1
|
Razavi-Mohseni M, Huang W, Guo YA, Shigaki D, Ho SWT, Tan P, Skanderup AJ, Beer MA. Machine learning identifies activation of RUNX/AP-1 as drivers of mesenchymal and fibrotic regulatory programs in gastric cancer. Genome Res 2024; 34:680-695. [PMID: 38777607 PMCID: PMC11216402 DOI: 10.1101/gr.278565.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and is a heterogeneous disease. Among GC subtypes, the mesenchymal phenotype (Mes-like) is more invasive than the epithelial phenotype (Epi-like). Although gene expression of the epithelial-to-mesenchymal transition (EMT) has been studied, the regulatory landscape shaping this process is not fully understood. Here we use ATAC-seq and RNA-seq data from a compendium of GC cell lines and primary tumors to detect drivers of regulatory state changes and their transcriptional responses. Using the ATAC-seq data, we developed a machine learning approach to determine the transcription factors (TFs) regulating the subtypes of GC. We identified TFs driving the mesenchymal (RUNX2, ZEB1, SNAI2, AP-1 dimer) and the epithelial (GATA4, GATA6, KLF5, HNF4A, FOXA2, GRHL2) states in GC. We identified DNA copy number alterations associated with dysregulation of these TFs, specifically deletion of GATA4 and amplification of MAPK9 Comparisons with bulk and single-cell RNA-seq data sets identified activation toward fibroblast-like epigenomic and expression signatures in Mes-like GC. The activation of this mesenchymal fibrotic program is associated with differentially accessible DNA cis-regulatory elements flanking upregulated mesenchymal genes. These findings establish a map of TF activity in GC and highlight the role of copy number driven alterations in shaping epigenomic regulatory programs as potential drivers of GC heterogeneity and progression.
Collapse
Affiliation(s)
- Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Weitai Huang
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Yu A Guo
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Shamaine Wei Ting Ho
- Laboratory of Cancer Epigenetic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Patrick Tan
- Laboratory of Cancer Epigenetic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593
| | - Anders J Skanderup
- Laboratory of Computational Cancer Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
2
|
Stanton BZ, Pomella S. Epigenetic determinants of fusion-driven sarcomas: paradigms and challenges. Front Cell Dev Biol 2024; 12:1416946. [PMID: 38946804 PMCID: PMC11211607 DOI: 10.3389/fcell.2024.1416946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
We describe exciting recent advances in fusion-driven sarcoma etiology, from an epigenetics perspective. By exploring the current state of the field, we identify and describe the central mechanisms that determine sarcomagenesis. Further, we discuss seminal studies in translational genomics, which enabled epigenetic characterization of fusion-driven sarcomas. Important context for epigenetic mechanisms include, but are not limited to, cell cycle and metabolism, core regulatory circuitry, 3-dimensional chromatin architectural dysregulation, integration with ATP-dependent chromatin remodeling, and translational animal modeling. Paradoxically, while the genetic requirements for oncogenic transformation are highly specific for the fusion partners, the epigenetic mechanisms we as a community have uncovered are categorically very broad. This dichotomy prompts the question of whether the investigation of rare disease epigenomics should prioritize studying individual cell populations, thereby examining whether the mechanisms of chromatin dysregulation are specific to a particular tumor. We review recent advances focusing on rhabdomyosarcoma, synovial sarcoma, alveolar soft part sarcoma, clear cell sarcoma, undifferentiated round cell sarcoma, Ewing sarcoma, myxoid/round liposarcoma, epithelioid hemangioendothelioma and desmoplastic round cell tumor. The growing number of groundbreaking discoveries in the field, motivated us to anticipate further exciting advances in the area of mechanistic epigenomics and direct targeting of fusion transcription factors in the years ahead.
Collapse
Affiliation(s)
- Benjamin Z. Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
4
|
Song DH, Lee JS, Lee JH, Kim DC, Yang JW, Kim MH, Na JM, Cho HK, Yoo J, An HJ. Exosome-mediated secretion of miR-127-3p regulated by RAB27A accelerates metastasis in renal cell carcinoma. Cancer Cell Int 2024; 24:153. [PMID: 38685086 PMCID: PMC11057152 DOI: 10.1186/s12935-024-03334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The exosome-mediated extracellular secretion of miRNAs occurs in many cancers, and RAB27A is a potent regulator of exosome secretion. For metastatic renal cell carcinoma (RCC), this study examines the mechanisms of cancer metastasis via the RAB27A-regulated secretion of specific miRNAs. METHODS RAB27A knockdown (KD) and overexpressing (OE) RCC cells were used to examine cell migration and adhesion. The particle counts and sizes of exosomes in RAB27A OE cells were analyzed using Exoview, and those of intraluminal vesicles (ILV) and multivesicular bodies (MVB) were measured using an electron microscope. Analysis of RNA sequences, protein-protein interaction networks, and the competing endogenous RNA (ceRNA) network were used to identify representative downregulated miRNAs that are likely to undergo cargo-sorting into exosomes and subsequent secretion. A molecular beacon of miR-137-3p, one of the most representatively downregulated genes with a fold change of 339, was produced, and its secretion was analyzed using Exoview. RAB27A OE and control cells were incubated in an exosome-containing media to determine the uptake of tumor suppressor miRNAs that affect cancer cell metastasis. RESULTS Migration and cell adhesion were higher in RAB27A OE cells than in RAB27A KD cells. Electron microscopy revealed that the numbers of multivesicular bodies and intraluminal vesicles per cell were higher in RAB27A OE cells than in control cells, suggesting their secretion. The finding revealed that miR-127-3p was sorted into exosomes and disposed of extracellularly. Protein-protein interaction analysis revealed MYCN to be the most significant hub for RAB27A-OE RCC cells. ceRNA network analysis revealed that MAPK4 interacted strongly with miR-127-3p. CONCLUSION The disposal of miR-127-3p through exosome secretion in RAB27A overexpressing cells may not inhibit the MAPK pathway to gain metastatic potential by activating MYCN. The exosomes containing miRNAs are valuable therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jong Sil Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jeong-Hee Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Dong Chul Kim
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jung Wook Yang
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Ji Min Na
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun-Kyung Cho
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, South Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea.
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.
| |
Collapse
|
5
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
6
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Liu T, Wang J, Yang H, Jin Q, Wang X, Fu Y, Luan Y, Wang Q, Youngblood MW, Lu X, Casadei L, Pollock R, Yue F. Enhancer Coamplification and Hijacking Promote Oncogene Expression in Liposarcoma. Cancer Res 2023; 83:1517-1530. [PMID: 36847778 PMCID: PMC10152236 DOI: 10.1158/0008-5472.can-22-1858] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
SIGNIFICANCE Comprehensive profiling of the enhancer landscape and 3D genome structure in liposarcoma identifies extensive enhancer-oncogene coamplification and enhancer hijacking events, deepening the understanding of how oncogenes are regulated in cancer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Yihao Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Mark W. Youngblood
- Department of Neurosurgery, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lucia Casadei
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Raphael Pollock
- Program in Translational Therapeutics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Du X, Wang H, Xu J, Zhang Y, Chen T, Li G. Profiling and integrated analysis of transcriptional addiction gene expression and prognostic value in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204676. [PMID: 37171044 PMCID: PMC10188332 DOI: 10.18632/aging.204676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
Transcriptional dysregulation caused by genomic and epigenetic alterations in cancer is called "transcriptional addiction". Transcriptional addiction is an important pathogenic factor of tumor malignancy. Hepatocellular carcinoma (HCC) genomes are highly heterogeneous, with many dysregulated genes. Our study analyzed the possibility that transcriptional addiction-related genes play a significant role in HCC. All data sources for conducting this study were public cancer databases and tissue microarrays. We identified 38 transcriptional addiction genes, and most were differentially expressed genes. Among patients of different groups, there were significant differences in overall survival rates. Both nomogram and risk score were independent predictors of HCC outcomes. Transcriptional addiction gene expression characteristics determine the sensitivity of patients to immunotherapy, cisplatin, and sorafenib. Besides, HDAC2 was identified as an oncogene, and its expression was correlated with patient survival time. Our study conclusively demonstrated that transcriptional addiction is crucial in HCC. We provided biomarkers for predicting the prognosis of HCC patients, which can more precisely guide the patient's treatment.
Collapse
Affiliation(s)
- Xiaowei Du
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Wang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Zhang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingsong Chen
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Li
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Shendy NAM, Zimmerman MW, Abraham BJ, Durbin AD. Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Rep Med 2022; 3:100632. [PMID: 35584622 PMCID: PMC9133465 DOI: 10.1016/j.xcrm.2022.100632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Cell state is controlled by master transcription factors (mTFs) that determine the cellular gene expression program. Cancer cells acquire dysregulated gene expression programs by mutational and non-mutational processes. Intratumoral heterogeneity can result from cells displaying distinct mTF-regulated cell states, which co-exist within the tumor. One archetypal tumor associated with transcriptionally regulated heterogeneity is high-risk neuroblastoma (NB). Patients with NB have poor overall survival despite intensive therapies, and relapsed patients are commonly refractory to treatment. The cellular populations that comprise NB are marked by different cohorts of mTFs and differential sensitivity to conventional therapies. Recent studies have highlighted mechanisms by which NB cells dynamically shift the cell state with treatment, revealing new opportunities to control the cellular response to treatment by manipulating cell-state-defining transcriptional programs. Here, we review recent advances in understanding transcriptionally defined cancer heterogeneity. We offer challenges to the field to encourage translation of basic science into clinical benefit.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. Biochem Biophys Res Commun 2022; 604:63-69. [PMID: 35299072 DOI: 10.1016/j.bbrc.2022.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Neuroblastoma(NB) is a common childhood solid tumor, and most patients in the high-risk group with MYCN gene amplification have a poor prognosis. Inhibition of bromodomain and extra terminal (BET) proteins has shown considerable promise in the investigation of MYCN-driven malignancies in recent years. MZ1 is a novel BET inhibitor that employs proteolytic-targeting chimera (PROTAC) technology for proteasomal degradation of target proteins and has shown excellent effects in some tumors, but its role in neuroblastoma remains poorly understood. Herein, we observed that MZ1 suppressed MYC-amplified NB cell proliferation and normal cell cycle, while simultaneously boosting cell apoptosis. MZ1 also provides a significant therapeutic impact in vivo. Mechanistically, MZ1 exhibits anti-tumor effect in NB cells by suppressing the expression of N-Myc or C-Myc as well as the MAPK signaling pathway. Overall, our data imply that MZ1 might be exploited as a possible therapeutic method for NB therapy.
Collapse
|
12
|
Dolatabadi S, Jonasson E, Andersson L, Luna Santamaría M, Lindén M, Österlund T, Åman P, Ståhlberg A. FUS-DDIT3 Fusion Oncoprotein Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma. Front Oncol 2022; 12:816894. [PMID: 35186752 PMCID: PMC8851354 DOI: 10.3389/fonc.2022.816894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.
Collapse
Affiliation(s)
- Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Lindén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Yuan J, Li X, Yu S. CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochim Biophys Acta Rev Cancer 2022; 1877:188680. [PMID: 35051528 DOI: 10.1016/j.bbcan.2022.188680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Cancer arises from genetic alterations that invariably contribute to dysregulated transcriptional programs. These dysregulated programs establish and maintain specific cancer cell states, leading to an intensive dependence on a set of certain regulators of gene expression. The CDK7 functions as the core of transcription, and governs RNA polymerase II and the downstream oncogenes expression in cancers. CDK7 inhibition leads to reduced recruitment of super-enhancers-driven oncogenic transcription factors, and the depression of these associated oncogenes expression, which indicates the dependence of transcriptional addiction of cancers on CDK7. Given that specified oncoproteins of sarcomas commonly function at oncogenic transcription, targeting CDK7-denpendent transcriptional addiction may be of guiding significance for the treatment of sarcomas. In this review, we summarize the advances in mechanism of targeted CDK7-dependent transcriptional addiction and discuss the path ahead to potential application discovery in bone and soft tissue sarcomas, providing theoretical considerations for bio-orthogonal therapeutic strategies.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Liao X, Qian X, Zhang Z, Tao Y, Li Z, Zhang Q, Liang H, Li X, Xie Y, Zhuo R, Chen Y, Jiang Y, Cao H, Niu J, Xue C, Ni J, Pan J, Cui D. ARV-825 Demonstrates Antitumor Activity in Gastric Cancer via MYC-Targets and G2M-Checkpoint Signaling Pathways. Front Oncol 2021; 11:753119. [PMID: 34733788 PMCID: PMC8559897 DOI: 10.3389/fonc.2021.753119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Objective Suppression of bromodomain and extra terminal (BET) proteins has a bright prospect to treat MYC-driven tumors. Bromodomain containing 4 (BRD4) is one of the BET proteins. ARV-825, consisting of a BRD4 inhibitor conjugated with a cereblon ligand using proteolysis-targeting chimera (PROTAC) technology, was proven to decrease the tumor growth effectively and continuously. Nevertheless, the efficacy and mechanisms of ARV-825 in gastric cancer are still poorly understood. Methods Cell counting kit 8 assay, lentivirus infection, Western blotting analysis, Annexin V/propidium iodide (PI) staining, RNA sequencing, a xenograft model, and immunohistochemistry were used to assess the efficacy of ARV-825 in cell level and animal model. Results The messenger RNA (mRNA) expression of BRD4 in gastric cancer raised significantly than those in normal tissues, which suggested poor outcome of patients with gastric cancer. ARV-825 displayed higher anticancer efficiency in gastric cancer cells than OTX015 and JQ1. ARV-825 could inhibit cell growth, inducing cell cycle block and apoptosis in vitro. ARV-825 induced degradation of BRD4, BRD2, BRD3, c-MYC, and polo-like kinase 1 (PLK1) proteins in four gastric cancer cell lines. In addition, cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP) was elevated. Knockdown or overexpression CRBN could increase or decrease, respectively, the ARV-825 IC50 of gastric cancer cells. ARV-825 reduced MYC and PLK1 expression in gastric cancer cells. ARV-825 treatment significantly reduced tumor growth without toxic side effects and downregulated the expression of BRD4 in vivo. Conclusions High mRNA expression of BRD4 in gastric cancer indicated poor prognosis. ARV-825, a BRD4 inhibitor, could effectively suppress the growth and elevate the apoptosis of gastric cancer cells via transcription downregulation of c-MYC and PLK1. These results implied that ARV-825 could be a good therapeutic strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Xinmei Liao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Qian
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liang
- Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - You Jiang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| |
Collapse
|
15
|
Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021; 134:272045. [PMID: 34357401 DOI: 10.1242/jcs.258578] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Izzy Owen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Debra Yee
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Hala Wyne
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Victoria Johnson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeremy Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Robert Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Frank Shewmaker
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Saint-André V. Computational biology approaches for mapping transcriptional regulatory networks. Comput Struct Biotechnol J 2021; 19:4884-4895. [PMID: 34522292 PMCID: PMC8426465 DOI: 10.1016/j.csbj.2021.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional Regulatory Networks (TRNs) are mainly responsible for the cell-type- or cell-state-specific expression of gene sets from the same DNA sequence. However, so far there are no precise maps of TRNs available for each cell-type or cell-state, and no ideal tool to map those networks clearly and in full from biological samples. In this review, major approaches and tools to map TRNs from high-throughput data are presented, depending on the type of methods or data used to infer them, and their advantages and limitations are discussed. After summarizing the main principles defining the topology and structure–function relationships in TRNs, an overview of the extensive work done to map TRNs from bulk transcriptomic data will be presented by type of methodological approach. Most recent modellings of TRNs using other types of molecular data or integrating different data types, including single-cell RNA-sequencing and chromatin information, will then be discussed, before briefly concluding with improvements expected to come in the field.
Collapse
Affiliation(s)
- Violaine Saint-André
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Mannarino L, Craparotta I, Ballabio S, Frapolli R, Meroni M, Bello E, Panini N, Callari M, Sanfilippo R, Casali PG, Barisella M, Fabbroni C, Marchini S, D'Incalci M. Mechanisms of responsiveness to and resistance against trabectedin in murine models of human myxoid liposarcoma. Genomics 2021; 113:3439-3448. [PMID: 34339817 DOI: 10.1016/j.ygeno.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.
Collapse
Affiliation(s)
- Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Marta Barisella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Fabbroni
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy..
| |
Collapse
|
18
|
Liu Q, Bao Q, Xu Y, Fu Y, Jin Z, Wang J, Zhang W, Shen Y. MCM4 Is a Novel Biomarker Associated With Genomic Instability, BRCAness Phenotype, and Therapeutic Potentials in Soft-Tissue Sarcoma. Front Cell Dev Biol 2021; 9:666376. [PMID: 34178990 PMCID: PMC8222794 DOI: 10.3389/fcell.2021.666376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Soft-tissue sarcoma (STS) is represented by a heterogeneous group of rare malignancies with various molecular oncogenesis. Therapies targeting DNA repair pathways in STS have achieved minimal progress, potentially due to the lack of molecular biomarker(s) beyond the histology subtype. In this report, we comprehensively analyzed the expression profiles of 100 liposarcomas (LPSs), the most common STS subtype, in comparison with 21 adipose tissues from multiple GEO datasets to identify the potential prognostic and therapeutic biomarker for LPS. Furthermore, we investigated TCGA database, our archived tumor samples, and patient-derived tumor cell cultures (PTCCs) as a validation. We identified a total of 69 common differentially expressed genes (DEGs) among public datasets, with mini-chromosome maintenance protein 4 (MCM4) identified as a novel biomarker correlated with patients’ clinical staging and survival outcome. MCM4-high expression LPS was characterized by MCM4 copy number increase, genomic instability, and BRCAness phenotype compared with the MCM4-low expression counterpart. In contrast, the mutational and the immune landscape were minimally different between the two groups. Interestingly, the association of MCM4-high expression with genomic instability and BRCAness were not only validated in LPS samples from our institution (n = 66) but also could be expanded to the pan-sarcoma cohort from TCGA database (n = 263). Surprisingly, based on four sarcoma cell lines and eight PTCCs (three LPS and five other sarcoma), we demonstrated that MCM4 overexpression tumors were therapeutically sensitive to PARP inhibitor (PARPi) and platinum chemotherapy, independent of the histology subtypes. Our study, for the first time, suggested that MCM4 might be a novel prognostic biomarker, associated with dysregulated DNA repair pathways and potential therapeutic vulnerability in STS.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Jin
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
20
|
Cao S, Li J, Yang K, Zhang J, Xu J, Feng C, Li H. Development and validation of a novel prognostic model for long-term overall survival in liposarcoma patients: a population-based study. J Int Med Res 2021; 48:300060520975882. [PMID: 33296604 PMCID: PMC7731721 DOI: 10.1177/0300060520975882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To construct and validate a clinically accurate and histology-specific nomogram to predict overall survival (OS) among liposarcoma (LPS) patients. Methods We retrospectively screened eligible patients with LPS diagnosed between 2004 and 2015 from the Surveillance, Epidemiology, and End Results database. We screened independent predictors for the nomogram using univariate and multivariate analyses. We then evaluated the prognostic accuracy of the nomogram by receiver operating characteristic (ROC) curve analysis and Harrell’s concordance index. The prognostic performances of the nomogram and the American Joint Committee on Cancer (AJCC) seventh edition staging system were compared using integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analyses (DCA). Results A novel nomogram was developed using independent prognostic variables, which exhibited excellent predictive performances for 3- and 5-year OS according to ROC curves. The C-index proved that the proposed nomogram had better prognostic accuracy for LPS than the traditional AJCC system, while the NRI, IDI, and DCA of the nomogram indicated better clinical net benefit. Conclusions The proposed nomogram can predict 3- and 5-year OS of LPS patients with reliable accuracy and may thus help clinicians to develop appropriate clinical therapies and counseling strategies to prolong the life expectancy of these patients.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiawei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaoshuai Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Haopeng Li, Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China.
| |
Collapse
|
21
|
Jiang Y, Jiang YY, Lin DC. Super-enhancer-mediated core regulatory circuitry in human cancer. Comput Struct Biotechnol J 2021; 19:2790-2795. [PMID: 34093993 PMCID: PMC8138668 DOI: 10.1016/j.csbj.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Super-enhancers (SEs) are congregated enhancer clusters with high level of loading of transcription factors (TFs), cofactors and epigenetic modifications. Through direct co-occupancy at their own SEs as well as each other's, a small set of so called "master" TFs form interconnected core regulatory circuitry (CRCs) to orchestrate transcriptional programs in both normal and malignant cells. These master TFs can be predicted mathematically using epigenomic methods. In this Review, we summarize the identification of SEs and CRCs in cancer cells, the mechanisms by which master TFs and SEs cooperatively regulate cancer-type-specific expression programs, and the cancer-type- and subtype-specificity of CRC and the significance in cancer biology.
Collapse
Affiliation(s)
- Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| |
Collapse
|
22
|
BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting 'Undruggable' Myc-pathway genes. Cancer Cell Int 2021; 21:230. [PMID: 33888130 PMCID: PMC8061034 DOI: 10.1186/s12935-021-01908-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01908-w.
Collapse
|
23
|
Xu L, Chen Y, Huang Y, Sandanaraj E, Yu JS, Lin RYT, Dakle P, Ke XY, Chong YK, Koh L, Mayakonda A, Nacro K, Hill J, Huang ML, Gery S, Lim SW, Huang Z, Xu Y, Chen J, Bai L, Wang S, Wakimoto H, Yeo TT, Ang BT, Müschen M, Tang C, Tan TZ, Koeffler HP. Topography of transcriptionally active chromatin in glioblastoma. SCIENCE ADVANCES 2021; 7:7/18/eabd4676. [PMID: 33931443 PMCID: PMC8087410 DOI: 10.1126/sciadv.abd4676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Molecular profiling of the most aggressive brain tumor glioblastoma (GBM) on the basis of gene expression, DNA methylation, and genomic variations advances both cancer research and clinical diagnosis. The enhancer architectures and regulatory circuitries governing tumor-intrinsic transcriptional diversity and subtype identity are still elusive. Here, by mapping H3K27ac deposition, we analyze the active regulatory landscapes across 95 GBM biopsies, 12 normal brain tissues, and 38 cell line counterparts. Analyses of differentially regulated enhancers and super-enhancers uncovered previously unrecognized layers of intertumor heterogeneity. Integrative analysis of variant enhancer loci and transcriptome identified topographies of transcriptional enhancers and core regulatory circuitries in four molecular subtypes of primary tumors: AC1-mesenchymal, AC1-classical, AC2-proneural, and AC3-proneural. Moreover, this study reveals core oncogenic dependency on super-enhancer-driven transcriptional factors, long noncoding RNAs, and druggable targets in GBM. Through profiling of transcriptional enhancers, we provide clinically relevant insights into molecular classification, pathogenesis, and therapeutic intervention of GBM.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
| | - Yulun Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215124, China
- Department of Neurosurgery, Medical Center of Soochow University, Suzhou, 215124, China
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Edwin Sandanaraj
- Department of Research, National Neuroscience Institute, 308433, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, 117609, Singapore
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Xin-Yu Ke
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, 308433, Singapore
| | - Lynnette Koh
- Department of Research, National Neuroscience Institute, 308433, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 138670, Singapore
| | - Jeffrey Hill
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Mo-Li Huang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, 308433, Singapore
| | - Zhengyun Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Ying Xu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tseng Tsai Yeo
- National University Cancer Institute, National University Hospital, 119074, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, 308433, Singapore
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Immunobiology, Yale University, New Haven, CT 06511, USA
| | - Carol Tang
- Department of Research, National Neuroscience Institute, 308433, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Medical School, 169857, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- National University Cancer Institute, National University Hospital, 119074, Singapore
| |
Collapse
|
24
|
Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, Qiao Y, Liu S, Li Q, Jin T, Qiu Y, Liu M. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Am J Cancer Res 2021; 11:4975-4991. [PMID: 33754039 PMCID: PMC7978317 DOI: 10.7150/thno.55074] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), a predominant component of the tumor microenvironment, contribute to aggressive angiogenesis progression. In clinical practice, traditional anti-angiogenic therapy, mainly anti-VEGF, provides extremely limited beneficial effects to breast cancer. Here, we reveal that FOS-like 2 (FOSL2), a transcription factor in breast CAFs, plays a critical role in VEGF-independent angiogenesis in stromal fibroblasts. Methods: FOSL2 and Wnt5a expression was assessed by qRT-PCR, western blotting and immunohistochemistry in primary and immortalized CAFs and clinical samples. FOSL2- or Wnt5a-silenced CAFs and FOSL2-overexpressing NFs were established to explore their proangiogenic effects. Invasion, tubule formation, three-dimensional sprouting assays, and orthotopic xenografts were conducted as angiogenesis experiments. FZD5/NF-κB/ERK signaling activation was evaluated by western blotting after blocking VEGF/VEGFR with an anti-VEGF antibody and axitinib. Dual luciferase reporter assays and chromatin immunoprecipitation were performed to test the role of FOSL2 in regulating Wnt5a expression, and Wnt5a in the serum of the patients was measured to assess its clinical diagnostic value for breast cancer patients. Results: Enhanced FOSL2 in breast CAFs was significantly associated with angiogenesis and clinical progression in patients. The supernatant from CAFs highly expressing FOSL2 strongly promoted tube formation and sprouting of human umbilical vein endothelial cells (HUVECs) in a VEGF-independent manner and angiogenesis as well as tumor growth in vivo. Mechanistically, the enhanced FOSL2 in CAFs was regulated by estrogen/cAMP/PKA signaling. Wnt5a, a direct target of FOSL2, specifically activated FZD5/NF-κB/ERK signaling in HUVECs to promote VEGF-independent angiogenesis. In addition, a high level of Wnt5a was commonly detected in the serum of breast cancer patients and closely correlated with microvessel density in breast tumor tissues, suggesting a promising clinical value of Wnt5a for breast cancer diagnostics. Conclusion: FOSL2/Wnt5a signaling plays an essential role in breast cancer angiogenesis in a VEGF-independent manner, and targeting the FOSL2/Wnt5a signaling axis in CAFs may offer a potential option for antiangiogenesis therapy.
Collapse
|
25
|
MNK1 and MNK2 enforce expression of E2F1, FOXM1, and WEE1 to drive soft tissue sarcoma. Oncogene 2021; 40:1851-1867. [PMID: 33564073 PMCID: PMC7946644 DOI: 10.1038/s41388-021-01661-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.
Collapse
|
26
|
Li Z, Lim SL, Tao Y, Li X, Xie Y, Yang C, Zhang Z, Jiang Y, Zhang X, Cao X, Wang H, Qian G, Wu Y, Li M, Fang F, Liu Y, Fu M, Ding X, Zhu Z, Lv H, Lu J, Xiao S, Hu S, Pan J. PROTAC Bromodomain Inhibitor ARV-825 Displays Anti-Tumor Activity in Neuroblastoma by Repressing Expression of MYCN or c-Myc. Front Oncol 2020; 10:574525. [PMID: 33324552 PMCID: PMC7726414 DOI: 10.3389/fonc.2020.574525] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in childhood. To date, targeting MYCN, a well-established driver gene in high-risk neuroblastoma, is still challenging. In recent years, inhibition of bromodomain and extra terminal (BET) proteins shows great potential in multiple of Myc-driven tumors. ARV-825 is a novel BET inhibitor using proteolysis-targeting chimera (PROTAC) technology which degrades target proteins by the proteasome. In this study, we investigated the effect of ARV-825 in neuroblastoma in vitro and in vivo. Our results showed that ARV-825 treatment robustly induced proliferative suppression, cell cycle arrest, and apoptosis in NB cells. Moreover, ARV-825 efficiently depleted BET protein expression, subsequently repressing the expression of MYCN or c-Myc. In the NB xenograft model, ARV-825 profoundly reduced tumor growth and led to the downregulation of BRD4 and MYCN expression in mice. Taken together, these findings provide evidence that PROTAC BET inhibitor is an efficient way to achieve MYCN/c-Myc manipulation, and ARV-825 can be used as a potential therapeutic strategy for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Su Lin Lim
- Department of Internal Medicine, Saint Michael's Medical Center, Newark, NJ, United States
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - You Jiang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Xianbing Zhang
- Department of Pediatric Surgery, The First People's Hospital of Kunshan, Suzhou, China
| | - Xu Cao
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mingcui Fu
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhenghong Zhu
- Department of Burn and Plastic Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shaoyan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Shi X, Zheng Y, Jiang L, Zhou B, Yang W, Li L, Ding L, Huang M, Gery S, Lin DC, Koeffler HP. EWS-FLI1 regulates and cooperates with core regulatory circuitry in Ewing sarcoma. Nucleic Acids Res 2020; 48:11434-11451. [PMID: 33080033 PMCID: PMC7672457 DOI: 10.1093/nar/gkaa901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Core regulatory circuitry (CRC)-dependent transcriptional network is critical for developmental tumors in children and adolescents carrying few gene mutations. However, whether and how CRC contributes to transcription regulation in Ewing sarcoma is unknown. Here, we identify and functionally validate a CRC 'trio' constituted by three transcription factors (TFs): KLF15, TCF4 and NKX2-2, in Ewing sarcoma cells. Epigenomic analyses demonstrate that EWS-FLI1, the primary fusion driver for this cancer, directly establishes super-enhancers of each of these three TFs to activate their transcription. In turn, KLF15, TCF4 and NKX2-2 co-bind to their own and each other's super-enhancers and promoters, forming an inter-connected auto-regulatory loop. Functionally, CRC factors contribute significantly to cell proliferation of Ewing sarcoma both in vitro and in vivo. Mechanistically, CRC factors exhibit prominent capacity of co-regulating the epigenome in cooperation with EWS-FLI1, occupying 77.2% of promoters and 55.6% of enhancers genome-wide. Downstream, CRC TFs coordinately regulate gene expression networks in Ewing sarcoma, controlling important signaling pathways for cancer, such as lipid metabolism pathway, PI3K/AKT and MAPK signaling pathways. Together, molecular characterization of the oncogenic CRC model advances our understanding of the biology of Ewing sarcoma. Moreover, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Affiliated Cancer Hospital of Guangzhou Medical University; Sino-French Hoffmann institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, P.R. China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Affiliated Cancer Hospital of Guangzhou Medical University; Sino-French Hoffmann institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, P.R. China
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liyan Li
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lingwen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117600, Singapore
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Hospital Singapore, Singapore 119074, Singapore
| |
Collapse
|
28
|
Aberrant super-enhancer landscape reveals core transcriptional regulatory circuitry in lung adenocarcinoma. Oncogenesis 2020; 9:92. [PMID: 33070167 PMCID: PMC7568720 DOI: 10.1038/s41389-020-00277-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lung adenocarcinoma (LUAD) relies on dysregulated gene expression to sustain its infinite growth and progression. Emerging evidence indicates that aberrant transcriptional program results from core transcriptional regulatory circuitry (CRC) which is driven by super-enhancers (SEs). In this study, by integrating profiles of H3K27Ac chromatin immunoprecipitation sequencing (ChIP-seq) from normal adult lung and LUAD cell lines, we revealed that widespread alterations of the super-enhancer were presence during lung carcinogenesis. With SE-based modeling of regulatory circuits and assessments of transcription factor (TF) dependencies, we reconstructed an interconnected transcriptional regulation network formed by three master TFs, including ELF3, EHF, and TGIF1, all of which promoted each other’s expression that confirmed by ChIP-qPCR and western blot. Loss-of function assay revealed that each of them is essential for LUAD cells survival, invasion and metastasis. Meanwhile, the rescue assay also illustrated the transacting transcriptional regulatory circuitry. In addition, the mRNA levels of ELF3, EHF, and TGIF1 were differentially expressed in LUAD tumors and peritumoral tissue. IHC of serial sections revealed that high expressions of CRC (ELF3/EHF/TGIF1-High) were closely associated with high proliferative activity in tumor tissue and poor prognosis on patients with LUAD. Finally, we used small molecular inhibitors to perturb the transcriptional circuitry, also exhibited a prominent anti-cancer effect in vitro. Our findings reveal the mechanism of the transcriptional dysregulation and addiction of LUAD.
Collapse
|
29
|
Chen Y, Xu L, Lin RYT, Müschen M, Koeffler HP. Core transcriptional regulatory circuitries in cancer. Oncogene 2020; 39:6633-6646. [PMID: 32943730 PMCID: PMC7581508 DOI: 10.1038/s41388-020-01459-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type-specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics.
Collapse
Affiliation(s)
- Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Markus Müschen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
30
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
31
|
Baumgart SJ, Nevedomskaya E, Lesche R, Newman R, Mumberg D, Haendler B. Darolutamide antagonizes androgen signaling by blocking enhancer and super-enhancer activation. Mol Oncol 2020; 14:2022-2039. [PMID: 32333502 PMCID: PMC7463324 DOI: 10.1002/1878-0261.12693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.
Collapse
Affiliation(s)
| | | | - Ralf Lesche
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Richard Newman
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Dominik Mumberg
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | | |
Collapse
|
32
|
Jahangiri L, Tsaprouni L, Trigg RM, Williams JA, Gkoutos GV, Turner SD, Pereira J. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biol 2020; 10:200121. [PMID: 32634370 PMCID: PMC7574545 DOI: 10.1098/rsob.200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression programmes driving cell identity are established by tightly regulated transcription factors that auto- and cross-regulate in a feed-forward manner, forming core regulatory circuitries (CRCs). CRC transcription factors create and engage super-enhancers by recruiting acetylation writers depositing permissive H3K27ac chromatin marks. These super-enhancers are largely associated with BET proteins, including BRD4, that influence higher-order chromatin structure. The orchestration of these events triggers accessibility of RNA polymerase machinery and the imposition of lineage-specific gene expression. In cancers, CRCs drive cell identity by superimposing developmental programmes on a background of genetic alterations. Further, the establishment and maintenance of oncogenic states are reliant on CRCs that drive factors involved in tumour development. Hence, the molecular dissection of CRC components driving cell identity and cancer state can contribute to elucidating mechanisms of diversion from pre-determined developmental programmes and highlight cancer dependencies. These insights can provide valuable opportunities for identifying and re-purposing drug targets. In this article, we review the current understanding of CRCs across solid and liquid malignancies and avenues of investigation for drug development efforts. We also review techniques used to understand CRCs and elaborate the indication of discussed CRC transcription factors in the wider context of cancer CRC models.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham, UK.,Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham, UK
| | - Ricky M Trigg
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Functional Genomics, GlaxoSmithKline, Stevenage, UK
| | - John A Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Georgios V Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,MRC Health Data Research, UK.,NIHR Experimental Cancer Medicine Centre, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK.,NIHR Biomedical Research Centre, Birmingham, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
33
|
Werner MT, Wang H, Hamagami N, Hsu SC, Yano JA, Stonestrom AJ, Behera V, Zong Y, Mackay JP, Blobel GA. Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. J Biol Chem 2020; 295:1898-1914. [PMID: 31792058 PMCID: PMC7029111 DOI: 10.1074/jbc.ra119.010679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Indexed: 11/06/2022] Open
Abstract
The widely expressed bromodomain and extraterminal motif (BET) proteins bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are multifunctional transcriptional regulators that bind acetylated chromatin via their conserved tandem bromodomains. Small molecules that target BET bromodomains are being tested for various diseases but typically do not discern between BET family members. Genomic distributions and protein partners of BET proteins have been described, but the basis for differences in BET protein function within a given lineage remains unclear. By establishing a gene knockout-rescue system in a Brd2-null erythroblast cell line, here we compared a series of mutant and chimeric BET proteins for their ability to modulate cell growth, differentiation, and gene expression. We found that the BET N-terminal halves bearing the bromodomains convey marked differences in protein stability but do not account for specificity in BET protein function. Instead, when BET proteins were expressed at comparable levels, their specificity was largely determined by the C-terminal half. Remarkably, a chimeric BET protein comprising the N-terminal half of the structurally similar short BRD4 isoform (BRD4S) and the C-terminal half of BRD2 functioned similarly to intact BRD2. We traced part of the BRD2-specific activity to a previously uncharacterized short segment predicted to harbor a coiled-coil (CC) domain. Deleting the CC segment impaired BRD2's ability to restore growth and differentiation, and the CC region functioned in conjunction with the adjacent ET domain to impart BRD2-like activity onto BRD4S. In summary, our results identify distinct BET protein domains that regulate protein turnover and biological activities.
Collapse
Affiliation(s)
- Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jennifer A Yano
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Zong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
34
|
BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response. Cancer Lett 2019; 465:45-58. [PMID: 31473251 DOI: 10.1016/j.canlet.2019.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic strategies aiming to leverage anti-tumor immunity are being intensively investigated as they show promising results in cancer therapy. The PD-1/PD-L1 pathway constitutes an important target to restore functional anti-tumor immune response. Here, we report that BET protein inhibition suppresses PD-1/PD-L1 in triple-negative breast cancer. BET proteins control PD-1 expression in T cells, and PD-L1 in breast cancer cell models. BET protein targeting reduces T cell-derived interferon-γ production and signaling, thereby suppressing PD-L1 induction in breast cancer cells. Moreover, BET protein inhibition improves tumor cell-specific T cell cytotoxic function. Overall, we demonstrate that BET protein targeting represents a promising strategy to overcome tumor-reactive T cell exhaustion and improve anti-tumor immune responses, by reducing the PD-1/PD-L1 axis in triple-negative breast cancer.
Collapse
|
35
|
Jameson NM, Ma J, Benitez J, Izurieta A, Han JY, Mendez R, Parisian A, Furnari F. Intron 1-Mediated Regulation of EGFR Expression in EGFR-Dependent Malignancies Is Mediated by AP-1 and BET Proteins. Mol Cancer Res 2019; 17:2208-2220. [PMID: 31444232 DOI: 10.1158/1541-7786.mcr-19-0747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in numerous solid tumors and is the subject of extensive therapeutic efforts. Much of the research on EGFR is focused on protein dynamics and downstream signaling; however, few studies have explored its transcriptional regulation. Here, we identified two enhancers (CE1 and CE2) present within the first intron of the EGFR gene in models of glioblastoma (GBM) and head and neck squamous cell carcinoma (HNSCC). CE1 and CE2 contain open chromatin and H3K27Ac histone marks, enhance transcription in reporter assays, and interact with the EGFR promoter. Enhancer genetic deletion by CRISPR/Cas9 significantly reduces EGFR transcript levels, with double deletion exercising an additive effect. Targeted repression of CE1 and CE2 by dCas9-KRAB demonstrates repression of transcription similar to that of genomic deletion. We identify AP-1 transcription factor family members in concert with BET bromodomain proteins as modulators of CE1 and CE2 activity in HNSCC and GBM through de novo motif identification and validate their presence. Genetic inhibition of AP-1 or pharmacologic disruption of BET/AP-1 binding results in downregulated EGFR protein and transcript levels, confirming a role for these factors in CE1 and CE2. Our results identify and characterize these novel enhancers, shedding light on the role that epigenetic mechanisms play in regulating EGFR transcription in EGFR-dependent cancers. IMPLICATIONS: We identify critical constituent enhancers present in the first intron of the EGFR gene, and provide a rationale for therapeutic targeting of EGFR intron 1 enhancers through perturbation of AP-1 and BET in EGFR-positive malignancies.
Collapse
Affiliation(s)
- Nathan M Jameson
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jianhui Ma
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Zeno Pharmaceuticals, San Diego, California
| | - Jorge Benitez
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California.,Celgene Corporation, San Diego, California
| | - Alejandro Izurieta
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Jee Yun Han
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Robert Mendez
- Center for Epigenomics, University of California at San Diego, La Jolla, California
| | - Alison Parisian
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California
| | - Frank Furnari
- Ludwig Cancer Research, San Diego Branch, University of California at San Diego, La Jolla, California. .,The Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|