, Su D, Liu Z. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep 2021; 30:98-111.e5. [PMID: 31914402 DOI: 10.1016/j.celrep.2019.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinoma (SCC) is an aggressive epithelial malignancy, yet the molecular mechanisms underlying SCC development are elusive. ARID1A is frequently mutated in various cancer types, but both mutation rates and expression levels of ARID1A are ubiquitously low in SCCs. Here, we reveal that excessive protein degradation mediated by the ubiquitin-proteasome system (UPS) contributes to the loss of ARID1A expression in SCC. We identify that the E3 ligase TRIM32 and the deubiquitinase USP11 play key roles in controlling ARID1A stability. TRIM32 depletion inhibits SCC cell proliferation, metastasis, and chemoresistance by stabilizing ARID1A, while USP11 depletion promotes SCC development by promoting ARID1A degradation. We show that syndecan-2 (SDC2) is the downstream target of both ARID1A and USP11 and that SDC2 depletion abolishes the oncogenic function of ARID1A loss. In summary, our data reveal UPS-mediated protein degradation as a mechanism underlying ARID1A loss and propose an important role for the TRIM32/USP11-ARID1A-SDC2 axis in SCC.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiping Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Zhejiang 310022, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
41
|
The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 2021; 40:2112-2129. [PMID: 33627786 PMCID: PMC7979541 DOI: 10.1038/s41388-021-01679-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Protein ubiquitination is a critical regulator of cellular homeostasis. Aberrations in the addition or removal of ubiquitin can result in the development of cancer and key components of the ubiquitination machinery serve as oncogenes or tumour suppressors. An emerging target in the development of cancer therapeutics are the deubiquitinase (DUB) enzymes that remove ubiquitin from protein substrates. Whether this class of enzyme plays a role in cervical cancer has not been fully explored. By interrogating the cervical cancer data from the TCGA consortium, we noted that the DUB USP13 is amplified in ~15% of cervical cancer cases. We confirmed that USP13 expression was increased in cervical cancer cell lines, cytology samples from patients with cervical disease and in cervical cancer tissue. Depletion of USP13 inhibited cervical cancer cell proliferation. Mechanistically, USP13 bound to, deubiquitinated and stabilised Mcl-1, a pivotal member of the anti-apoptotic BCL-2 family. Furthermore, reduced Mcl-1 expression partially contributed to the observed proliferative defect in USP13 depleted cells. Importantly, the expression of USP13 and Mcl-1 proteins correlated in cervical cancer tissue. Finally, we demonstrated that depletion of USP13 expression or inhibition of USP13 enzymatic activity increased the sensitivity of cervical cancer cells to the BH3 mimetic inhibitor ABT-263. Together, our data demonstrates that USP13 is a potential oncogene in cervical cancer that functions to stabilise the pro-survival protein Mcl-1, offering a potential therapeutic target for these cancers.
Collapse
|
42
|
Activation of PAR2 by tissue factor induces the release of the PTEN from MAGI proteins and regulates PTEN and Akt activities. Sci Rep 2020; 10:20908. [PMID: 33262514 PMCID: PMC7708427 DOI: 10.1038/s41598-020-77963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Tissue factor (TF) signalling has been associated with alterations in Akt activity influencing cellular survival and proliferation. TF is also shown to induce signalling through activation of the protease activated receptor (PAR)2. Seven cell lines were exposed to recombinant-TF (rec-TF), or activated using a PAR2-agonist peptide and the phosphorylation state of PTEN, and the activities of PTEN and Akt measured. Furthermore, by measuring the association of PTEN with MAGI proteins a mechanism for the induction of signalling by TF was proposed. Short term treatment of cells resulted in de-phosphorylation of PTEN, increased lipid-phosphatase activity and reduced Akt kinase activity in most of the cell lines examined. In contrast, continuous exposure to rec-TF up to 14 days, resulted in lower PTEN antigen levels, enhanced Akt activity and increased rate of cell proliferation. To explore the mechanism of activation of PTEN by TF, the association of "membrane-associated guanylate kinase-with inverted configuration" (MAGI)1–3 proteins with PTEN was assessed using the proximity ligation assay and by co-immunoprecipitation. The interaction of PTEN with all three MAGI proteins was transiently reduced following PAR2 activation and explains the changes in PTEN activity. Our data is first to show that PAR2 activation directly, or through exposure of cells to TF releases PTEN from MAGI proteins and is concurrent with increases in PTEN phosphatase activity. However, prolonged exposure to TF results in the reduction in PTEN antigen with concurrent increase in Akt activity which may explain the aberrant cell survival, proliferation and invasion associated with TF during chronic diseases.
Collapse
|
43
|
Chang YC, Liu HW, Chan YC, Hu SH, Liu MY, Chang SJ. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch Biochem Biophys 2020; 692:108511. [PMID: 32710883 DOI: 10.1016/j.abb.2020.108511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.
| | - Hung-Wen Liu
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan.
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
| | - Shu-Hui Hu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Yi Liu
- Department of Long Term Care, Wu Feng University, Chiayi County, Taiwan; Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology. No. 1, Nan-Tai Street, Yongkang Dist., Tainan City, Taiwan.
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
44
|
Posttranslational Regulation and Conformational Plasticity of PTEN. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036095. [PMID: 31932468 DOI: 10.1101/cshperspect.a036095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.
Collapse
|
45
|
Zhao H, Wang Y, Yang C, Zhou J, Wang L, Yi K, Li Y, Wang Q, Shi J, Kang C, Zeng L. EGFR-vIII downregulated H2AZK4/7AC though the PI3K/AKT-HDAC2 axis to regulate cell cycle progression. Clin Transl Med 2020; 9:10. [PMID: 31993801 PMCID: PMC6987283 DOI: 10.1186/s40169-020-0260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The EGFR-vIII mutation is the most common malignant event in GBM. Epigenetic reprogramming in EGFR-activated GBM has recently been suggested to downregulate the expression of tumour suppressor genes. Histone acetylation is important for chromatin structure and function. However, the role and biological function of H2AZK4/7AC in tumours have not yet been clarified. RESULTS In our study, we found that EGFR-vIII negatively regulated H2AZK4/7AC expression though the PI3K/AKT-HDAC2 axis. Because HDAC1 and HDAC2 are highly homologous enzymes that usually form multi-protein complexes for transcriptional regulation and epigenetic landscaping, we simultaneously knocked out HDAC1 and HDAC2 and found that H2AZK4/7AC and H3K27AC were upregulated, which partially released EGFR-vIII-mediated inhibition of USP11, negative regulator of cell cycle. In addition, we demonstrated in vitro and in vivo that FK228 induced G1/S transition arrest in GBM with EGFR-vIII mutation. FK228 could enhance anti-tumour activity by upregulating expression of the tumour suppressor USP11 in GBM cells. CONCLUSIONS EGFR-vIII mutation downregulates H2AZK4/7AC and H3K27AC, inhibiting USP11 expression though the PI3K/AKT-HDAC1/2 axis. FK228 is an effective and promising treatment for GBM with EGFR-vIII mutation.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Lin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yansheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jin Shi
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China.
| | - Liang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Wang M, Chen Y, Cai W, Feng H, Du T, Liu W, Jiang H, Pasquarelli A, Weizmann Y, Wang X. In situ self-assembling Au-DNA complexes for targeted cancer bioimaging and inhibition. Proc Natl Acad Sci U S A 2020; 117:308-316. [PMID: 31843938 PMCID: PMC6955332 DOI: 10.1073/pnas.1915512116] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cancer remains one of the most challenging diseases to treat. For accurate cancer diagnosis and targeted therapy, it is important to assess the localization of the affected area of cancers. The general approaches for cancer diagnostics include pathological assessments and imaging. However, these methods only generally assess the tumor area. In this study, by taking advantage of the unique microenvironment of cancers, we effectively utilize in situ self-assembled biosynthetic fluorescent gold nanocluster-DNA (GNC-DNA) complexes to facilitate safe and targeted cancer theranostics. In in vitro and in vivo tumor models, our self-assembling biosynthetic approach allowed for precise bioimaging and inhibited cancer growth after one injection of DNA and gold precursors. These results demonstrate that in situ bioresponsive self-assembling GNC-PTEN (phosphatase and tensin homolog) complexes could be an effective noninvasive technique for accurate cancer bioimaging and treatment, thus providing a safe and promising cancer theranostics platform for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Yun Chen
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Weijuan Cai
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Huan Feng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Tianyu Du
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China;
| |
Collapse
|
47
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
48
|
Revising PTEN in the Era of Immunotherapy: New Perspectives for an Old Story. Cancers (Basel) 2019; 11:cancers11101525. [PMID: 31658667 PMCID: PMC6826982 DOI: 10.3390/cancers11101525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has emerged as the new therapeutic frontier of cancer treatment, showing enormous survival benefits in multiple tumor diseases. Although undeniable success has been observed in clinical trials, not all patients respond to treatment. Different concurrent conditions can attenuate or completely abrogate the usefulness of immunotherapy due to the activation of several escape mechanisms. Indeed, the tumor microenvironment has an almost full immunosuppressive profile, creating an obstacle to therapeutic treatment. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) governs a plethora of cellular processes, including maintenance of genomic stability, cell survival/apoptosis, migration, and metabolism. The repertoire of PTEN functions has recently been expanded to include regulation of the tumor microenvironment and immune system, leading to a drastic reevaluation of the canonical paradigm of PTEN action with new potential implications for immunotherapy-based approaches. Understanding the implication of PTEN in cancer immunoediting and immune evasion is crucial to develop new cancer intervention strategies. Recent evidence has shown a double context-dependent role of PTEN in anticancer immunity. Here we summarize the current knowledge of PTEN’s role at a crossroads between tumor and immune compartments, highlighting the most recent findings that are likely to change future clinical practice.
Collapse
|
49
|
Zhang H, Wei P, Lv W, Han X, Yang J, Qin S. Long noncoding RNA lnc-DILC stabilizes PTEN and suppresses clear cell renal cell carcinoma progression. Cell Biosci 2019; 9:81. [PMID: 31592114 PMCID: PMC6775667 DOI: 10.1186/s13578-019-0345-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are crucial regulators affecting the progression of human cancers. Recently, lncRNA downregulated in liver cancer stem cells (lnc-DILC) was identified to function as a tumor suppressor inhibiting the tumorigenesis and metastasis in liver cancer and colorectal cancer. However, to date, little is known about the functional roles of lnc-DILC in modulating malignant phenotypes of clear cell renal cell carcinoma (ccRCC) cells. Methods lnc-DILC expression in human ccRCC tissues was detected by qRT-PCR. Overexpression and knockdown experiments were carried out to determine the effects of lnc-DILC on ccRCC cell proliferation, migration and invasion. To reveal the underlying mechanisms of lnc-DILC functions in ccRCC cells. RNA immunoprecipitation, RNA pull-down, in vivo ubiquitination, co-immunoprecipitation and western blot assays were performed. Results Here, we identified that lnc-DILC levels were dramatically downregulated in ccRCC tissues. Loss of lnc-DILC expression was correlated with larger tumor size, advanced tumor grade and lymph node metastasis, and also predicted worse prognosis in patients with ccRCC. Functionally, knockdown and overexpression experiments demonstrated that lnc-DILC inhibited cell proliferation, migration and invasion in ccRCC cells. Mechanistic investigation revealed that lnc-DILC bound to tumor suppressor PTEN and suppressed its degradation. lnc-DILC repressed the PTEN ubiquitination through blocking the interaction between PTEN and E3 ubiquitin ligase WWP2 and recruiting the deubiquitinase USP11 to PTEN. Moreover, we demonstrated that PTEN–AKT signaling was crucial for lnc-DILC-mediated suppressive effects. Conclusions In summary, our research revealed a novel mechanism by which lnc-DILC regulates PTEN stability via WWP2 and USP11, and shed light on potential therapeutic strategies by the restoration of lnc-DILC expression in patients with ccRCC.
Collapse
Affiliation(s)
- Han Zhang
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| | - Pengtao Wei
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| | - Wenwei Lv
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| | - Xingtao Han
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| | - Jinhui Yang
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| | - Shuaifeng Qin
- Urology Department, Luoyang Central Hospital, No. 288, Zhongzhou Road, Luoyang, 471000 Henan China
| |
Collapse
|
50
|
Sun H, Ou B, Zhao S, Liu X, Song L, Liu X, Wang R, Peng Z. USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine 2019; 48:236-247. [PMID: 31521612 PMCID: PMC6838424 DOI: 10.1016/j.ebiom.2019.08.061] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background USP11 is an ubiquitin-specific protease that plays an important role in tumor progression via different mechanisms. However, the expression and prognostic significance of USP11 in colorectal cancer (CRC) remain unknown. Methods Bioinformatics analyses, qRT-PCR, western blotting, and immunohistochemistry were applied for investigating USP11 expression in CRC tissues. Kaplan–Meier analysis with log-rank test was used for survival analyses. LC–MS/MS was performed for identifying potential protein interactions with USP11. In vitro and in vivo assays were used for exploring the function of USP11 during the progression of CRC. Findings USP11 was overexpressed in CRC tissues and functioned as an oncogene. Overexpression or knockdown of USP11 promoted or inhibited, respectively, the growth and metastasis of CRC cells in vitro and in vivo. Mechanically, USP11 stabilized PPP1CA by deubiquitinating and protecting it from proteasome-mediated degradation. Moreover, the USP11/PPP1CA complex promoted CRC progression by activating the ERK/MAPK signaling pathway. Interpretation USP11 promoted tumor growth and metastasis in CRC via the ERK/MAPK pathway by stabilizing PPP1CA, suggesting USP11 is a potential prognostic marker. Fund This work was supported by National Natural Science Foundation of China (NSFC81530044, NSFC81220108021, NSFC81802343), Technology Major Project of China Grants 2017ZX10203206, Shanghai Sailing Program (19YF1409600) and The project of Shanghai Jiaotong University (YG2017QN30).
Collapse
Affiliation(s)
- Hongze Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Baochi Ou
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Liwei Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Rangrang Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, Shanghai, China.
| |
Collapse
|