1
|
Jin L, Huang Y, Ye L, Huang D, Liu X. Challenges and opportunities in the selective degradation of organophosphorus herbicide glyphosate. iScience 2024; 27:110870. [PMID: 39381744 PMCID: PMC11459065 DOI: 10.1016/j.isci.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The wide and continuous usage of glyphosate in the environment poses a serious threat to biological systems. Besides the accumulation of glyphosate in vivo, a growing body of research has revealed that aminomethylphosphonic acid (AMPA), the main degradation intermediate of glyphosate, has significant environmental and biological influences by inducing chromosome aberration of fish and canceration of human erythrocyte. Therefore, the development of new strategies avoiding the generation of the toxic AMPA intermediate during the full degradation of glyphosate is becoming of high importance. Herein, we provide a mini-review that includes the most recent advances in the selective degradation of glyphosate avoiding the generation of AMPA in the last several years from 2018. The developments of the selective degradation of glyphosate, highlighting its synthesis and selective degradation mechanism, are summarized here. This review intends to attract more attention from researchers toward this area and to emphasize the recent developments of selective degradation of glyphosate in highlighting future challenges.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
2
|
Pougin M, Domingues NP, Uran FP, Ortega-Guerrero A, Ireland CP, Espín J, Lee Queen W, Smit B. Adsorption in Pyrene-Based Metal-Organic Frameworks: The Role of Pore Structure and Topology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36586-36598. [PMID: 38978297 PMCID: PMC11261566 DOI: 10.1021/acsami.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Pore topology and chemistry play crucial roles in the adsorption characteristics of metal-organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal-oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF-CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF's pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials ─some with narrower pores and others with larger pore volumes─it becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.
Collapse
Affiliation(s)
- Miriam
J. Pougin
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Nency P. Domingues
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - F. Pelin Uran
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Andres Ortega-Guerrero
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Christopher P. Ireland
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Jordi Espín
- Laboratory
for Functional Inorganic Materials (LFIM), Institut des Sciences et Ingénierie Chimiques, École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Wendy Lee Queen
- Laboratory
for Functional Inorganic Materials (LFIM), Institut des Sciences et Ingénierie Chimiques, École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Berend Smit
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| |
Collapse
|
3
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
5
|
Jia J, Wu X, Long G, Yu J, He W, Zhang H, Wang D, Ye Z, Tian J. Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers. Front Immunol 2023; 14:1219785. [PMID: 37860012 PMCID: PMC10582717 DOI: 10.3389/fimmu.2023.1219785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Nanotechnology-enhanced photodynamic therapy (PDT) and immunotherapy are emerging as exciting cancer therapeutic methods with significant potential for improving patient outcomes. By combining these approaches, synergistic effects have been observed in preclinical studies, resulting in enhanced immune responses to cancer and the capacity to conquer the immunosuppressive tumor microenvironment (TME). Despite challenges such as addressing treatment limitations and developing personalized cancer treatment strategies, the integration of nanotechnology-enabled PDT and immunotherapy, along with advanced photosensitizers (PSs), represents an exciting new avenue in cancer treatment. Continued research, development, and collaboration among researchers, clinicians, and regulatory agencies are crucial for further advancements and the successful implementation of these promising therapies, ultimately benefiting cancer patients worldwide.
Collapse
Affiliation(s)
- Jiedong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xue Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gongwei Long
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongwen Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Urology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| |
Collapse
|
6
|
Chaouche-Mechidal N, Stalport F, Caupos E, Mebold E, Azémard C, Szopa C, Coll P, Cottin H. Effects of UV and Calcium Perchlorates on Uracil Deposited on Strontium Fluoride Substrates at Mars Pressure and Temperature. ASTROBIOLOGY 2023; 23:959-978. [PMID: 37672714 DOI: 10.1089/ast.2022.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organic matter is actively searched on Mars with current and future space missions as it is a key to detecting potential biosignatures. Given the current harsh environmental conditions at the surface of Mars, many organic compounds might not be preserved over a long period as they are exposed to energetic radiation such as ultraviolet light, which is not filtered above 190 nm by the martian atmosphere. Moreover, the presence of strong oxidizing species in the regolith, such as perchlorate salts, might enhance the photodegradation of organic compounds of astrobiological interest. Because current space instruments analyze samples collected in the upper surface layer, it is necessary to investigate the stability of organic matter at the surface of Mars. Previous experimental studies have shown that uracil, a molecule relevant to astrobiology, is quickly photolyzed when exposed to UV radiation under the temperature and pressure conditions of the martian surface with an experimental quantum efficiency of photodecomposition (φexp) of 0.30 ± 0.26 molecule·photon-1. Moreover, the photolysis of uracil leads to the formation of more stable photoproducts that were identified as uracil dimers. The present work aims to characterize the additional effect of calcium perchlorate detected on Mars on the degradation of uracil. Results show that the presence of calcium perchlorate enhances the photodecomposition of uracil with φexp = 12.3 ± 8.3 molecule·photon-1. Although some of the photoproducts formed during these experiments are common to those formed from pure uracil only, the Fourier transformation infrared (FTIR) detection of previously unseen chemical functions such as alkyne C ≡ C or nitrile C ≡ N has shown that additional chemical species are formed in the presence of calcium perchlorate in the irradiated sample. This implies that the effect of calcium perchlorate on the photolysis of uracil is not only kinetic but also related to the nature of the photoproducts formed.
Collapse
Affiliation(s)
- N Chaouche-Mechidal
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - F Stalport
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - E Caupos
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Ecole des Ponts, LEESU, F-77455 Champs-sur-Marne, France
| | - E Mebold
- Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Créteil, France
| | - C Azémard
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - C Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 78280 Guyancourt, France
| | - P Coll
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - H Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| |
Collapse
|
7
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Baslyman WS, Alahmed O, Chand S, Qutub S, Khashab NM. Dynamic Hydrogen-Bonded Zinc Adeninate Framework (ZAF) for Immobilization of Catalytic DNA. Angew Chem Int Ed Engl 2023; 62:e202302840. [PMID: 37073945 DOI: 10.1002/anie.202302840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Effective immobilization and delivery of genetic materials is at the forefront of biological and medical research directed toward tackling scientific challenges such as gene therapy and cancer treatment. Herein we present a biologically inspired hydrogen-bonded zinc adeninate framework (ZAF) consisting of zinc adeninate macrocycles that self-assemble into a 3D framework through adenine-adenine interactions. ZAF can efficiently immobilize DNAzyme with full protection against enzyme degradation and physiological conditions until it is successfully delivered into the nucleus. As compared to zeolitic imidazolate frameworks (ZIFs), ZAFs are twofold more biocompatible with a significant loading efficiency of 96 %. Overall, our design paves the way for expanding functional hydrogen-bonding-based systems as potential platforms for the loading and delivery of biologics.
Collapse
Affiliation(s)
- Walaa S Baslyman
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Othman Alahmed
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Santanu Chand
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Xiao Z, Li DB, Zhang LG, Wang HR, Qin JH, Yang XG, Wu YP, Ma LF, Li DS. Dimension-dependent fluorescence emission and photoelectric performances of a 3D pyrene-based metal−organic framework. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Gao G, Chen JH, Li CJ, Wang CS, Hu J, Zhou H, Lin P, Xu Q, Zhao WW. Duplex-Specific Nuclease-Enabled Target Recycling on Semiconducting Metal–Organic Framework Heterojunctions for Energy-Transfer-Based Organic Photoelectrochemical Transistor miRNA Biosensing. Anal Chem 2022; 94:15856-15863. [DOI: 10.1021/acs.analchem.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Jia-Hao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Shuang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
11
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
12
|
Karthick V, Kumar Shrestha L, Kumar VG, Pranjali P, Kumar D, Pal A, Ariga K. Nanoarchitectonics horizons: materials for life sciences. NANOSCALE 2022; 14:10630-10647. [PMID: 35842941 DOI: 10.1039/d2nr02293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics relies on the fabrication of materials at the atomic/molecular level to achieve the desired shape and function. Significant advances have been made in understanding the characteristics and spatial assemblies that contribute to material performance. Biomaterials undergo several changes when presented with various environmental cues. The ability to overcome such challenges, maintaining the integrity and effective functioning of native properties, can be regarded as a characteristic of a successful biomaterial. Control over the shape and efficacy of target materials can be tailored via various processes, like self-assembly, supramolecular chemistry, atomic/molecular manipulation, etc. Interplay between the physicochemical properties of materials and biomolecule recognition sites defines the structural rigidity in hierarchical structures. Materials including polymers, metal nanoparticles, nucleic acid systems, metal-organic frameworks, and carbon-based nanostructures can be viewed as promising prospects for developing biocompatible systems. This review discusses recent advances relating to such biomaterials for life science applications, where nanoarchitectonics plays a decisive role either directly or indirectly.
Collapse
Affiliation(s)
- V Karthick
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - V Ganesh Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
| | - Pranjali Pranjali
- Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
13
|
Reply to "Inconsistencies in the specific nucleobase pairing motif prone to photodimerization in a MOF nanoreactor". Nat Commun 2022; 13:4486. [PMID: 35918326 PMCID: PMC9346134 DOI: 10.1038/s41467-022-30193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2021] [Indexed: 11/08/2022] Open
|
14
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Cai H, Wu YX, Lu Z, Luo D, Sun JX, Wu GW, Li M, Wei YB, Zhong LM, Li D. Mimicking DNA Periodic Docking Grooves for Adaptive Identification of l-/d-Tryptophan in a Biological Metal-Organic Framework. J Am Chem Soc 2022; 144:9559-9563. [PMID: 35604644 DOI: 10.1021/jacs.2c03326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bioinspired metal-organic frameworks (MOFs) serve as suitable crystalline models for recognition and sensing of biomolecules mimicking natural processes, providing new ideas and concepts for cutting-edge biomedical applications. Here, we have successfully prepared a robust biological metal-organic framework with periodic docking grooves resembling the major and minor grooves in the DNA double helix structure, which can be used as unique recognition sites for selectively identifying l-/d-tryptophan (l-/d-Trp). Notably, successful encapsulation of Trp could be observed by single-crystal X-ray diffraction for the first time. Trp has matched size and shape to fit snugly into the major groove. Combined with isothermal titration calorimetry, it was found that ZnBTCHx could spontaneously capture l-/d-Trp through two different thermodynamic pathways: enthalpy-driven for encapsulating l-Trp and entropy-driven for uptaking d-Trp. Furthermore, molecular dynamics and density functional theory verified the role of hydrogen bonding and π-π/C-H···π interactions in the host-guest interface. This work provides unique insight for the construction of bionic models to mimic the natural binding properties, which is of great significance for the fields of pharmaceutical chemistry and biomedical science.
Collapse
Affiliation(s)
- Hong Cai
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, P.R. China
| | - Yu-Xin Wu
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, P.R. China
| | - Zhou Lu
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Co-ordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jing-Xuan Sun
- Department of Chemistry, Shantou University, Shantou 515063, P.R. China
| | - Guang-Wei Wu
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, P.R. China
| | - Mian Li
- Department of Chemistry, Shantou University, Shantou 515063, P.R. China
| | - Yu-Bai Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Co-ordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Li-Ming Zhong
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Co-ordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
16
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Chand S, Alahmed O, Baslyman WS, Dey A, Qutub S, Saha R, Hijikata Y, Alaamery M, Khashab NM. DNA-Mimicking Metal-Organic Frameworks with Accessible Adenine Faces for Complementary Base Pairing. JACS AU 2022; 2:623-630. [PMID: 35373199 PMCID: PMC8969998 DOI: 10.1021/jacsau.1c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 05/05/2023]
Abstract
Biologically derived metal-organic frameworks (Bio-MOFs) are significant, as they can be used in cutting-edge biomedical applications such as targeted gene delivery. Herein, adenine (Ade) and unnatural amino acids coordinate with Zn2+ to produce biocompatible frameworks, KBM-1 and KBM-2, with extremely defined porous channels. They feature an accessible Watson-Crick Ade face that is available for further hydrogen bonding and can load single-stranded DNA (ssDNA) with 13 and 41% efficiency for KBM-1 and KBM-2, respectively. Treatment of these frameworks with thymine (Thy), as a competitive guest for base pairing with the Ade open sites, led to more than 50% reduction of ssDNA loading. Moreover, KBM-2 loaded Thy-rich ssDNA more efficiently than Thy-free ssDNA. These findings support the role of the Thy-Ade base pairing in promoting ssDNA loading. Furthermore, theoretical calculations using the self-consistent charge density functional tight-binding (SCC-DFTB) method verified the role of hydrogen bonding and van der Waals type interactions in this host-guest interface. KBM-1 and KBM-2 can protect ssDNA from enzymatic degradation and release it at acidic pH. Most importantly, these biocompatible frameworks can efficiently deliver genetic cargo with retained activity to the cell nucleus. We envisage that this class of Bio-MOFs can find immediate applicability as biomimics for sensing, stabilizing, and delivering genetic materials.
Collapse
Affiliation(s)
- Santanu Chand
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Othman Alahmed
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Walaa S. Baslyman
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Avishek Dey
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Somayah Qutub
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Ranajit Saha
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yuh Hijikata
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Manal Alaamery
- Developmental
Medicine Department, King Abdullah Interna-tional Medical Research
Center, King Saud Bin Abdulaziz University
for Health Sciences, Ministry of
National Guard-Health Affairs (MNG-HA), Riyadh 11481, Kingdom of Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| |
Collapse
|
18
|
Subramaniyam V, Ravi PV, Pichumani M. Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Kashyap A, Balraj V, Ramalingam V, Pattabiraman M. Unravelling Supramolecular Photocycloaddition: Cavitand-Mediated Reactivity of 3-(Aryl)Acrylic Acids. J Photochem Photobiol A Chem 2022; 425:113695. [PMID: 35340561 PMCID: PMC8954433 DOI: 10.1016/j.jphotochem.2021.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The supramolecular photocycloaddition (PCA) of 3-(phenyl)acrylic acid has been extensively pursued by chemists to study weak interactions and synthesize substituted cyclobutanes. The stereo- and regioselectivity of the products in a supramolecularly affected reaction are often used as a probe for assessing the nature of weak interactions and/or molecular ambience of the reactants. However, some crucial aspects of this chemistry have often remained underexplored in the past, especially within the context of interpreting strength and directionality of interactions based on reaction outcomes. We present a detailed study of the cavitand-mediated PCA of a new and suitable reactant (3-(naphthyl)acrylic acids) that exhibits labile photo-reversible chemistry, which is suitable for exploring previously un-explored aspects of the supramolecular PCA chemistry. Our studies afford important insights about this chemistry that should be considered while using product selectivity as a proxy for deducing intermolecular interactions.
Collapse
Affiliation(s)
| | - Vasu Balraj
- University of Nebraska Kearney, NE – 68845, USA
| | | | | |
Collapse
|
20
|
Zhou YY, Xu Y, Yu M, Xiong Y, Liu XG, Zhao Z. A biological luminescent metal-organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides. Dalton Trans 2022; 51:2883-2889. [PMID: 35100329 DOI: 10.1039/d1dt03249f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The biological luminescent metal-organic framework (bio-LMOF), (Me2NH2)2[Zn6O(Ade)4(TCPPE)2] (1) {H4TCPPE = tetrakis[4-(4-carboxyphenyl)phenyl]ethene, Ade = adenine} was successfully designed and synthesized under hydrothermal conditions, with two channels of different sizes. The absolute fluorescence quantum yields of complex 1 and activated 1 are up to 77.6% and 85.9%, respectively. Activated 1 exhibits outstanding water stability and excellent selective luminescence sensing for amino acids and monosaccharides. The fluorescence quenching efficiencies of activated 1 towards L-Nph and D-Nga are 86.35% and 91.60%, respectively. Besides, activated 1 also displays highly quenching responses to L-Nph and D-Nga at fairly low concentrations, and the limits of detection for L-Nph and D-Nga are estimated to be 0.149 ppm and 1.612 ppm, respectively. Meanwhile, in multiple cycling experiments, activated 1 still has excellent cycling stability. These phenomena indicate that activated 1 can be utilized as a fast responsive biological luminescent sensor, which is a rare example for bio-LMOFs.
Collapse
Affiliation(s)
- Ying-Ying Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Yuan Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Yi Xiong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Xun-Gao Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
21
|
Panagiotou N, Moscoso FG, Lopes-Costa T, Pedrosa JM, Tasiopoulos AJ. 2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of microporous 2-dimensional rare earth metal organic frameworks based on a hexanuclear secondary building unit with capability to selectively detect vapours of volatile organic compounds and nitroaromatic explosives is reported.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - Francisco García Moscoso
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tânia Lopes-Costa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - José María Pedrosa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | | |
Collapse
|
22
|
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022; 12:434-458. [PMID: 34987658 PMCID: PMC8690913 DOI: 10.7150/thno.67300] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has made tremendous clinical progress in advanced-stage malignancies. However, patients with various tumors exhibit a low response rate to immunotherapy because of a powerful immunosuppressive tumor microenvironment (TME) and insufficient immunogenicity of tumors. Photodynamic therapy (PDT) can not only directly kill tumor cells, but also elicit immunogenic cell death (ICD), providing antitumor immunity. Unfortunately, limitations from the inherent nature and complex TME significantly reduce the efficiency of PDT. Recently, smart nanomedicine-based strategies could subtly modulate the pharmacokinetics of therapeutic compounds and the TME to optimize both PDT and immunotherapy, resulting in an improved antitumor effect. Here, the emerging nanomedicines for PDT-driven cancer immunotherapy are reviewed, including hypoxia-reversed nanomedicines, nanosized metal-organic frameworks, and subcellular targeted nanoparticles (NPs). Moreover, we highlight the synergistic nanotherapeutics used to amplify immune responses combined with immunotherapy against tumors. Lastly, the challenges and future expectations in the field of PDT-driven cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Bin Ji
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
23
|
Stolar T, Alić J, Lončarić I, Etter M, Jung D, Farha OK, Đilović I, Meštrović E, Užarević K. Sustainable solid form screening: mechanochemical control over nucleobase hydrogen-bonded organic framework polymorphism. CrystEngComm 2022. [DOI: 10.1039/d2ce00668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice is yours! Liquid-assisted grinding can be used to control HOF polymorphism.
Collapse
Affiliation(s)
| | - Jasna Alić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg, Germany
| | - Dahee Jung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ivica Đilović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Ernest Meštrović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | |
Collapse
|
24
|
Sturini M, Puscalau C, Guerra G, Maraschi F, Bruni G, Monteforte F, Profumo A, Capsoni D. Combined Layer-by-Layer/Hydrothermal Synthesis of Fe 3O 4@MIL-100(Fe) for Ofloxacin Adsorption from Environmental Waters. NANOMATERIALS 2021; 11:nano11123275. [PMID: 34947624 PMCID: PMC8703555 DOI: 10.3390/nano11123275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
A simple not solvent and time consuming Fe3O4@MIL-100(Fe), synthesized in the presence of a small amount of magnetite (Fe3O4) nanoparticles (27.3 wt%), is here presented and discussed. Layer-by-layer alone (20 shell), and combined layer-by-layer (5 shell)/reflux or /hydrothermal synthetic procedures were compared. The last approach (Fe3O4@MIL-100_H sample) is suitable (i) to obtain rounded-shaped nanoparticles (200–400 nm diameter) of magnetite core and MIL-100(Fe) shell; (ii) to reduce the solvent and time consumption (the layer-by-layer procedure is applied only 5 times); (iii) to give the highest MIL-100(Fe) amount in the composite (72.7 vs. 18.5 wt% in the layer-by-layer alone); (iv) to obtain a high surface area of 3546 m2 g−1. The MIL-100(Fe) sample was also synthesized and both materials were tested for the absorption of Ofloxacin antibiotic (OFL). Langmuir model well describes OFL adsorption on Fe3O4@MIL-100_H, indicating an even higher adsorption capacity (218 ± 7 mg g−1) with respect to MIL-100 (123 ± 5 mg g−1). Chemisorption regulates the kinetic process on both the composite materials. Fe3O4@MIL-100_H performance was then verified for OFL removal at µg per liter in tap and river waters, and compared with MIL-100. Its relevant and higher adsorption efficiency and the magnetic behavior make it an excellent candidate for environmental depollution.
Collapse
Affiliation(s)
- Michela Sturini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Constantin Puscalau
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
- The GlaxoSmithKline Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, UK
| | - Giulia Guerra
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
- Istituto di Tecnologie Biomediche, ITB-CNR, 20054 Segrate, Milano, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Giovanna Bruni
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
| | - Francesco Monteforte
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (G.G.); (F.M.); (A.P.)
| | - Doretta Capsoni
- C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase) & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; (C.P.); (G.B.); (F.M.)
- Correspondence: ; Tel.: +39-0382-987213
| |
Collapse
|
25
|
Clivio P. Inconsistencies in the specific nucleobase pairing motif prone to photodimerization in a MOF nanoreactor. Nat Commun 2021; 12:6981. [PMID: 34848719 PMCID: PMC8632898 DOI: 10.1038/s41467-021-27196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/13/2021] [Indexed: 12/07/2022] Open
Affiliation(s)
- Pascale Clivio
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51 rue Cognacq-Jay, F-51096, Reims Cedex, France.
| |
Collapse
|
26
|
Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A Hydrolytically Stable Cu(II)-Based Metal-Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49509-49518. [PMID: 34617718 DOI: 10.1021/acsami.1c15240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is a critical issue in desert and arid regions, and atmospheric water harvesting is a potential solution. The challenge is lacking ideal adsorbents that can efficiently capture water from low-humidity air and be regenerated readily. Herein, we report a hydrolytically stable metal-organic framework (MOF), [Cu2(AD)2(SA)] (Cu-AD-SA), with excellent performance in water harvesting. More importantly, this material can be facilely prepared from two easily accessible ligands adenine (HAD) and succinic acid (H2SA). Cu-AD-SA has a three-dimensional (3D) framework structure with the crs topology and intersecting channels of ∼5 Å in diameter. The channel surface is decorated by uncoordinated aromatic N atoms, amine groups, and alkyl moieties. Interestingly, Cu-AD-SA shows a high water adsorption capacity of 0.16 g g-1 at low pressure of 0.2 P/P0 and 25 °C. Furthermore, dynamic water adsorption-desorption cycling experiments demonstrated a stable working capacity of 0.13 g g-1 for uptaking water from a low-humidity air (water partial pressure: 0.85 kPa, 20% RH at 30 °C, 5.3% RH at 55 °C) at 30 °C and desorption at 55 °C. The water adsorption mechanism was also studied by analyzing its single-crystal structure after water loading. The results indicated the existence of strong H-bonding interactions between water molecules and uncoordinated N atoms and amine groups on the framework, which should play an important role in the high adsorption at low pressure. All the above features suggest great potential of Cu-AD-SA for water harvesting in arid regions.
Collapse
Affiliation(s)
- Lu Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hao-Tian An
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Membrane Separation and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
27
|
Machattos RP, Panagiotou N, Tasiopoulos AJ. Highlighting the structure – directing capability of the functional groups of angular dicarboxylic ligands: New 2-dimensional Cu2+ MOFs from analogous synthetic routes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213915] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Tashiro S, Nakata K, Hayashi R, Shionoya M. Multipoint Hydrogen Bonding-Based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metal-Macrocycle Framework: Residue-Specificity, Diastereoselectivity, and Conformational Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005803. [PMID: 33599118 DOI: 10.1002/smll.202005803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Porous crystals have great potential to exert space-specific functions such as multipoint molecular recognition. In order to rationally enhance the porous function, it is necessary to precisely control molecular recognition event in the pores. Hydrogen bonding is an effective tool for controlling molecular recognition. However, multiple hydrogen bonds, which are essentially the origin of high complementarity and specificity, remain difficult to innovate in porous crystals in an intelligent way. This paper demonstrates molecular recognition of amino acid and peptide derivatives by multipoint hydrogen bonding in a porous metal-macrocycle framework revealed by single-crystal X-ray diffraction analysis. l-Serine residues are site-selectively and residue-specifically adsorbed on the pore surface via multiple hydrogen bonds. A serine derivative is diastereoselectively recognized on the (P)- or (M)-side of the enantiomeric pore surface. Moreover, the conformation of the peptide is highly regulated, incorporating a poly-l-proline type I helix-like structure into the pore. These findings will bring deep scientific knowledge to the design of new porous crystals and functions.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosuke Nakata
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryunosuke Hayashi
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
30
|
A Review on Recent Progress of Glycan-Based Surfactant Micelles as Nanoreactor Systems for Chemical Synthesis Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.
Collapse
|
31
|
|
32
|
Zhang Q, Chen J, Zhu XC, Li J, Wu D. 7-Connected Fe III3-Based Bio-MOF: Pore Space Partition and Gas Separations. Inorg Chem 2020; 59:16829-16832. [PMID: 33186024 DOI: 10.1021/acs.inorgchem.0c02965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reported herein a new 3D bio-MOF (NbU-12) using a pore space partition strategy: MIL-88D was selected as a primary framework, and adenine connected two independent MIL-88D to form a self-interpenetrated structure. Because of this, the hexagonal channel in MIL-88D split into two small rectangular channels. Different from the reported series CPM-35 materials, NbU-12 simultaneously maximized the retention of open metal sites from MIL-88D and introduced a Watson-Crick face to the pore surface of NbU-12. Remarkably, NbU-12 exhibits an excellent selectivity performance toward C2H6/C2H4 and C2H6/CH4, which was proven by ideal adsorbed solution theory calculation and breakthrough experiments.
Collapse
Affiliation(s)
- Qiaoli Zhang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jing Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xin-Cheng Zhu
- Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jia Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
33
|
Tao K, Xue B, Han S, Aizen R, Shimon LJW, Xu Z, Cao Y, Mei D, Wang W, Gazit E. Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45192-45201. [PMID: 32924412 PMCID: PMC7549093 DOI: 10.1021/acsami.0c13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Framework materials have shown promising potential in various biological applications. However, the state-of-the-art components show low biocompatibility or mechanical instability, or cannot integrate both optics and electronics, thus severely limiting their extensive applications in biological systems. Herein, we demonstrate that amide-based bioorganic building blocks, including dipeptides and dipeptide nucleic acids, can self-assemble into hydrogen-bonded suprahelix architectures of controllable handedness, which then form suprahelical frameworks with diverse cavities. Especially, the cavities can be tuned to be hydrophilic or hydrophobic, and the shortest diagonal distance can be modulated from 0.5 to 1.8 nm, with the volume proportion in the unit cell changing from 5 to 60%. Furthermore, the hydrogen bonding networks result in high mechanical rigidity and semiconductively optoelectronic properties, which allow the utilization of the suprahelical frameworks as supramolecular scaffolds for artificial photosynthesis. Our findings reveal amide-based suprahelix architectures acting as bioinspired supramolecular frameworks, thus extending the constituents portfolio and increasing the feasibility of using framework materials for biological applications.
Collapse
Affiliation(s)
- Kai Tao
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shuyi Han
- China
Petroleum Engineering & Construction Corp. Southwest Company, No. 6th Shenghua Road, High-Tech
Zone, Chengdu 610094, Sichuan, China
| | - Ruth Aizen
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Zhengyu Xu
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Deqing Mei
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
34
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020; 59:22623-22630. [DOI: 10.1002/anie.202009714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
35
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
36
|
Wang HS, Wang YH, Ding Y. Development of biological metal-organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. NANOSCALE ADVANCES 2020; 2:3788-3797. [PMID: 36132764 PMCID: PMC9418943 DOI: 10.1039/d0na00557f] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 05/29/2023]
Abstract
Metal-organic frameworks (MOFs) are built using various organic ligands and metal ions (or clusters). With properties of high porosity, tunable chemical composition, and potential for post-synthetic modification, they have been applied in biomedicine, especially in bio-sensing, bio-imaging, and drug delivery. Since organic ligands and metal centers (ions or clusters) in the structure of MOFs can directly influence the property, function, and performance of MOFs, strict screening of organic ligands and metal centers is necessary. Especially, to improve the application of MOFs in the field of biomedicine, biocompatible organic ligands with low toxicity are desirable. In recent years, biological metal-organic frameworks (bio-MOFs) with ideal biocompatibility and diverse functionality have attracted wide attention. Endogenous biomolecules, including nucleobases, amino acids, peptides, proteins, porphyrins and saccharides, are employed as frameworks for MOF construction. These biological ligands coordinate with diverse metal centers in different ways, leading to the structural diversity of bio-MOFs. In this review, we summarize the organic ligand selectivity in constructing different types of bio-MOFs and their influence in biomedical applications with attractive new functions.
Collapse
Affiliation(s)
- Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
37
|
Sudan S, Gładysiak A, Valizadeh B, Lee JH, Stylianou KC. Sustainable Capture of Aromatic Volatile Organic Compounds by a Pyrene-Based Metal–Organic Framework under Humid Conditions. Inorg Chem 2020; 59:9029-9036. [DOI: 10.1021/acs.inorgchem.0c00883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sylvain Sudan
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
| | - Andrzej Gładysiak
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
| | - Bardiya Valizadeh
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyriakos C. Stylianou
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
38
|
Ni K, Luo T, Lan G, Culbert A, Song Y, Wu T, Jiang X, Lin W. A Nanoscale Metal-Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angew Chem Int Ed Engl 2020; 59:1108-1112. [PMID: 31642163 PMCID: PMC8253508 DOI: 10.1002/anie.201911429] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 01/25/2023]
Abstract
Checkpoint blockade immunotherapy (CBI) awakes a host innate immune system and reactivates cytotoxic T cells to elicit durable response in some cancer patients. Now, a cationic nanoscale metal-organic framework, W-TBP, is used to facilitate tumor antigen presentation by enabling immunogenic photodynamic therapy (PDT) and promoting the maturation of dendritic cells (DCs). Comprised of dinuclear WVI secondary building units and photosensitizing 5,10,15,20-tetra(p-benzoato)porphyrin (TBP) ligands, cationic W-TBP mediates PDT to release tumor associated antigens and delivers immunostimulatory CpG oligodeoxynucleotides to DCs. The enhanced antigen presentation synergizes with CBI to expand and reinvigorate cytotoxic T cells, leading to superb anticancer efficacy and robust abscopal effects with >97 % tumor regression in a bilateral breast cancer model.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - August Culbert
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Tong Wu
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA)
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois 60637 (USA); Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 (USA)
| |
Collapse
|
39
|
Zhang H, Jieying W, Zhengji L, Fan R, Chen Q, Shan X, Jiang C, Sun G. Extraction of phenylurea herbicides from rice and environmental water utilizing MIL-100(Fe)-functionalized magnetic adsorbents. NEW J CHEM 2020. [DOI: 10.1039/c9nj05553c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a novel method is reported for the extraction and enrichment of phenylurea herbicides (PUHs) from rice and environmental water samples using MIL-100(Fe)-functionalized magnetic nanoparticles as adsorbents.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Wang Jieying
- Central Research Institute
- Shanghai Pharmaceuticals Holding Co. Ltd
- Shanghai
- China
| | - Liang Zhengji
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Rong Fan
- Huizhou Power Supply Bureau of Guangdong Power Grid Corporation
- Huizhou
- China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| |
Collapse
|
40
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
41
|
Ni K, Luo T, Lan G, Culbert A, Song Y, Wu T, Jiang X, Lin W. A Nanoscale Metal–Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911429] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Taokun Luo
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Guangxu Lan
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - August Culbert
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Yang Song
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Tong Wu
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Xiaomin Jiang
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
| | - Wenbin Lin
- Department of Chemistry The University of Chicago 929 East 57th street Chicago Illinois 60637 USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research The University of Chicago Chicago IL 60637 USA
| |
Collapse
|
42
|
Kourtellaris A, Moushi EE, Spanopoulos I, Trikalitis PN, Pissas M, Papaefstathiou GS, Sanakis Y, Tasiopoulos AJ. A Microporous Co(II)‐Based 3‐D Metal Organic Framework Built from Magnetic Infinite Rod‐Shaped Secondary Building Units. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andreas Kourtellaris
- Department of Chemistry University of Cyprus 1678 Nicosia Cyprus
- Department of Life Sciences School of Sciences European University of Cyprus 1516 Nicosia Cyprus
| | - Eleni E. Moushi
- Department of Life Sciences School of Sciences European University of Cyprus 1516 Nicosia Cyprus
| | | | | | - Michael Pissas
- Institute of Nanoscience and Nanotechnology NCSR “Demokritos” Aghia Paraskevi 15310 Athens Greece
| | - Giannis S. Papaefstathiou
- Laboratory of Inorganic Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou 157 71 Athens Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology NCSR “Demokritos” Aghia Paraskevi 15310 Athens Greece
| | | |
Collapse
|
43
|
Huang YL, Qiu PL, Zeng H, Liu H, Luo D, Li YY, Lu W, Li D. Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yong-Liang Huang
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Pei-Li Qiu
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
- Department of Chemistry; Shantou University; 515063 Guangdong P. R. China
| | - Heng Zeng
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Huan Liu
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Yan Yan Li
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| | - Dan Li
- College of Chemistry and Materials Science; Jinan University; 510632 Guangzhou P. R. China
| |
Collapse
|