1
|
Li S, Takada S, Abdel-Salam GMH, Abdel-Hamid MS, Zaki MS, Issa MY, Salem AMS, Koshimizu E, Fujita A, Fukai R, Ohshima T, Matsumoto N, Miyake N. Biallelic loss-of-function variants in GON4L cause microcephaly and brain structure abnormalities. NPJ Genom Med 2024; 9:55. [PMID: 39500882 PMCID: PMC11538285 DOI: 10.1038/s41525-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
We identified two homozygous truncating variants in GON4L [NM_001282860.2:c.62_63del, p.(Gln21Argfs*12) and c.5517+1G>A] in two unrelated families who presented prenatal-onset growth impairment, microcephaly, characteristic face, situs inversus, and developmental delay. The frameshift variant is predicted to invoke nonsense-mediated mRNA decay of all five known GON4L isoforms resulting in the complete loss of GON4L function. The splice site variant located at a region specific to the longer isoforms; therefore, defects of long GON4L isoforms may explain the phenotypes observed in the three patients. Knockdown of Gon4l in rat PC12 cells suppressed neurite outgrowth in vitro. gon4lb knockdown and knockout zebrafish successfully recapitulated the patients' phenotypes including craniofacial abnormalities. We also observed situs inversus in gon4lb-knockout zebrafish embryo. To our knowledge, the relationship between craniofacial abnormalities or situs inversus and gon4lb has not been reported before. Thus, our data provide evidence that GON4L is involved in craniofacial and left-right patterning during development.
Collapse
Affiliation(s)
- Simo Li
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aida M S Salem
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Medical Science Services, IQVIA Services Japan G.K., Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
2
|
Kardam S, Ambasta RK, Kumar P. Overview of pro-inflammatory and pro-survival components in neuroinflammatory signalling and neurodegeneration. Ageing Res Rev 2024; 100:102465. [PMID: 39187022 DOI: 10.1016/j.arr.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases (NDDs) are identified by the progressive deterioration of neurons and a subsequent decline in cognitive function, creating an enormous burden on the healthcare system globally. Neuroinflammation is an intricate procedure that initiates the immune response in the central nervous system (CNS) and significantly impacts the expansion of NDDs. This study scrutinizes the complicated interaction between neuronal degeneration and neuroinflammation, with an appropriate emphasis on their reciprocal impacts. It also describes how neuroinflammatory reactions in NDDs are controlled by activating certain pro-inflammatory transcription factors, including p38 MAPK, FAF1, Toll-like receptors (TLRs), and STAT3. Alternatively, it evaluates the impact of pro-survival transcription factors, such as the SOCS pathway, YY1, SIRT1, and MEF2, which provide neuroprotective protection against damage triggered by neuroinflammation. Moreover, we study the feasibility of accommodating drug repositioning as a therapeutic approach for treating neuroinflammatory disorders. This suggests the use of existing medications for novel utilization in the treatment of NDDs. Furthermore, the study intends to reveal novel biomarkers of neuroinflammation that contribute fundamental observation for the initial detection and diagnosis of these disorders. This study aims to strengthen therapy interference and augment patient outcomes by combining ongoing data and evaluating novel therapeutic and diagnostic approaches. The goal is to devote the growth of an effective strategy to reducing the impact of neuroinflammation on neuronal protection in NDDs.
Collapse
Affiliation(s)
- Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, India; Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
3
|
Pereira A, Diwakar J, Masserdotti G, Beşkardeş S, Simon T, So Y, Martín-Loarte L, Bergemann F, Vasan L, Schauer T, Danese A, Bocchi R, Colomé-Tatché M, Schuurmans C, Philpott A, Straub T, Bonev B, Götz M. Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1. Nat Neurosci 2024; 27:1260-1273. [PMID: 38956165 PMCID: PMC11239498 DOI: 10.1038/s41593-024-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/10/2024] [Indexed: 07/04/2024]
Abstract
Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Allwyn Pereira
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Nantes Université, CHU Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Jeisimhan Diwakar
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Giacomo Masserdotti
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Sude Beşkardeş
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Younju So
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lucía Martín-Loarte
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Franziska Bergemann
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lakshmy Vasan
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamas Schauer
- Biomedical Center Munich (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, Planegg, Germany
- Institute of Stem Cells and Epigenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Danese
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Riccardo Bocchi
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center Munich (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg, Germany
| | - Carol Schuurmans
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anna Philpott
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Straub
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Boyan Bonev
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany.
| | - Magdalena Götz
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany.
- Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| |
Collapse
|
4
|
Pereira MF, Finazzi V, Rizzuti L, Aprile D, Aiello V, Mollica L, Riva M, Soriani C, Dossena F, Shyti R, Castaldi D, Tenderini E, Carminho-Rodrigues MT, Bally JF, de Vries BBA, Gabriele M, Vitriolo A, Testa G. YY1 mutations disrupt corticogenesis through a cell-type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580337. [PMID: 38405909 PMCID: PMC10888784 DOI: 10.1101/2024.02.16.580337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell-type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Veronica Finazzi
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Ludovico Rizzuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Aprile
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Vittorio Aiello
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Matteo Riva
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | | | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Michele Gabriele
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Alessandro Vitriolo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| |
Collapse
|
5
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Seah C, Signer R, Deans M, Bader H, Rusielewicz T, Hicks EM, Young H, Cote A, Townsley K, Xu C, Hunter CJ, McCarthy B, Goldberg J, Dobariya S, Holtzherimer PE, Young KA, Noggle SA, Krystal JH, Paull D, Girgenti MJ, Yehuda R, Brennand KJ, Huckins LM. Common genetic variation impacts stress response in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573459. [PMID: 38234801 PMCID: PMC10793429 DOI: 10.1101/2023.12.27.573459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To explain why individuals exposed to identical stressors experience divergent clinical outcomes, we determine how molecular encoding of stress modifies genetic risk for brain disorders. Analysis of post-mortem brain (n=304) revealed 8557 stress-interactive expression quantitative trait loci (eQTLs) that dysregulate expression of 915 eGenes in response to stress, and lie in stress-related transcription factor binding sites. Response to stress is robust across experimental paradigms: up to 50% of stress-interactive eGenes validate in glucocorticoid treated hiPSC-derived neurons (n=39 donors). Stress-interactive eGenes show brain region- and cell type-specificity, and, in post-mortem brain, implicate glial and endothelial mechanisms. Stress dysregulates long-term expression of disorder risk genes in a genotype-dependent manner; stress-interactive transcriptomic imputation uncovered 139 novel genes conferring brain disorder risk only in the context of traumatic stress. Molecular stress-encoding explains individualized responses to traumatic stress; incorporating trauma into genomic studies of brain disorders is likely to improve diagnosis, prognosis, and drug discovery.
Collapse
|
7
|
Mockenhaupt K, Tyc KM, McQuiston A, Gonsiewski AK, Zarei-Kheirabadi M, Hariprashad A, Biswas DD, Gupta AS, Olex AL, Singh SK, Waters MR, Dupree JL, Dozmorov MG, Kordula T. Yin Yang 1 controls cerebellar astrocyte maturation. Glia 2023; 71:2437-2455. [PMID: 37417428 PMCID: PMC10529878 DOI: 10.1002/glia.24434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.
Collapse
Affiliation(s)
- Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Katarzyna M. Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, Virginia
| | - Adam McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Alexandra K. Gonsiewski
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Masoumeh Zarei-Kheirabadi
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Avani Hariprashad
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael R. Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeff L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
- Research Service, Central Virginia VA Health Care System, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Pajarillo E, Nyarko-Danquah I, Digman A, Vied C, Son DS, Lee J, Aschner M, Lee E. Astrocytic Yin Yang 1 is critical for murine brain development and protection against apoptosis, oxidative stress, and inflammation. Glia 2023; 71:450-466. [PMID: 36300569 PMCID: PMC9772165 DOI: 10.1002/glia.24286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA 32306
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA 37208
| | - Jayden Lee
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, USA 02215
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA, 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| |
Collapse
|
11
|
Dos Santos SR, Piergiorge RM, Rocha J, Abdala BB, Gonçalves AP, Pimentel MMG, Santos-Rebouças CB. A de novo YY1 missense variant expanding the Gabriele-de Vries syndrome phenotype and affecting X-chromosome inactivation. Metab Brain Dis 2022; 37:2431-2440. [PMID: 35829845 DOI: 10.1007/s11011-022-01024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Yin and Yang 1 gene (YY1; MIM#600,013) is recognized as a dual transcriptional activating and repressing factor, RNA-binding protein, and 3D chromatin regulator, with multi roles in neurodevelopmental and maintenance pathways. YY1 haploinsufficiency caused either by heterozygous sequence variants or deletions involving the whole gene has been recently associated with Gabriele-de Vries syndrome (GADEVS), a rare congenital autosomal dominant condition, leading to intellectual disability (ID) and multiple physical/behavioural abnormalities. Herein, we describe clinical and molecular findings from a Brazilian female harbouring a de novo missense pathogenic variant in YY1 gene (NM_003403.5:c.1106A > G; p.Asn369Ser) found by whole exome sequencing with potential implications for protein structure and function. Undescribed or uncommon clinical features in this patient included non-febrile seizures, severe scoliosis, hearing impairment, and chorioretinitis. Further bioinformatics analyses using YY1-other protein interaction networks reinforced the involvement of YY1 interactors in such phenotypes, in exception of chorioretinitis. Moreover, X-chromosome inactivation (XCI) skewing was evidenced in the patient and attributed to the haploinsufficiency of YY1, which direct and indirectly interacts with numerous XCI key regulators. Besides expanding the mutational and phenotype spectrum of GADEVS, our results highlight the role of YY1 as an essential autosomal regulator of XCI epigenetic process.
Collapse
Affiliation(s)
- Suely Rodrigues Dos Santos
- Gaffrée and Guinle University Hospital, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jady Rocha
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Barbosa Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
So J, Lewis AC, Smith LK, Stanley K, Franich R, Yoannidis D, Pijpers L, Dominguez P, Hogg SJ, Vervoort SJ, Brown FC, Johnstone RW, McDonald G, Ulanet DB, Murtie J, Gruber E, Kats LM. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol Med 2022; 14:e15203. [PMID: 35514210 PMCID: PMC9260210 DOI: 10.15252/emmm.202115203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate‐limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.
Collapse
Affiliation(s)
- Joan So
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - Lorey K Smith
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - David Yoannidis
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lizzy Pijpers
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Pilar Dominguez
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | - Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
13
|
Saghi M, InanlooRahatloo K, Alavi A, Kahrizi K, Najmabadi H. Intellectual disability associated with craniofacial dysmorphism due to POLR3B mutation and defect in spliceosomal machinery. BMC Med Genomics 2022; 15:89. [PMID: 35436926 PMCID: PMC9014605 DOI: 10.1186/s12920-022-01237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Intellectual disability (ID) is a clinically important disease and a most prevalent neurodevelopmental disorder. The etiology and pathogenesis of ID are poorly recognized. Exome sequencing revealed a homozygous missense mutation in the POLR3B gene in a consanguineous family with three Intellectual disability with craniofacial anomalies patients. POLR3B gene encoding the second largest subunit of RNA polymerase III. Methods We performed RNA sequencing on blood samples to obtain insights into the biological pathways influenced by POLR3B mutation. We applied the results of our RNA-Seq analysis to several gene ontology programs such as ToppGene, Enrichr, KEGG. Results A significant decrease in expression of several spliceosomal RNAs, ribosomal proteins, and transcription factors was detected in the affected, compared to unaffected, family members. Conclusions We hypothesize that POLR3B mutation dysregulates the expression of some important transcription factors, ribosomal and spliceosomal genes, and impairments in protein synthesis and splicing mediated in part by transcription factors such as FOXC2 and GATA1 contribute to impaired neuronal function and concurrence of intellectual disability and craniofacial anomalies in our patients. Our study highlights the emerging role of the spliceosome and ribosomal proteins in intellectual disability. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01237-5.
Collapse
Affiliation(s)
- Mostafa Saghi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
14
|
JAC1 targets YY1 mediated JWA/p38 MAPK signaling to inhibit proliferation and induce apoptosis in TNBC. Cell Death Dis 2022; 8:169. [PMID: 35383155 PMCID: PMC8983694 DOI: 10.1038/s41420-022-00992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Triple negative breast cancer (TNBC) is a type of breast cancer with poor prognosis, and has no ideal therapeutic target and ideal medicine. Downregulation of JWA is closely related to the poor overall survival in many cancers including TNBC. In this study, we reported at the first time that JWA gene activating compound 1 (JAC1) inhibited the proliferation of TNBC in vitro and in vivo experimental models. JAC1 specifically bound to YY1 and eliminated its transcriptional inhibition of JWA gene. The rescued JWA induced G1 phase arrest and apoptosis in TNBC cells through the p38 MAPK signaling pathway. JAC1 also promoted ubiquitination and degradation of YY1. In addition, JAC1 disrupted the interaction between YY1 and HSF1, and suppressed the oncogenic role of HSF1 in TNBC through p-Akt signaling pathway. In conclusion, JAC1 suppressed the proliferation of TNBC through the JWA/P38 MAPK signaling and YY1/HSF1/p-Akt signaling. JAC1 maybe a potential therapeutic agent for TNBC.
Collapse
|
15
|
Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci 2022; 23:ijms23073453. [PMID: 35408813 PMCID: PMC8998550 DOI: 10.3390/ijms23073453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPVs) are considered to be key etiological agents responsible for the induction and development of cervical cancer. However, it has been suggested that HPV infection alone may not be sufficient to promote cervical carcinogenesis, and other unknown factors might be required to establish the disease. One of the suggested proteins whose deregulation has been linked with oncogenesis is transcription factor Yin Yang 1 (YY1). YY1 is a multifunctional protein that is involved not only in the regulation of gene transcription and protein modification, but can also control important cell signaling pathways, such as cell growth, development, differentiation, and apoptosis. Vital functions of YY1 also indicate that the protein could be involved in tumorigenesis. The overexpression of this protein has been observed in different tumors, and its level has been correlated with poor prognoses of many types of cancers. YY1 can also regulate the transcription of viral genes. It has been documented that YY1 can bind to the HPV long control region and regulate the expression of viral oncogenes E6 and E7; however, its role in the HPV life cycle and cervical cancer development is different. In this review, we explore the role of YY1 in regulating the expression of cellular and viral genes and subsequently investigate how these changes inadvertently contribute toward the development of cervical malignancy.
Collapse
|
16
|
Neuronal Yin Yang1 in the prefrontal cortex regulates transcriptional and behavioral responses to chronic stress in mice. Nat Commun 2022; 13:55. [PMID: 35013139 PMCID: PMC8748737 DOI: 10.1038/s41467-021-27571-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1). Selective ablation of YY1 in cortical excitatory neurons enhances stress sensitivity in both male and female mice and alters the expression of stress-associated genes following an abbreviated stress exposure. These findings demonstrate how chronic stress impacts transcription in cortical excitatory neurons and identify YY1 as a regulator of stress-induced maladaptive behavior in mice. The mechanisms underlying the chronic stress-induced increased risk for major depressive disorder and anxiety are unclear. Here, the authors show the transcriptional changes occurring in neocortical neurons and identify YY1 as a regulator of chronic stress-induced maladaptive behavior in mice.
Collapse
|
17
|
Domingo A, Yadav R, Shah S, Hendriks WT, Erdin S, Gao D, O'Keefe K, Currall B, Gusella JF, Sharma N, Ozelius LJ, Ehrlich ME, Talkowski ME, Bragg DC. Dystonia-specific mutations in THAP1 alter transcription of genes associated with neurodevelopment and myelin. Am J Hum Genet 2021; 108:2145-2158. [PMID: 34672987 PMCID: PMC8595948 DOI: 10.1016/j.ajhg.2021.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shivangi Shah
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Michelle E Ehrlich
- Departments of Neurology, Pediatrics, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
Gostomska-Pampuch K, Drulis-Fajdasz D, Gizak A, Wiśniewski JR, Rakus D. Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism. Int J Mol Sci 2021; 22:ijms22126188. [PMID: 34201282 PMCID: PMC8229959 DOI: 10.3390/ijms22126188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Aging is associated with a general decline of cognitive functions, and it is widely accepted that this decline results from changes in the expression of proteins involved in regulation of synaptic plasticity. However, several lines of evidence have accumulated that suggest that the impaired function of the aged brain may be related to significant alterations in the energy metabolism. In the current study, we employed the label-free "Total protein approach" (TPA) method to focus on the similarities and differences in energy metabolism proteomes of young (1-month-old) and aged (22-month-old) murine brains. We quantified over 7000 proteins in each of the following three analyzed brain structures: the hippocampus, the cerebral cortex and the cerebellum. To the best of our knowledge, this is the most extensive quantitative proteomic description of energy metabolism pathways during the physiological aging of mice. The analysis demonstrates that aging does not significantly affect the abundance of total proteins in the studied brain structures, however, the levels of proteins constituting energy metabolism pathways differ significantly between young and aged mice.
Collapse
Affiliation(s)
- Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Correspondence: (J.R.W.); (D.R.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
- Correspondence: (J.R.W.); (D.R.)
| |
Collapse
|
19
|
Xu C, Tsai YH, Galbo PM, Gong W, Storey AJ, Xu Y, Byrum SD, Xu L, Whang YE, Parker JS, Mackintosh SG, Edmondson RD, Tackett AJ, Huang J, Zheng D, Earp HS, Wang GG, Cai L. Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer. Nucleic Acids Res 2021; 49:4971-4988. [PMID: 33849067 PMCID: PMC8136773 DOI: 10.1093/nar/gkab252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuemei Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Nanjing Drum Tower Hospital and The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Cerase A, Young AN, Ruiz NB, Buness A, Sant GM, Arnold M, Di Giacomo M, Ascolani M, Kumar M, Hierholzer A, Trigiante G, Marzi SJ, Avner P. Chd8 regulates X chromosome inactivation in mouse through fine-tuning control of Xist expression. Commun Biol 2021; 4:485. [PMID: 33859315 PMCID: PMC8050208 DOI: 10.1038/s42003-021-01945-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Female mammals achieve dosage compensation by inactivating one of their two X chromosomes during development, a process entirely dependent on Xist, an X-linked long non-coding RNA (lncRNA). At the onset of X chromosome inactivation (XCI), Xist is up-regulated and spreads along the future inactive X chromosome. Contextually, it recruits repressive histone and DNA modifiers that transcriptionally silence the X chromosome. Xist regulation is tightly coupled to differentiation and its expression is under the control of both pluripotency and epigenetic factors. Recent evidence has suggested that chromatin remodelers accumulate at the X Inactivation Center (XIC) and here we demonstrate a new role for Chd8 in Xist regulation in differentiating ES cells, linked to its control and prevention of spurious transcription factor interactions occurring within Xist regulatory regions. Our findings have a broader relevance, in the context of complex, developmentally-regulated gene expression.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexander N Young
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nerea Blanes Ruiz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Buness
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Core Unit for Bioinformatics Data Analysis Universitätsklinikum Bonn, Bonn, Germany
| | - Gabrielle M Sant
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Mirjam Arnold
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | | | - Michela Ascolani
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
| | - Manish Kumar
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE, Vijaypura, Karnataka, India
| | - Andreas Hierholzer
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Giuseppe Trigiante
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Philip Avner
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
| |
Collapse
|
21
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|
22
|
Verheul TCJ, van Hijfte L, Perenthaler E, Barakat TS. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front Cell Dev Biol 2020; 8:592164. [PMID: 33102493 PMCID: PMC7554316 DOI: 10.3389/fcell.2020.592164] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
First described in 1991, Yin Yang 1 (YY1) is a transcription factor that is ubiquitously expressed throughout mammalian cells. It regulates both transcriptional activation and repression, in a seemingly context-dependent manner. YY1 has a well-established role in the development of the central nervous system, where it is involved in neurogenesis and maintenance of homeostasis in the developing brain. In neurodevelopmental and neurodegenerative disease, the crucial role of YY1 in cellular processes in the central nervous system is further underscored. In this mini-review, we discuss the various mechanisms leading to the transcriptional activating and repressing roles of YY1, including its role as a traditional transcription factor, its interactions with cofactors and chromatin modifiers, the role of YY1 in the non-coding genome and 3D chromatin organization and the possible implications of the phase-separation mechanism on YY1 function. We provide examples on how these processes can be involved in normal development and how alterations can lead to various diseases.
Collapse
Affiliation(s)
- Thijs C J Verheul
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
23
|
Dong X, Kwan KM. Yin Yang 1 is critical for mid-hindbrain neuroepithelium development and involved in cerebellar agenesis. Mol Brain 2020; 13:104. [PMID: 32703236 PMCID: PMC7376712 DOI: 10.1186/s13041-020-00643-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
The highly conserved and ubiquitously expressed transcription factor Yin Yang 1 (Yy1), was named after its dual functions of both activating and repressing gene transcription. Yy1 plays complex roles in various fundamental biological processes such as the cell cycle progression, cell proliferation, survival, and differentiation. Patients with dominant Yy1 mutations suffer from central nervous system (CNS) developmental defects. However, the role of Yy1 in mammalian CNS development remains to be fully elucidated. The isthmus organizer locates to the mid-hindbrain (MHB) boundary region and serves as the critical signaling center during midbrain and cerebellar early patterning. To study the function of Yy1 in mesencephalon/ rhombomere 1 (mes/r1) neuroepithelium development, we utilized the tissue-specific Cre-LoxP system and generated a conditional knockout mouse line to inactivate Yy1 in the MHB region. Mice with Yy1 deletion in the mes/r1 region displayed cerebellar agenesis and dorsal midbrain hypoplasia. The Yy1 deleted neuroepithelial cells underwent cell cycle arrest and apoptosis, with the concurrent changes of cell cycle regulatory genes expression, as well as activation of the p53 pathway. Moreover, we found that Yy1 is involved in the transcriptional activation of Wnt1 in neural stem cells. Thus, our work demonstrates the involvement of Yy1 in cerebellar agenesis and the critical function of Yy1 in mouse early MHB neuroepithelium maintenance and development.
Collapse
Affiliation(s)
- Xiaonan Dong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China. .,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|