1
|
Ren H, Bai Y, Liu Z, Ma C, Tao X, Wang Q, Lian H, Li X. A multifunctional cascade gas-nanoreactor with MnO 2 as a gatekeeper to enhance starvation therapy and provoke antitumor immune response. Acta Biomater 2024:S1742-7061(24)00658-5. [PMID: 39521315 DOI: 10.1016/j.actbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Glucose oxidase (GOx)-mediated starvation therapy is an effective tumor treatment that blocks energy and activates the immune response. However, the insufficient tumor immunogenicity and immunosuppressive tumor microenvironment (TME) limited its therapeutic efficacy. To address this, we have designed a multifunctional cascade gas-nanoreactor with a MnO2 coating, which serves as an out gatekeeper to encapsulate both GOx and a carbon monoxide (CO) donor (denoted as GCM). Due to the protective effect of MnO2 coating, GCM maintains better stability in normal physiological environments, enhancing the catalytic activity of GOx and minimizing toxic side effects. Upon accumulation in the tumor, the degradation of MnO2 coating exposes the GOx enzyme, thereby initiating a cascade catalysis reaction to generate hydrogen peroxide (H2O2) and release CO in the hypoxic conditions. Additionally, the released Mn2+ reacts with H2O2 to generate toxic hydroxyl radical (•OH) as chemodynamic therapy (CDT). The synergistic treatments of starvation therapy, CO gas therapy and CDT effectively kill cancer cells and amplify immunogenic cell death (ICD), maturing DC cells and activating anti-tumor immune response. Furthermore, the released CO increases M1 macrophages infiltration and reduces myeloid-derived suppressor cells (MDSCs) infiltration, thus reversing the immunosuppressive TME. This multifunctional gas-nanoreactor provides a strategy for CO gas generation to trigger a robust anti-tumor immune response and has the potential for clinical application in cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A multifunctional cascade gas-nanoreactor with a MnO2 gatekeeper was developed to perform synergistic treatments involving starvation therapy, CO gas therapy and chemodynamic therapy (CDT) for tumor elimination. The MnO2 gatekeeper enhanced the catalytic activity of GOx within the nanoreactor by generating oxygen, thereby minimizing toxic side effects after intravenous injection. The gas-nanoreactor amplified ICD through synergistic treatments to mature DC cells and activate anti-tumor immune response. Furthermore, the released CO could reverse the immunosuppression of the TME to enhance cancer immunotherapy. The combination strategy utilizing the gas-nanoreactor demonstrates clinical potential for facilitating cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yunhao Bai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhangya Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Huibo Lian
- Urology & Nephrology Center, Cancer Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
2
|
Zhao L, Liu Y, Jin F, Hu K, Lv M, Zhou Y, Zhao W, Hu Y, Wu J, Yang Y, Wang W. Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature. J Control Release 2024; 376:842-860. [PMID: 39401677 DOI: 10.1016/j.jconrel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Photothermal therapy can trigger immunogenic cell death and release personalized in-situ tumor vaccine, activating immune responses to eliminate systemic tumors beyond the irradiated zone. However, the immune response of the in-situ tumor vaccines is often undermined by the residual tumor cells and their induced immunosuppressive tumor microenvironment (TME), which is attributed to insufficient photothermal effects stemming from the limited accumulation of photosensitizers. To overcome these limitations, we developed multi-functional nanoparticles (VI@Gd-NPs) that integrate a tumor vasculature-specific disrupting agent (Vadimezan, Phase III clinical drug), a photosensitizer (Indocyanine Green, ICG), and a magnetic resonance imaging contrast agent (Gadolinium, Gd) through chemical self-assembly. By selectively disrupting the tumor vasculature, these nanoparticles enhance the intratumoral delivery of photosensitizers (ICG and blood cells), and Gd. With the guidance of Gd-enhanced MRI, the improved delivery facilitates comprehensive photothermal ablation and regulates the TME, further initiating the in-situ tumor vaccine. Notably, this approach significantly enhances anti-tumor immune responses, improves survival rates, and reduces tumor recurrence and metastasis in various animal models. Moreover, depleting CD8+ T cells reverses these therapeutic benefits, highlighting the critical role of adaptive T cell immunity. Therefore, the VI@Gd-NPs treatment holds great potential for reigniting the in-situ tumor vaccine of photothermal therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Liu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fangfei Jin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Miao Lv
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yuehua Zhou
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
4
|
Liu T, Qu L, Zhu C, Guo M, Ma X, Lei H, Fan D. Oxygen-generating hydrogels combined with electrical stimulation: A dual approach for promoting diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00640-8. [PMID: 39489203 DOI: 10.1016/j.actbio.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds resulting from hyperglycemia and hypoxia are common complications in diabetic patients, posing significant challenges for clinical treatment. In this study, we developed a hydrogel (PVNP-SP) using [VBIM]Br, NIPAM, PEGDA, and spirulina, which exhibited strong antioxidant properties. The incorporation of [VBIM]Br endowed the hydrogel with electrical conductivity, allowing it to activate voltage-gated ion channels under an external electric field, thereby promoting cell survival and migration. The hydrogel also enhanced cellular antioxidant capacity by providing sustained oxygenation, inhibiting HIF-1α nuclear translocation, and activating the Nrf2/HO-1 pathway. Notably, in a chronic wound model, the combined effects of oxygen production and electrical stimulation from the PVNP-SP hydrogel significantly reduced wound inflammation, promoted collagen deposition and angiogenesis, and facilitated early wound closure. This therapeutic strategy, which mitigates hypoxia while integrating electrical stimulation, offers a highly effective strategy for improving chronic wound healing in diabetic patients. STATEMENT OF SIGNIFICANCE: Inspired by photoautotrophic organisms, we combined microalgae with a conductive hydrogel and we demonstrated the synergistic promotion of chronic wound healing by electrical stimulation combined with microalgae oxygen-producing hydrogel. The approach of combining microalgae hydrogel patches with electrical stimulation demonstrates the feasibility of delivering oxygen to tissues while combining electrical stimulation for synergistic tissue repair. The hydrogel is easy to fabricate and handle, and may be suitable for a variety of treatments, such as myocardial infarction, lower limb ischemia, and drug delivery. The potential applicability of this hydrogel in a variety of treatments suggests that it has promising applications in regenerative medicine.
Collapse
Affiliation(s)
- Taishan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Mengdi Guo
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Peng Y, Pang S, Zeng Y, Wei J, Lu J, Ruan Y, Hong X, He X, Chu X, Guo Y, Guo H, Qian S, Jiang Z, Jiang Z, Wang B. Antibiotic-free ocular sterilization while suppressing immune response to protect corneal transparency in infectious keratitis treatment. J Control Release 2024; 374:563-576. [PMID: 39186983 DOI: 10.1016/j.jconrel.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Clinical guidelines for infectious keratitis treatment require that anti-inflammatory drugs can only be used after infection elimination, which causes irreversible inflammatory damage to the cornea. In this work, photodynamic metal organic frameworks (PCN-224) were used as drug carrier to load Pt NPs with catalase-like activity and anti-inflammatory drug (Dexamethasone, DXMS) for endogenous oxygen generation and reduced corneal damage, respectively. The photodynamic therapy (PDT) effect was greatly enhanced in bacteria elimination and bacterial biofilms removal through catalysis of overexpressed hydrogen peroxide (H2O2, ∼8.0 and 31.0 μM in bacterial solution and biofilms, respectively) into oxygen by Pt NPs. More importantly, the cationic liposome modified PCN-224@Pt@DXMS@Liposomes (PPDL NPs) greatly enhanced the adhesion to negatively charged ocular surface and penetration into corneal barrier and bacterial biofilms. Both in vitro cell viability test and in vivo eye irritation tests proved good biocompatibility of PPDL NPs under 660 nm laser irradiation. Furthermore, PDT of PPDL NPs in rapid bacteria killing was verified through infectious keratitis animal model. The superior bactericidal effect of antibacterial materials could largely replace the bactericidal effect of the immune system. It is worth mentioning that this simultaneous sterilization and anti-inflammation treatment mode is a new exploration against the clinical treatment guidelines.
Collapse
Affiliation(s)
- Yaou Peng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Shuaiyue Pang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yanlin Zeng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayi Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinda Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yangfan Ruan
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xinyu Hong
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhui He
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zipei Jiang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Ophthalmogy, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
6
|
Xiu W, Dong H, Chen X, Wan L, Lu L, Yang K, Yuwen L, Li Q, Ding M, Zhang Y, Mou Y, Wang L. Metabolic Modulation-Mediated Antibiotic and Immune Activation for Treatment of Chronic Lung Infections. ACS NANO 2024; 18:15204-15217. [PMID: 38803167 DOI: 10.1021/acsnano.4c03527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Pseudomonas aeruginosa biofilm in recalcitrant chronic lung infections not only develops high antimicrobial tolerance but also induces an aberrant host inflammatory response. The metabolic condition plays a vital role in both the antimicrobial susceptibility of bacteria and the inflammatory response of immune cells, thereby offering a potential therapeutic target. Herein, we described a metabolic modulation strategy by using ultrasound-responsive liposomal nanoparticles containing a sonosensitizer and a hypoxia-activated prodrug against biofilm-associated chronic lung infections. Under ultrasound stimulation, the sonosensitizer generates antibacterial reactive oxygen species by oxygen consumption. Subsequently, the oxygen consumption-mediated hypoxia not only induces the anaerobic metabolism of bacteria for antibiotic activation but also triggers the glycolysis pathway of immune cells for inflammatory activation. Such metabolic modulation strategy demonstrated efficient therapeutic efficacy for P. aeruginosa biofilm-induced chronic lung infections in mice models and provides a promising way for combating biofilm-associated chronic infections.
Collapse
Affiliation(s)
- Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaolong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Liang Lu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Kaili Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing210023, China
| |
Collapse
|
7
|
Song Y, Zou J, Castellanos EA, Matsuura N, Ronald JA, Shuhendler A, Weber WA, Gilad AA, Müller C, Witney TH, Chen X. Theranostics - a sure cure for cancer after 100 years? Theranostics 2024; 14:2464-2488. [PMID: 38646648 PMCID: PMC11024861 DOI: 10.7150/thno.96675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | | | - Naomi Matsuura
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - John A. Ronald
- Imaging Laboratories, Department of Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Adam Shuhendler
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timothy H. Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
8
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
9
|
Li Z, Li X, Lu Y, Zhu X, Zheng W, Chen K, Liu S, Wu J, Guan W. Improved Photodynamic Therapy Based on Glutaminase Blockage via Tumor Membrane Coated CB-839/IR-780 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305174. [PMID: 37875654 DOI: 10.1002/smll.202305174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Photodynamic therapy (PDT) has promising applications. However, the lethal function of reactive oxygen species (ROS) produced during PDT is typically limited. This restriction is induced by oxygen shortage in the tumor microenvironment due to tumor cell hypermetabolism and reductive chemicals overexpression in tumor tissues. Glutamine (Gln) metabolism is crucial for malignancy development and is closely associated with redox. Herein, a novel nanoparticle (NP) named IRCB@M is constructed to boost PDT through dual effects. This NP simultaneously blocks aerobic respiration and inhibits cellular reduced substances by blocking the Gln metabolic pathway. Within the nanocomplex, a photosensitizer (IR-780) and a glutaminase inhibitor (CB-839) are self-assembled and then encapsulated by cancer cell membranes for homologous targeting. The Gln metabolism intervention relieves hypoxia and decreases the levels of nicotinamide adenine dinucleotide phosphate (NADPH) as well as reduced glutathione (GSH) in vitro and in vivo, which are the dual amplification effects on the IR-780-mediated lethal PDT. The antitumor effects against gastric cancer are ultimately evoked in vivo, thus offering a novel concept for enhancing PDT and other ROS-dependent therapeutic approaches.
Collapse
Affiliation(s)
- Zhiyan Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xianghui Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Dermatology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Chen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
10
|
Chen S, Luo Y, He Y, Li M, Liu Y, Zhou X, Hou J, Zhou S. In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing. Nat Commun 2024; 15:814. [PMID: 38280861 PMCID: PMC10821930 DOI: 10.1038/s41467-024-45072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Surgery is the mainstay of treatment modality for malignant melanoma. However, the deteriorative hypoxic microenvironment after surgery is recognized as a stemming cause for tumor recurrence/metastasis and delayed wound healing. Here we design and construct a sprayable therapeutic hydrogel (HIL@Z/P/H) encapsulating tumor-targeted nanodrug and photosynthetic cyanobacteria (PCC 7942) to prevent tumor recurrence/metastasis while promote wound healing. In a postsurgical B16F10 melanoma model in female mice, the nanodrug can disrupt cellular redox homeostasis via the photodynamic therapy-induced cascade reactions within tumor cells. Besides, the photosynthetically generated O2 by PCC 7942 can not only potentiate the oxidative stress-triggered cell death to prevent local recurrence of residual tumor cells, but also block the signaling pathway of hypoxia-inducible factor 1α to inhibit their distant metastasis. Furthermore, the long-lasting O2 supply and PCC 7942-secreted extracellular vesicles can jointly promote angiogenesis and accelerate the wound healing process. Taken together, the developed HIL@Z/P/H capable of preventing tumor recurrence/metastasis while promoting wound healing shows great application potential for postsurgical cancer therapy.
Collapse
Affiliation(s)
- Shuiling Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ming Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongjian Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xishen Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianwen Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
11
|
Zhang Z, Cao Q, Xia Y, Cui C, Qi Y, Zhang Q, Wu Y, Liu J, Liu W. Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast cancer recurrence and radiation skin injury. Bioact Mater 2024; 31:408-421. [PMID: 37692912 PMCID: PMC10482898 DOI: 10.1016/j.bioactmat.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Postoperative radiotherapy is the standard method for inhibition of breast cancer recurrence and metastasis, whereas radiation resistant and ineluctable skin radiation injury are still key problems encountered in the prognosis of breast cancer. Herein, we design an internally implantable biodegradable hydrogel and extracutaneously applicable antioxidant bioadhesive to concurrently prevent postoperative tumor recurrence and radioactive skin injury after adjuvant radiotherapy. The biodegradable silk fibroin/perfluorocarbon hydrogel loading doxorubicin (DOX) formed by consecutive ultrasonication-induced β-sheets-crosslinked amphiphilic silk fibroin/perfluorocarbon/DOX nanoemulsion, exhibits continuous release of oxygen in physiological environment to improve hypoxia and sensitivity of radiotherapy, as well as simultaneous release of DOX to finally achieve effective anti-cancer effect. A stretchable bioadhesive is fabricated by copolymerization of α-thioctic acid and N, N-diacryloyl-l-lysine, and gold nanorods and gallic acid are loaded into the bioadhesive to afford gentle photothermal therapy and antioxidant functions. The near-infrared light-induced controlled release of gallic acid and mild photothermal therapy can efficiently eliminate excess free radicals generated by radiotherapy and promote radioactive wound healing. Ultimately, in vivo animal studies substantiate the efficacy of our methodology, wherein the post-tumor resection administration of hydrogel and concomitant application of an antioxidant bioadhesive patch effectively inhibit tumor recurrence and attenuate the progression of skin radiation damage.
Collapse
Affiliation(s)
- Zhuodan Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Qiannan Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yi Xia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ying Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yuanhao Wu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Wang C, Xu J, Zhang Y, Nie G. Emerging nanotechnological approaches to regulating tumor vasculature for cancer therapy. J Control Release 2023; 362:647-666. [PMID: 37703928 DOI: 10.1016/j.jconrel.2023.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Abnormal angiogenesis stands for one of the most striking manifestations of malignant tumor. The pathologically and structurally abnormal tumor vasculature facilitates a hostile tumor microenvironment, providing an ideal refuge exclusively for cancer cells. The emergence of vascular regulation drugs has introduced a distinctive class of therapeutics capable of influencing nutrition supply and drug delivery efficacy without the need to penetrate a series of physical barriers to reach tumor cells. Nanomedicines have been further developed for more precise regulation of tumor vasculature with the capacity of co-delivering multiple active pharmaceutical ingredients, which overall reduces the systemic toxicity and boosts the therapeutic efficacy of free drugs. Additionally, precise structure design enables the integration of specific functional motifs, such as surface-targeting ligands, droppable shells, degradable framework, or stimuli-responsive components into nanomedicines, which can improve tissue-specific accumulation, enhance tissue penetration, and realize the controlled and stimulus-triggered release of the loaded cargo. This review describes the morphological and functional characteristics of tumor blood vessels and summarizes the pivotal molecular targets commonly used in nanomedicine design, and then highlights the recent cutting-edge advancements utilizing nanotechnologies for precise regulation of tumor vasculature. Finally, the challenges and future directions of this field are discussed.
Collapse
Affiliation(s)
- Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinlong Zhang
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; School of Nanoscience and Engineering, School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangzhou 510530, China.
| |
Collapse
|
13
|
Wang M, He M, Zhang M, Xue S, Xu T, Zhao Y, Li D, Zhi F, Ding D. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy. Biomaterials 2023; 301:122257. [PMID: 37531778 DOI: 10.1016/j.biomaterials.2023.122257] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The efficacy of photodynamic therapy (PDT) is severely limited by the hypoxic tumor microenvironment (TME), while the performance of PDT-aroused antitumor immunity is frustrated by the immunosuppressive TME and deficient immunogenic cell death (ICD) induction. To simultaneously tackle these pivotal problems, we herein create an albumin-based nanoplatform co-delivering IR780, NLG919 dimer and a hypoxia-activated prodrug tirapazamine (TPZ) as the dual enhancer for synergistic cancer therapy. Under NIR irradiation, IR780 generates 1O2 for PDT, which simultaneously cleaves the ROS-sensitive linker for triggered TPZ release, and activates its chemotherapy via exacerbated tumor hypoxia. Meanwhile, firstly found by us, TPZ-mediated chemotherapy boosts PDT-induced tumor ICD to evoke stronger antitumor immunity including the development of tumor-specific cytotoxic T lymphocytes (CTLs). Eventually, enriched intratumoral GSH triggers the activation of NLG919 to mitigate the immunosuppressive TME via specific indoleamine 2,3-dioxygenase 1 (IDO-1) inhibition, consequently promoting the intratumoral infiltration of CTLs and the killing of both primary and distant tumors, while the resultant memory T cells allows nearly 100% suppression of tumor recurrence and metastasis. This nanoplatform sets up an example for dully enhanced photodynamic immunotherapy of breast cancer via hypoxia-activated chemotherapy, and paves a solid way for the treatment of other hypoxic and immunosuppressive malignant tumors.
Collapse
Affiliation(s)
- Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 NY74, Ireland
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Lu J, Yu J, Xie W, Gao X, Guo Z, Jin Z, Li Y, Fahad A, Pambe NU, Che S, Wei Y, Zhao L. Physical Dissolution Combined with Photodynamic Depletion: A Two-Pronged Nanoapproach for Deoxygenation-Driven and Hypoxia-Activated Prodrug Therapy. ACS APPLIED BIO MATERIALS 2023; 6:3902-3911. [PMID: 37644623 DOI: 10.1021/acsabm.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hypoxia may enhance the chemoresistance of cancer cells and can significantly compromise the effectiveness of chemotherapy. Many efforts have been made to relieve or reverse hypoxia by introducing more oxygen into the tumor microenvironment (TME). Acting in a diametrically opposite way, in the current study, a novel nanocarrier was designed to further exhaust the oxygen level of the hypoxic TME. By creating such an oxygen depleted TME, the hypoxia-selective cytotoxin can work effectively, and oxygen exhaustion triggered chemotherapy can be achieved. Herein, deoxygenation agent, FDA-approved perfluorocarbon (PFC) and photosensitizer indocyanine green (ICG) for oxygen depletion, along with the hypoxia-activating drug tirapazamine (TPZ), were coincorporated within the poly(lactic-co-glycolic acid) (PLGA) nanoemulsion (ICG/TPZ@PPs) for the treatment of hypoxic tumors. Following hypoxia amplifying through physical oxygen dissolution and photodynamic depletion in tumors, hypoxic chemotherapy could be effectively activated to improve multitreatment synergy. After achieving local tumor enrichment, PFC-mediated oxygen dissolution combined with further ICG-mediated photodynamic therapy (PDT) under near-infrared (NIR) laser irradiation could induce enhanced hypoxia, which would activate the antitumor activity of codelivered TPZ to synergize cytotoxicity. Remarkably, in vivo experimental results exhibited that deoxygenated ICG/TPZ@PPs-based photothermal therapy (PTT), PDT, and hypoxia activated chemotherapy have an excellent synergistic ablation of tumors without obvious side effects, and therefore, a broad prospect of application of this nanocarrier could be expected.
Collapse
Affiliation(s)
- Jingsong Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohan Gao
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
| | - Zeping Jin
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Abdul Fahad
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Neema Ufurahi Pambe
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shenglei Che
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
16
|
Zhao M, Zhu A, Zheng X, Qian X, Zhang S, Wu C, Yu C, Zhang J, Li J. Multistage-Responsive Dual-Enzyme Nanocascades for Synergistic Radiosensitization-Starvation Cancer Therapy. Adv Healthc Mater 2023; 12:e2300118. [PMID: 37094801 DOI: 10.1002/adhm.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Radiotherapy is a common cancer treatment approach in clinical practice, yet its efficacy has been restricted by tumor hypoxia. Nanomaterials-mediated systemic delivery of glucose oxidase (GOx) and catalase (CAT) or CAT-like nanoenzymes holds the potential to enhance tumor oxygenation. However, they face the challenge of intermediate (hydrogen peroxide [H2 O2 ]) escape during systemic circulation if the enzyme pair is not closely placed to largely decompose H2 O2 , leading to oxidative stress on normal tissues. In the present study, a oxygen-generating nanocascade, n(GOx-CAT)C7A , constructed by strategically placing an enzymatic cascade (GOx and CAT) within a polymeric coating rich in hexamethyleneimine (C7A) moieties, is reported. During blood circulation, C7A remains predominantly non-protonated , achieving prolonged blood circulation due to its low-fouling surface. Once n(GOx-CAT)C7A reaches the tumor site, the acidic tumor microenvironment (TME) induces protonation of C7A moieties, resulting in a positively charged surface for enhanced tumor transcytosis. Moreover, GOx and CAT are covalently conjugated into close spatial proximity (<10 nm) for effective H2 O2 elimination. As demonstrated by the in vivo results, n(GOx-CAT)C7A achieves effective tumor retention and oxygenation, potent radiosensitization and antitumor effects. Such a dual-enzyme nanocascade for smart O2 delivery holds great potential for enhancing the hypoxia-compromised cancer therapies.
Collapse
Affiliation(s)
- Ming Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Anni Zhu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and food, Hubei University of Technology, Wuhan, 430068, China
| | - Xiaomin Qian
- Department of Medical Laboratory, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Shujun Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chenyu Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Congwei Yu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
17
|
Zou J, Zhang F, Fan W, Li L, Yang Z. Editorial: Synthesis of novel photosensitizers for cancer theranostics. Front Chem 2023; 11:1188243. [PMID: 37492526 PMCID: PMC10364599 DOI: 10.3389/fchem.2023.1188243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zhen Yang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, China
| |
Collapse
|
18
|
Han X, Ju LS, Irudayaraj J. Oxygenated Wound Dressings for Hypoxia Mitigation and Enhanced Wound Healing. Mol Pharm 2023; 20:3338-3355. [PMID: 37338289 PMCID: PMC10324602 DOI: 10.1021/acs.molpharmaceut.3c00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Oxygen is a critical factor that can regulate the wound healing processes such as skin cell proliferation, granulation, re-epithelialization, angiogenesis, and tissue regeneration. However, hypoxia, a common occurrence in the wound bed, can impede normal healing processes. To enhance wound healing, oxygenation strategies that could effectively increase wound oxygen levels are effective. The present review summarizes wound healing stages and the role of hypoxia in wound healing and overviews current strategies to incorporate various oxygen delivery or generating materials for wound dressing, including catalase, nanoenzyme, hemoglobin, calcium peroxide, or perfluorocarbon-based materials, in addition to photosynthetic bacteria and hyperbaric oxygen therapy. Mechanism of action, oxygenation efficacy, and potential benefits and drawbacks of these dressings are also discussed. We conclude by highlighting the importance of design optimization in wound dressings to address the clinical needs to improve clinical outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Leah Suyeon Ju
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Zhang J, Tang K, Fang R, Liu J, Liu M, Ma J, Wang H, Ding M, Wang X, Song Y, Yang D. Nanotechnological strategies to increase the oxygen content of the tumor. Front Pharmacol 2023; 14:1140362. [PMID: 36969866 PMCID: PMC10034070 DOI: 10.3389/fphar.2023.1140362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Hypoxia is a negative prognostic indicator of solid tumors, which not only changes the survival state of tumors and increases their invasiveness but also remarkably reduces the sensitivity of tumors to treatments such as radiotherapy, chemotherapy and photodynamic therapy. Thus, developing therapeutic strategies to alleviate tumor hypoxia has recently been considered an extremely valuable target in oncology. In this review, nanotechnological strategies to elevate oxygen levels in tumor therapy in recent years are summarized, including (I) improving the hypoxic tumor microenvironment, (II) oxygen delivery to hypoxic tumors, and (III) oxygen generation in hypoxic tumors. Finally, the challenges and prospects of these nanotechnological strategies for alleviating tumor hypoxia are presented.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Runqi Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiaming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| |
Collapse
|
20
|
Zhang Y, Zhang C, Wu B, Li C, Lin J, Huang P. Thermoresponsive Ozone-Enriched Spray Gel for Postsurgical Treatment of Hepatocellular Carcinoma. ACS NANO 2023; 17:3518-3527. [PMID: 36763050 DOI: 10.1021/acsnano.2c09893] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surgical resection of hepatocellular carcinoma suffers from a high recurrence rate. Ozone directly kills tumor cells by generating reactive oxygen species in vitro, but its high reactivity and short half-life severely limit its tumor accumulation and penetration for the treatment of tumors in vivo. Herein, a thermoresponsive ozone-enriched spray gel is developed to suppress the tumor recurrence of hepatocellular carcinoma (Huh-7 tumors). Briefly, a perfluorocarbon nanoemulsion (PFTBA@LIP) consisting of a perfluorotributylamine core and a lipid monolayer is fabricated, which is encapsulated in the thermoresponsive hydrogel. Ozone is then dissolved in the nanoemulsion owing to its high affinity to PFTBA (O3/PFTBA@LIP@Gel), which effectively improves its stability. Of note is that O3/PFTBA@LIP@Gel induces both ferroptosis and apoptosis by regulating the expression of relevant genes (GPX4, ACSL4, CDKN1A, etc.) and inducing considerable lipid peroxidation, which significantly reduces the tumor recurrence of the Huh-7 tumor by spraying the gel in the surgical cavity and prolongs the survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Chenqing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Boda Wu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chunying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
21
|
Hypoxia in Skin Cancer: Molecular Basis and Clinical Implications. Int J Mol Sci 2023; 24:ijms24054430. [PMID: 36901857 PMCID: PMC10003002 DOI: 10.3390/ijms24054430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.
Collapse
|
22
|
Messerschmidt V, Ren W, Tsipursky M, Irudayaraj J. Characterization of Oxygen Nanobubbles and In Vitro Evaluation of Retinal Cells in Hypoxia. Transl Vis Sci Technol 2023; 12:16. [PMID: 36763051 PMCID: PMC9927786 DOI: 10.1167/tvst.12.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
Purpose Vein or artery occlusion causes a hypoxic environment by preventing oxygen delivery and diffusion to tissues. Diseases such as retinal vein occlusion, central retinal artery occlusion, or diabetic retinopathy create a stroke-type condition that leads to functional blindness in the effected eye. We aim to develop an oxygen delivery system consisting of oxygen nanobubbles (ONBs) that can mitigate retinal ischemia during a severe hypoxic event such as central retinal artery occlusion. Methods ONBs were synthesized to encapsulate oxygen saturated molecular medical grade water. Stability, oxygen release, biocompatibility, reactive oxygen species, superoxide, MTT, and terminal uridine nick-end labeling assays were performed. Cell viability was evaluated, and safety experiments were conducted in rabbits. Results The ONBs were approximately 220 nm in diameter, with a zeta potential of -58.8 mV. Oxygen release studies indicated that 74.06 µg of O2 is released from the ONBs after 12 hours at 37°C. Cell studies indicated that ONBs are safe and cells are viable. There was no significant increase in reactive oxygen species, superoxide, or double-stranded DNA damage after ONB treatment. ONBs preserve mitochondrial function and viability. Histological sections from rabbit eyes indicated that ONBs were not toxic. Conclusions The ONBs proposed have excellent oxygen holding and release properties to mitigate ischemic conditions in the retina. They are sterile, stable, and nontoxic. Translation Relevance ONB technology was evaluated for its physical properties, oxygen release, sterility, stability, and safety. Our results indicate that ONBs could be a viable treatment approach to mitigate hypoxia during ischemic conditions in the eye upon timely administration.
Collapse
Affiliation(s)
- Victoria Messerschmidt
- Biomedical Research Centre (BRC), Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Wen Ren
- Biomedical Research Centre (BRC), Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Tsipursky
- Vitreo-Retinal Surgery, Ophthalmology Department, Carle Foundation Hospital, Champaign, IL, USA
- Carle-Illinois College of Medicine, Champaign, IL, USA
| | - Joseph Irudayaraj
- Biomedical Research Centre (BRC), Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle-Illinois College of Medicine, Champaign, IL, USA
- Beckman Institute; Holonyak Micro and Nanotechnology Laboratory; Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
24
|
Xie Z, Wang J, Luo Y, Qiao B, Jiang W, Zhu L, Ran H, Wang Z, Zhu W, Ren J, Zhou Z. Tumor-penetrating nanoplatform with ultrasound "unlocking" for cascade synergistic therapy and visual feedback under hypoxia. J Nanobiotechnology 2023; 21:30. [PMID: 36698190 PMCID: PMC9878980 DOI: 10.1186/s12951-023-01765-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.
Collapse
Affiliation(s)
- Zhuoyan Xie
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Junrui Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,grid.412461.40000 0004 9334 6536Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Yuanli Luo
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Bin Qiao
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Weixi Jiang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Leilei Zhu
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 401147 China ,grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Haitao Ran
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhigang Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Wei Zhu
- grid.440771.10000 0000 8820 2504Depatment of Medical College, Hubei University for Nationalities, Enshi, 445000 Hubei China
| | - Jianli Ren
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Zhiyi Zhou
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China ,Depatment of General Practice, Chongqing General Hospital, Chongqing, 401147 China
| |
Collapse
|
25
|
Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 2023; 24:477-496. [PMID: 36714330 PMCID: PMC9843284 DOI: 10.1016/j.bioactmat.2022.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.
Collapse
Key Words
- Alizarin red staining, ARS
- Alkaline phosphatase, ALP
- Bone defect
- Bone marrow mesenchymal stem cells, BMSC
- Bovine serum albumin, BSA
- Brain and muscle arnt-like protein 1
- Brain and muscle arnt-like protein 1, BMAL1
- Catalase, CAT
- Fetal liver kinase-1, Flk-1
- Human umbilical vein endothelial cells, HUVEC
- Hypoxic microenvironment
- Liposome, Lip
- Microtubule-associated proteins light chain 3, LC3
- Nuclear factor (erythroid-derived 2)-like 2, NRF2
- Osteocalcin, OCN
- Osteopontin, OPN
- Perfluorocarbon, PFC
- Phosphate-buffered saline, PBS
- Poly (D, L-lactide-co-glycolide), PLGA
- Poly (propylene sulphide), PPS
- Prolonged oxygen generation
- Reactive oxygen species responsiveness
- Reactive oxygen species, ROS
- Receptor activator of nuclear factor-kappa B ligand, RANKL
- Runt-related transcription factor 2, RUNX2
- Short interfering RNA, siRNA
- Soy phosphatidylcholine, SPC
- Type I collagen, Col I
- Western blot, WB
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, Jiangsu, PR China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
26
|
Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J Control Release 2023; 353:1002-1022. [PMID: 36516901 DOI: 10.1016/j.jconrel.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.
Collapse
|
27
|
Perfluorooctylbromide-loaded fucoidan-chlorin e6 nanoparticles for tumor-targeted photodynamic therapy. Int J Biol Macromol 2022; 223:77-86. [PMID: 36336157 DOI: 10.1016/j.ijbiomac.2022.10.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Efficient delivery of a photosensitizer (PS) and oxygen to tumor tissue is critical for successful photodynamic therapy (PDT). For this purpose, we developed a fucoidan (Fu)-chlorin e6 (Ce6) nanoparticle (NP) containing perfluorooctylbromide (PFOB). Fu, a biopolymer derived from seaweed, made up the hydrophilic shell of the NP and provided specific targeting to tumor cells by P-selectin binding. Conjugation with the hydrophobic Ce6 enabled self-assembly and Ce6-generated cytotoxic reactive oxygen species to kill tumor cells upon laser irradiation. PF supplied oxygen to the hypoxic tumor tissue and increased the efficacy of the PDT. The developed Fu-Ce6-PF-NPs bound specifically to SCC7 tumor cells and killed them via a photodynamic effect on laser irradiation. High accumulation of the NPs in tumor tissue and improved tumor suppression by PDT were observed in SCC7 tumor-bearing mice. The overall data demonstrated the potential of Fu-Ce6-PF-NP as a tumor-targeting drug carrier for effective PDT.
Collapse
|
28
|
Han P, Zhang L, Fu Y, Fu Y, Huang J, He J, Ni P, Khan T, Jiao Y, Yang Z, Zhou R. A dual-response drug delivery system with X-ray and ROS to boost the anti-tumor efficiency of TPZ via enhancement of tumor hypoxia levels. NANOSCALE 2022; 15:237-247. [PMID: 36472214 DOI: 10.1039/d2nr04021b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The selective anti-tumor activity and less toxic nature of hypoxia-activated prodrugs including tirapazamine (TPZ) are harbored by hypoxia levels in tumors, the inadequacy of which leads to failure in clinical trials. Thus, the development of effective clinical applications of TPZ requires advanced strategies to intensify hypoxia levels in tumors effectively and safely. In this study, we designed and fabricated a paclitaxel (PTX)-loaded dual-response delivery system with a low dose (e.g., 2 Gy) of X-ray and reactive oxygen species on the basis of diselenide block copolymers. Upon the external X-ray stimulus, the system accurately released encapsulated PTX at tumor sites and remarkably improved tumor hypoxia levels by causing severe damage to tumor blood vessels. Subsequently, these enhanced tumor hypoxia levels effectively activated the reduction of TPZ into benzotriazinyl free radicals, which significantly improved the antitumor efficacy of our system against 4T1 breast cancer cells with an initial tumor volume of 500 mm3. Moreover, the dual-stimulus coordinated and controlled release of PTX was found to largely avoid the off-target effects of PTX on normal cells while exhibiting very limited side effects in experimental mice. The current novel strategy for regulating tumor hypoxia levels offers an effective and safe way to activate TPZ for the treatment of large solid tumors.
Collapse
Affiliation(s)
- Panli Han
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Lianxue Zhang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Yaqi Fu
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Youyu Fu
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Jianxiang Huang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Taimoor Khan
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
29
|
Anti-Tumor Effects of Engineered VNP20009-Abvec-Igκ-mPD-1 Strain in Melanoma Mice via Combining the Oncolytic Therapy and Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122789. [PMID: 36559282 PMCID: PMC9781615 DOI: 10.3390/pharmaceutics14122789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein 1/Programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors are the most promising treatments for malignant tumors currently, but the low response rate limits their further clinical utilization. To address this problem, our group constructed an engineered strain of VNP20009-Abvec-Igκ-mPD-1 [V-A-mPD-1 (mPD-1, murine PD-1)] to combine oncolytic bacterial therapy with immunotherapy. Further, we evaluated its growth performance and mPD-1 expression ability in vitro while establishing the melanoma mice model to explore its potential anti-cancer effects in tumor therapy. Our results indicated that the V-A-mPD-1 strain has superior growth performance and can invade B16F10 melanoma cells and express PD-1. In addition, in the melanoma mice model, we observed a marked reduction in tumor volume and the formation of a larger necrotic area. V-A-mPD-1 administration resulted in a high expression of mPD-1 at the tumor site, inhibiting tumor cell proliferation via the down-regulation of the expression of rat sarcoma (Ras), phosphorylated mitogen-activated protein kinase (p-MEK)/MEK, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK expression significantly inhibited tumor cell proliferation. Tumor cell apoptosis was promoted by down-regulating phosphoinositide 3 kinase (PI3K) and protein kinase B (AKT) signaling pathways, as evidenced by an increased Bcl-2-associated X protein/B cell lymphoma-2 (Bax/Bcl-2) expression ratio. Meanwhile, the expression levels of systemic inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were substantially reduced. In conclusion, our research demonstrated that V-A-mPD-1 has an excellent anti-tumor effect, prompting that the combined application of microbial therapy and immunotherapy is a feasible cancer treatment strategy.
Collapse
|
30
|
Lai C, Luo B, Shen J, Shao J. Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 2022; 186:106551. [PMID: 36370918 DOI: 10.1016/j.phrs.2022.106551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
31
|
Qiao C, Yang Z, Liu X, Zhang R, Xia Y, Wang L, Chen Z, Jia Q, Wang R, Yang Y, Wang Z. Post-Remedial Oxygen Supply: A New Perspective on Photodynamic Therapy to Suppress Tumor Metastasis. NANO LETTERS 2022; 22:8250-8257. [PMID: 36218311 DOI: 10.1021/acs.nanolett.2c02983] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in tumor therapy due to high safety, efficacy, and specificity. However, the risk of increased metastasis in hypoxic tumors after oxygen-dependent PDT remains underestimated. Here, we propose a post-PDT oxygen supply (POS) strategy to reduce the risk of metastasis. Herein, biocompatible and tumor-targeting Ce6@BSA and PFC@BSA nanoparticles were constructed for PDT and POS in a 4T1-orthotropic breast cancer model. PDT with Ce6@BSA nanoparticles increased tumor metastasis via the HIF-1α signaling pathway, whereas POS significantly reduced the PDT-triggered metastasis by blocking this pathway. Furthermore, POS, with clinical protocols and an FDA-approved photosensitizer (hypericin), and oxygen inhalation reduced PDT-induced metastasis. Our study findings indicate that PDT may increase the risk of tumor metastasis and that POS may solve this problem. POS can reduce the metastasis resulting not only from PDT but also from other oxygen-dependent treatments such as radiotherapy and sonodynamic therapy.
Collapse
Affiliation(s)
- Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Xuelan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yuqiong Xia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Lexuan Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruhao Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xidian University, Xi'an, Shaanxi 710126, P.R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| |
Collapse
|
32
|
Kang K, Wang L, Yu K, Ma Y, Qu F, Lin H. Z-scheme MoS 2/Co 3S 4@PEG nanoflowers: Intracellular NIR-II photocatalytic O 2 production facilitating hypoxic tumor therapy. BIOMATERIALS ADVANCES 2022; 144:213168. [PMID: 36455499 DOI: 10.1016/j.bioadv.2022.213168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
Intratumoral hypoxia, which is in favour of cancer cell proliferation, invasion and metastasis, also inhibits photodynamic therapy (PDT) badly. Herein, second near-infrared (NIR-II) photocatalytic O2 production is established to realize hypoxia relief. MoS2/Co3S4@PEG (MSCs@PEG) nanoflowers (100-150 nm) are prepared via a two-step hydrothermal method. These samples possess high NIR-II harvest and photothermal conversion (39.8 %, 1064 nm) ability. That not only reveals photothermal therapy (PTT) but also lifts the thermal energy of nanomaterials to replenish extra energy, making sure the co-excitation of MoS2 (1.14 eV) and Co3S4 (1.40 eV) by low-energy NIR-II (1064 nm, 1.16 eV) laser. The investigation of band structure further displays the Z-Scheme characterization of MSCs heterostructure. These photo-excited holes/electrons hold great redox ability to form O2 (water splitting) and reactive oxygen species (ROS), simultaneously. In addition, MSC-2@PEG can be served to mimic catalase, peroxidase, and glutathione (GSH) oxidase to further boost oxidative stress. It is noted that heterostructure discovers the greater nanozyme activity, attributing to the lower resistance for charge transfer. Moreover, MSC-2@PEG displays a novel biodegradation ability to induce the elimination via urine and faeces within 14 days. Given the superparamagnetic and photothermal effect, the nanocomposite can be used as magnetic resonance and photothermal imaging (MRI and PTI) contrast. Associated with dual-imaging, intracellular O2 supplementation, and synergistic chemotherapy (CDT)/PTT/PDT, MSC-2@PEG possess great tumor inhibition that also efficiently motivates immune response for anticancer.
Collapse
Affiliation(s)
- Keke Kang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Limin Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yajie Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
33
|
Wang W, Wang X, Tao F, Hu K, Zhang J, Wu J, You L, Zhao W. Fluorinated Hyaluronic Acid Encapsulated Perfluorocarbon Nanoparticles as Tumor-Targeted Oxygen Carriers to Enhance Radiotherapy. Mol Pharm 2022; 19:3948-3958. [PMID: 36194775 DOI: 10.1021/acs.molpharmaceut.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficacy of radiotherapy is significantly constricted by tumor hypoxia. To overcome this obstacle, one promising approach is to use the perfluorocarbon-based O2 carriers combined with hyperoxic respiration to relieve tumor hypoxia. However, this passively transported oxygen carrier during hyperoxic respiration is prone to cause systemic oxidative stress and toxicity, which further limits its clinical application. Herein, we fabricate O2@PFC@FHA NPs for safe and specific oxygen delivery into tumors by using the fluorinated hyaluronic acid to encapsulate O2-saturated perfluorocarbon. Due to the interaction between HA and CD44 receptors, more FHA@PFC NPs accumulated in the tumor and the O2@PFC@FHA NPs significantly relieved tumor hypoxia. Notably, RT plus O2@PFC@FHA NPs resulted in almost threefold therapeutic improvement compared with RT without obvious systemic toxicity. Therefore, the O2@FHA@PFC NPs may have great potential to enhance the therapeutic efficacy of radiotherapy in the clinic.
Collapse
Affiliation(s)
- Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Xingli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Junying Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China.,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
34
|
Oxygen tank for synergistic hypoxia relief to enhance mitochondria-targeted photodynamic therapy. Biomater Res 2022; 26:47. [PMID: 36138489 PMCID: PMC9502906 DOI: 10.1186/s40824-022-00296-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondria play an essential role in cellular redox homeostasis maintenance and meanwhile serve as an important target for organelle targeted therapy. Photodynamic therapy (PDT) is a promising strategy for organelle targeted therapy with noninvasive nature and highly spatiotemporal selectivity. However, the efficacy of PDT is not fully achieved due to tumor hypoxia. Moreover, aerobic respiration constantly consumes oxygen and leads to a lower oxygen concentration in mitochondria, which continuously limited the therapeutic effects of PDT. The lack of organelle specific oxygen delivery method remains a main challenge. Methods Herein, an Oxygen Tank is developed to achieve the organelle targeted synergistic hypoxia reversal strategy, which not only act as an oxygen storage tank to open sources and reduce expenditure, but also coated with red blood cell membrane like the tank with stealth coating. Within the oxygen tank, a mitochondrion targeted photosensitizer (IR780) and a mitochondria respiration inhibitor (atovaquone, ATO) are co-loaded in the RBC membrane (RBCm) coated perfluorocarbon (PFC) liposome core. Results Inside these bio-mimic nanoparticles, ATO effectively inhibits mitochondrial respiration and economized endogenous oxygen consumption, while PFC supplied high-capacity exogenous oxygen. These Oxygen modulators reverse the hypoxia status in vitro and in vivo, and exhibited a superior anti-tumor activity by mitochondria targeted PDT via IR780. Ultimately, the anti-tumor effects towards gastric cancer and colon cancer are elicited in vivo. Conclusions This oxygen tank both increases exogeneous oxygen supply and decreases endogenous oxygen consumption, may offer a novel solution for organelle targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00296-0.
Collapse
|
35
|
Zhang S, Li Z, Wang Q, Liu Q, Yuan W, Feng W, Li F. An NIR-II Photothermally Triggered "Oxygen Bomb" for Hypoxic Tumor Programmed Cascade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201978. [PMID: 35606680 DOI: 10.1002/adma.202201978] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia, as a characteristic feature of solid tumors, has a close relationship with tumor resistance to photodynamic therapy (PDT) and chemotherapy. Perfluorocarbon (PFC) is reported to relieve hypoxic in solid tumors by acting as an oxygen carrier via several nanostructures. However, the oxygen delivery process is mostly driven by a concentration gradient, which is uncontrollable. Herein, a photothermally controlled "oxygen bomb" PSPP-Au980 -D is designed by encapsulating a PFC core within a functionalized bilayer polymer shell. Near-infrared second window photothermal agent gold nanorods with excellent photo-to-heat energy-conversion ability are fabricated on the surface of the polymer shell via an innovative modified two-step seedless ex situ growth process to thermally trigger O2 release. Then, a programmed cascade therapy strategy is customized for hypoxic orthotopic pancreatic cancer. First, PSPP-Au980 -D is irradiated by a 980 nm laser to photothermally trigger O2 infusing into the hypoxic tumor microenvironment, which is accompanied by local hyperemia and doxorubicin release. Subsequently, a 680 nm laser is used to generate singlet oxygen in the oxygenated tumor microenvironment for PDT. This choreographed programmed cascade therapy strategy will provide a new route for suppressing hypoxic tumor growth under mild conditions based on controllable and effective oxygen release.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhenhua Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Qian Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
36
|
Xu Y, Liu R, Yang H, Qu S, Qian L, Dai Z. Enhancing Photodynamic Therapy Efficacy Against Cancer Metastasis by Ultrasound-Mediated Oxygen Microbubble Destruction to Boost Tumor-Targeted Delivery of Oxygen and Renal-Clearable Photosensitizer Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25197-25208. [PMID: 35615986 DOI: 10.1021/acsami.2c06655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxic tumor microenvironment and nonspecific accumulation of photosensitizers are two key factors that limit the efficacy of photodynamic therapy (PDT). Herein, a strategy of oxygen microbubbles (MBs) boosting photosensitizer micelles is developed to enhance PDT efficacy and inhibit tumor metastasis by self-assembling renal-clearable ultrasmall poly(ethylene glycol)-modified protoporphyrin IX micelles (PPM) and perfluoropentane (PFP)-doped oxygen microbubbles (OPMBs), followed by ultrasound imaging-guided OPMB destruction to realize the tumor-targeted delivery of PPM and oxygen in tumor. Doping PFP into oxygen MBs increases the production of MBs and stability of oxygen MBs, allowing for persistent circulation in blood. Following co-injection, destruction of OPMBs with ultrasound leads to ∼2.2-fold increase of tumor-specific PPM accumulation. Furthermore, the burst release of oxygen by MB destruction improves tumor oxygenation from 22 to 50%, which not only raises the production of singlet oxygen but also significantly reduces the expression of hypoxia-inducible factor-1 alpha and related genes, thus preventing angiogenesis and epithelial-mesenchymal transition. It is verified that this strategy effectively eradicates orthotopic breast cancer and inhibits lung metastasis. Furthermore, the survival rate of mice bearing orthotopic pancreatic tumor is significantly extended by such interventional PDT strategy. Therefore, the combination of ultrasmall PPM and OPMBs represents a simple but effective strategy in overcoming the limitations of PDT.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
37
|
Xie YJ, Huang M, Li D, Hou JC, Liang HH, Nasim AA, Huang JM, Xie C, Leung ELH, Fan XX. Bacteria-based nanodrug for anticancer therapy. Pharmacol Res 2022; 182:106282. [PMID: 35662630 DOI: 10.1016/j.phrs.2022.106282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.
Collapse
Affiliation(s)
- Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Jin-Cai Hou
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Hai-Hai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
38
|
Sun L, Zhou JE, Luo T, Wang J, Kang L, Wang Y, Luo S, Wang Z, Zhou Z, Zhu J, Yu J, Yu L, Yan Z. Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109969. [PMID: 35174915 DOI: 10.1002/adma.202109969] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Department of NanoEngineering and Chemical Engineering Program University of California, San Diego La Jolla, CA, 92093, USA
| | - Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Tengshuo Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-medicine Technology Co. Ltd, No 1525 Minqiang Road, Shanghai, 201612, P. R. China
| | - Yeying Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Shenggen Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhehao Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Ziyu Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jiaxi Zhu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, P. R. China
| | - Jiahui Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
39
|
Wu M, Chen C, Liu Z, Tian J, Zhang W. Regulating the bacterial oxygen microenvironment via a perfluorocarbon-conjugated bacteriochlorin for enhanced photodynamic antibacterial efficacy. Acta Biomater 2022; 142:242-252. [PMID: 35183779 DOI: 10.1016/j.actbio.2022.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) has attracted considerable attention, since it could effectively kill bacteria and prevent the development of multi-drug resistance. However, PDT currently suffers from oxygen limitation and hypoxia is a prominent feature of pathological states encountered in inflammation, wounds, and bacterial infections. Herein, an oxygen-tunable nanoplatform based on perfluorocarbon-conjugated tetrafluorophenyl bacteriochlorin (FBC-F) was designed for effective antimicrobial therapy. The introduction of fluorine atoms can not only increase the reactive oxygen species (ROS) production capacity of FBC-F by facilitating the intersystem crossing (ISC) process of FBC photosensitizers, but also make FBC-F deliver more oxygen into the treatment sites benefiting from the outstanding oxygen-dissolving capability of perfluorocarbon. As a consequence, the FBC-F nanoplatform was able to efficiently generate singlet oxygens for type II PDT, as well as superoxide anions and hydroxyl radicals for type I PDT, and significantly improve antibacterial efficacy in vitro. In vivo experiments further proved that the FBC-F with a powerful antibacterial capability could well promote wound healing and destroy biofilm. Thus, this FBC-F nanoplatform may open a new path in photodynamic antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photodynamic therapy is a promising antibacterial treatment, but its efficacy is severely compromised by hypoxia. To overcome such a limitation, we constructed an oxygen-regulated nanoplatform (FBC-F) by attaching perfluorocarbons (PFC) to the NIR photosensitizer (FBC). As an analogue of bacteriochlorin, FBC could generate 1O2 through energy transfer , as well as O2-· and ·OH through electron transfer for synergistic type I and type II photodynamic antibacterial therapy. Benefiting from the oxygen-dissolving capability of PFC, FBC-F could efficiently deliver more oxygen into the treatment site and alleviate the hypoxic environment. As a consequence, FBC-F could effectively generate large amounts of reactive oxygen species to achieve improved antibacterial efficacy and provide a promising approach for eliminating biofilms.
Collapse
|
40
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
41
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
42
|
Wang W, Xu H, Ye Q, Tao F, Wheeldon I, Yuan A, Hu Y, Wu J. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat Biomed Eng 2022; 6:44-53. [PMID: 35058589 DOI: 10.1038/s41551-021-00834-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/18/2021] [Indexed: 01/09/2023]
Abstract
Because the tumour microenvironment is typically immunosuppressive, the release of tumour antigens mediated by radiotherapy or chemotherapy does not sufficiently activate immune responses. Here we show that, following radiotherapy, the intratumoural injection of a genetically attenuated strain of Salmonella coated with antigen-adsorbing cationic polymer nanoparticles caused the accumulation of tumour antigens at the tumour's periphery. This enhanced the crosstalk between the antigens and dendritic cells, and resulted in large increases in activated ovalbumin-specific dendritic cells in vitro and in systemic antitumour effects, and extended survival in multiple tumour models in mice, including a model of metastasis and recurrence. The antitumour effects were abrogated by the antibody-mediated depletion of CD8+ T cells, indicating that systemic tumour regression was caused by adaptive immune responses. Leveraging flagellate bacteria to transport tumour antigens to the periphery of tumours to potentiate the activation of dendritic cells may open up new strategies for in situ cancer vaccination.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China. .,Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
43
|
Yu H, Li Y, Zhang Z, Ren J, Zhang L, Xu Z, Kang Y, Xue P. Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. Acta Biomater 2022; 138:545-560. [PMID: 34775125 DOI: 10.1016/j.actbio.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Disturbance in redox homeostasis always leads to oxidative damages to cellular components, which inhibits cancer cell proliferation and causes tumor regression. Therefore, synergistic effects arising from cellular redox imbalance together with other treatment modalities are worth further investigation. Herein, a metal-organic framework nanosystem (NMOF) based on coordination between Fe (III) and 4,4,4,4-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) was synthesized through a one-pot method. After surface capping of silk fibroin (SF) to form NMOF@SF nanoparticles (NPs), this nanoplatform can serve as an eligible nanocarrier to deliver tirapazamine (TPZ), a hypoxia-activated precursor. As-developed NS@TPZ (NST) NPs remained inactive in the normal tissue, whereas became highly active upon endocytosis by tumor cells via glutathione (GSH)-mediated reduction of Fe (III) into Fe (II), further enabling Fe (II)-mediated chemodynamic therapy (CDT). Upon optical laser irradiation, TCPP-mediated photodynamic therapy (PDT) coordinated with CDT to aggravate intracellular oxidative stress. Thus, such reactive oxygen species accumulation and GSH deprivation contributed to a deleterious redox dyshomeostasis. On the other hand, local deoxygenation caused by PDT can increase the cytotoxicity of released TPZ, which significantly improved the integral therapeutic effectiveness relying on the combined redox balance disruption and bioreductive chemotherapy. More importantly, severe immunogenic cell death can be triggered by the combinatorial treatment modalities and the presence of SF, which facilitated an almost complete tumor eradication in vivo. Taken together, this paradigm provides an insightful strategy for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy, which can remarkably enhance antitumor efficacy with negligible adverse effects. STATEMENT OF SIGNIFICANCE: Recently, silk fibroin (SF) has been demonstrated to be effective in activating antitumor immune system through polarization tumor-associated macrophages into M1 subtype. However, engineering SF into multifunctional nanocomposites is seldom reported for combination tumor therapy. In another aspect, disruption of redox homeostasis becomes increasingly attractive for tumor suppression with high clinical-relevance. Herein, we established a newfashioned NMOF nanosystem, named as NST, for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. This platform takes advantages of Fe2+/Fe3+ coupled Fenton-like reaction and GSH depletion, as well as TCPP-mediated photosensitization for admirable redox unbalancing, which further initiates hypoxia-relevant toxin of TPZ for chemotherapy. Finally, combinatorial treatments and the presence of SF could trigger ICD for rendering a complete tumor eradication in vivo.
Collapse
|
44
|
Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, Huo M, Shi J. Ischemic Microenvironment-Responsive Therapeutics for Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105348. [PMID: 34623714 DOI: 10.1002/adma.202105348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases caused by ischemia are attracting considerable attention owing to its high morbidity and mortality worldwide. Although numerous agents with cardioprotective benefits have been identified, their clinical outcomes are hampered by their low bioavailability, poor drug solubility, and systemic adverse effects. Advances in nanoscience and nanotechnology provide a new opportunity to effectively deliver drugs for treating ischemia-related diseases. In particular, cardiac ischemia leads to a characteristic pathological environment called an ischemic microenvironment (IME), significantly different from typical cardiac regions. These remarkable differences between ischemic sites and normal tissues have inspired the development of stimuli-responsive systems for the targeted delivery of therapeutic drugs to damaged cardiomyocytes. Recently, many biomaterials with intelligent properties have been developed to enhance the therapeutic benefits of drugs for the treatment of myocardial ischemia. Strategies for stimuli-responsive drug delivery and release based on IME include reactive oxygen species, pH-, hypoxia-, matrix metalloproteinase-, and platelet-inspired targeting strategies. In this review, state-of-the-art IME-responsive biomaterials for the treatment of myocardial ischemia are summarized. Perspectives, limitations, and challenges are also discussed for the further development of innovative and effective approaches to treat ischemic diseases with high effectiveness and biocompatibility.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
45
|
Yang X, Wang Y, Mao T, Wang Y, Liu R, Yu L, Ding J. An oxygen-enriched thermosensitive hydrogel for the relief of a hypoxic tumor microenvironment and enhancement of radiotherapy. Biomater Sci 2021; 9:7471-7482. [PMID: 34617528 DOI: 10.1039/d1bm01280k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rapid proliferation of tumor cells and tortuous vasculature in solid tumors often bring about a hypoxic tumor microenvironment, which renders tumor cells more resistant to many cancer treatments, including radiotherapy. In this study, an injectable and thermosensitive composite hydrogel composed of perfluorooctanoic acid (PFOA) modified monomethoxy poly(ethylene glycol)-poly(D,L-lactide-co-glycolide) (mPEG-PLGA-PFOA) and perfluorooctyl bromide (PFOB) that presented a thermoreversible sol-gel transition upon heating was developed to deliver exogenous oxygen for the relief of tumor hypoxia and enhancement of radiotherapy. The fluorinated modification of copolymers significantly increased the stability of PFOB in the mPEG-PLGA-PFOA aqueous solution owing to the fluorophilic interaction between PFOB and PFOA-modified copolymers. The introduction of PFOB not only efficiently heightened the oxygen loading capacity of the composite hydrogel, but also endowed it with excellent X-ray opacity, allowing the visual observation of the hydrogel via micro-CT imaging. After peritumoral injection of the oxygen-enriched composite hydrogel, the continuous supply of oxygen effectively relieved tumor hypoxia and down-regulated the expression of hypoxia-inducible factor-1α. Profiting from this, the hyposensitivity of tumor cells to radiation was successfully reversed, and the tumor growth in mice was significantly suppressed and the survival of mice was prolonged when combined with multiple X-ray exposure. As a result, the oxygen-enriched composite hydrogel shows a great potential for radiosensitization to improve the radiotherapeutic efficacy.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Tianjiao Mao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
46
|
Chen H, Fu Y, Feng K, Zhou Y, Wang X, Huang H, Chen Y, Wang W, Xu Y, Tian H, Mao Y, Wang J, Zhang Z. Polydopamine-coated UiO-66 nanoparticles loaded with perfluorotributylamine/tirapazamine for hypoxia-activated osteosarcoma therapy. J Nanobiotechnology 2021; 19:298. [PMID: 34592996 PMCID: PMC8482624 DOI: 10.1186/s12951-021-01013-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
Background Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. Results The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. Conclusions By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01013-0.
Collapse
Affiliation(s)
- Hongfang Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - You Fu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology , Shanghai, China
| | - Kai Feng
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yifan Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haohan Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenhao Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yuanjing Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology , Shanghai, China
| |
Collapse
|
47
|
Hou H, Wang Z, Ma Y, Yu K, Zhao J, Lin H, Qu F. NIR-driven intracellular photocatalytic oxygen-supply on metallic molybdenum carbide@N-carbon for hypoxic tumor therapy. J Colloid Interface Sci 2021; 607:1-15. [PMID: 34500412 DOI: 10.1016/j.jcis.2021.08.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
The intracellular O2-supply not only can relieve tumor hypoxia but also enhance the effects of photodynamic therapy (PDT). In this work, metallic Mo2C@N-carbon@PEG nanoparticles were constructed to reveal the near infrared (NIR)-photocatalytic O2 generation and promote photodynamic therapy (PDT). Here, (NH4)6Mo7O24·4H2O nanorods and urea were adopted as resources that were calcined to obtain Mo2C@N-carbon nanoparticles (20 nm). All samples displayed high NIR absorption as well as photothermal conversion efficiency of up to 52.7 % (Mo2C@N-Carbon-3@PEG). The density functional theory calculations demonstrated the metallic characteristic of Mo2C and that the consecutive interband/intraband charge-transition was responsible for the high NIR harvest and redox ability of electron-hole pairs, making the NIR-photocatalytic O2 and reactive oxygen species (ROS) generation. In comparison with the pure Mo2C, the heterostructure displayed twice the performance due to the enhanced charge-segregation between Mo2C and N-carbon. Given the high X-ray absorption coefficient and photothermal ability, the nanocomposite could be used in novel computer tomography and photothermal imaging contrast. Furthermore, the novel biodegradation and metabolism behaviors of nanocomposites were investigated, which were reflected as elimination from the body (mouse) via feces and urine within 14 days. The as-synthesized Mo2C@N-Carbon@PEG nanocomposites integrated the dual-model imaging, intracellular O2-supply, and phototherapy into one nanoplatform, revealing its potential for anti-cancer therapy.
Collapse
Affiliation(s)
- Huaying Hou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhongxu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yajie Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
48
|
Xiong W, Qi L, Si D, Jiang X, Liu Y, Zheng C, Li Y, Shen J, Zhou Z. Effective tumor vessel barrier disruption mediated by perfluoro-N-(4-methylcyclohexyl) piperidine nanoparticles to enhance the efficacy of photodynamic therapy. NANOSCALE 2021; 13:13473-13486. [PMID: 34477752 DOI: 10.1039/d1nr02880d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Currently, limited tumor drug permeation, poor oxygen perfusion and immunosuppressive microenvironments are the most important bottlenecks that significantly reduce the efficacy of photodynamic therapy (PDT). The main cause of these major bottlenecks is the platelet activation maintained abnormal tumor vessel barriers. Thus, platelet inhibition may present a new way to most effectively enhance the efficacy of PDT. However, to the best of our knowledge, few studies have validated the effectiveness of such a way in enhancing the efficacy of PDT both in vivo and in vitro. In this study, perfluoro-N-(4-methylcyclohexyl) piperidine-loaded albumin (PMP@Alb) nanoparticles were discovered, which possess excellent platelet inhibition ability. After PMP@Alb treatment, remarkably enhanced intra-tumoral drug accumulation, oxygen perfusion and T cell infiltration could be observed owing to the disrupted tumor vessel barriers. Besides, the effect of ICG@Lip mediated PDT was significantly amplified by PMP@Alb nanoparticles. It was demonstrated that PMP@Alb could be used as a useful tool to improve the efficacy of existing PDT by disrupting tumor vessel barriers through effective platelet inhibition.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cong C, He Y, Zhao S, Zhang X, Li L, Wang D, Liu L, Gao D. Diagnostic and therapeutic nanoenzymes for enhanced chemotherapy and photodynamic therapy. J Mater Chem B 2021; 9:3925-3934. [PMID: 33942817 DOI: 10.1039/d0tb02791j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanozymes, as a kind of artificial mimic enzymes, have superior catalytic capacity and stability. As lack of O2 in tumor cells can cause resistance to drugs, we designed drug delivery liposomes (MnO2-PTX/Ce6@lips) loaded with catalase-like nanozymes of manganese dioxide nanoparticles (MnO2 NPs), paclitaxel (PTX) and chlorin e6 (Ce6) to consume tumor's native H2O2 and produce O2. Based on the catalysis of MnO2 NPs, a large amount of oxygen was produced by MnO2-PTX/Ce6@lips to burst the liposomes and achieve a responsive release of the loaded drug (paclitaxel), and the released O2 relieved the chemoresistance of tumor cells and provided raw materials for photodynamic therapy. Subsequently, MnO2 NPs were decomposed into Mn2+ in an acidic tumor environment to be used as contrast agents for magnetic resonance imaging. The MnO2-PTX/Ce6@lips enhanced the efficacy of chemotherapy and photodynamic therapy (PDT) in bearing-tumor mice, even achieving complete cure. These results indicated the great potential of MnO2-PTX/Ce6@lips for the modulation of the TME and the enhancement of chemotherapy and PDT along with MRI tracing in the treatment of tumors.
Collapse
Affiliation(s)
- Cong Cong
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Shuxian Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Lei Li
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, P. R. China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Heavy metal deep remediation in water and resource reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
50
|
Abstract
Photodynamic therapy (PDT) is a treatment modality in which a photosensitizer is irradiated with light, producing reactive oxygen species, often via energy transfer with oxygen. As it is common for tumors to be hypoxic, methods to deliver photosensitizer and oxygen are desirable. One such approach is the use of perfluorocarbons, molecules in which all C-H bonds are replaced with C-F bonds, to co-deliver oxygen because of the high solubility of gases in perfluorocarbons. This review highlights the benefits and limitations of several fluorinated nanomaterial architectures for use in PDT.
Collapse
Affiliation(s)
- Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|