1
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct Functional Classes of CA1 Hippocampal Interneurons Are Modulated by Cerebellar Stimulation in a Coordinated Manner. J Neurosci 2024; 44:e0887242024. [PMID: 39448264 PMCID: PMC11622179 DOI: 10.1523/jneurosci.0887-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving male and female mice, we found optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally found that subsets of CA1 interneurons show altered activity during object investigations. Importantly, these interneurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. We examined two different stimulation locations (IV/V vermis or simplex) and two different stimulation approaches (7 Hz or a single 1 s light pulse)-in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that CA1 interneurons are impacted by cerebellar manipulation in a bidirectional and coordinated fashion and are therefore likely to play an important role in cerebello-hippocampal communication.
Collapse
Affiliation(s)
- Jessica M Froula
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jarrett J Rose
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chris Krook-Magnuson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
2
|
Froula JM, Rose JJ, Krook-Magnuson C, Krook-Magnuson E. Distinct functional classes of CA1 hippocampal interneurons are modulated by cerebellar stimulation in a coordinated manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594213. [PMID: 38798335 PMCID: PMC11118308 DOI: 10.1101/2024.05.14.594213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is mounting evidence that the cerebellum impacts hippocampal functioning, but the impact of the cerebellum on hippocampal interneurons remains obscure. Using miniscopes in freely behaving animals, we find optogenetic stimulation of Purkinje cells alters the calcium activity of a large percentage of CA1 interneurons. This includes both increases and decreases in activity. Remarkably, this bidirectional impact occurs in a coordinated fashion, in line with interneurons' functional properties. Specifically, CA1 interneurons activated by cerebellar stimulation are commonly locomotion-active, while those inhibited by cerebellar stimulation are commonly rest-active interneurons. We additionally find that subsets of CA1 interneurons show altered activity during object investigations, suggesting a role in the processing of objects in space. Importantly, these neurons also show coordinated modulation by cerebellar stimulation: CA1 interneurons that are activated by cerebellar stimulation are more likely to be activated, rather than inhibited, during object investigations, while interneurons that show decreased activity during cerebellar stimulation show the opposite profile. Therefore, CA1 interneurons play a role in object processing and in cerebellar impacts on the hippocampus, providing insight into previously noted altered CA1 processing of objects in space with cerebellar stimulation. We examined two different stimulation locations (IV/V Vermis; Simplex) and two different stimulation approaches (7Hz or a single 1s light pulse) - in all cases, the cerebellum induces similar coordinated CA1 interneuron changes congruent with an explorative state. Overall, our data show that the cerebellum impacts CA1 interneurons in a bidirectional and coordinated fashion, positioning them to play an important role in cerebello-hippocampal communication. Significance Statement Acute manipulation of the cerebellum can affect the activity of cells in CA1, and perturbing normal cerebellar functioning can affect hippocampal-dependent spatial processing, including the processing of objects in space. Despite the importance of interneurons on the local hippocampal circuit, it was unknown how cerebellar activation impacts CA1 inhibitory neurons. We find that stimulating the cerebellum robustly affects multiple populations of CA1 interneurons in a bidirectional, coordinated manner, according to their functional profiles during behavior, including locomotion and object investigations. Our work also provides support for a role of CA1 interneurons in spatial processing of objects, with populations of interneurons showing altered activity during object investigations.
Collapse
|
3
|
Wu B, Post L, Lin Z, Schonewille M. PP2B-Dependent Cerebellar Plasticity Sets the Amplitude of the Vestibulo-ocular Reflex during Juvenile Development. J Neurosci 2024; 44:e1211232024. [PMID: 38527808 PMCID: PMC11044099 DOI: 10.1523/jneurosci.1211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Abstract
Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | | |
Collapse
|
4
|
Cheron G, Ris L, Cebolla AM. Nucleus incertus provides eye velocity and position signals to the vestibulo-ocular cerebellum: a new perspective of the brainstem-cerebellum-hippocampus network. Front Syst Neurosci 2023; 17:1180627. [PMID: 37304152 PMCID: PMC10248067 DOI: 10.3389/fnsys.2023.1180627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
The network formed by the brainstem, cerebellum, and hippocampus occupies a central position to achieve navigation. Multiple physiological functions are implicated in this complex behavior. Among these, control of the eye-head and body movements is crucial. The gaze-holding system realized by the brainstem oculomotor neural integrator (ONI) situated in the nucleus prepositus hypoglossi and fine-tuned by the contribution of different regions of the cerebellum assumes the stability of the image on the fovea. This function helps in the recognition of environmental targets and defining appropriate navigational pathways further elaborated by the entorhinal cortex and hippocampus. In this context, an enigmatic brainstem area situated in front of the ONI, the nucleus incertus (NIC), is implicated in the dynamics of brainstem-hippocampus theta oscillation and contains a group of neurons projecting to the cerebellum. These neurons are characterized by burst tonic behavior similar to the burst tonic neurons in the ONI that convey eye velocity-position signals to the cerebellar flocculus. Faced with these forgotten cerebellar projections of the NIC, the present perspective discusses the possibility that, in addition to the already described pathways linking the cerebellum and the hippocampus via the medial septum, these NIC signals related to the vestibulo-ocular reflex and gaze holding could participate in the hippocampal control of navigation.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium
- UMONS Research Institute for Health and Technology, Université de Mons, Mons, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium
- UMONS Research Institute for Health and Technology, Université de Mons, Mons, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
6
|
The cerebellum promotes sequential foraging strategies and contributes to the directional modulation of hippocampal place cells. iScience 2023; 26:106200. [PMID: 36922992 PMCID: PMC10009096 DOI: 10.1016/j.isci.2023.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The cerebellum contributes to goal-directed navigation abilities and place coding in the hippocampus. Here we investigated its contribution to foraging strategies. We recorded hippocampal neurons in mice with impaired PKC-dependent cerebellar functions (L7-PKCI) and in their littermate controls while they performed a task where they were rewarded for visiting a subset of hidden locations. We found that L7-PKCI and control mice developed different foraging strategies: while control mice repeated spatial sequences to maximize their rewards, L7-PKCI mice persisted to use a random foraging strategy. Sequential foraging was associated with more place cells exhibiting theta-phase precession and theta rate modulation. Recording in the dark showed that PKC-dependent cerebellar functions controlled how self-motion cues contribute to the selectivity of place cells to both position and direction. Thus, the cerebellum contributes to the development of optimal sequential paths during foraging, possibly by controlling how self-motion and theta signals contribute to place cell coding.
Collapse
|
7
|
Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, Le Sourd AM, Coqueran S, Schmitt J, Rochefort C, Rondi-Reig L, Leboucher A, Boland A, Fin B, Deleuze JF, Boeckers TM, Ey E, Bourgeron T. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci 2023; 16:1139118. [PMID: 37008785 PMCID: PMC10061084 DOI: 10.3389/fnmol.2023.1139118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Elisabeth Verpy
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Forget
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Fabrice De Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Florian Mueller
- Imagerie et Modélisation, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Anne-Marie Le Sourd
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Sabrina Coqueran
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Julien Schmitt
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Christelle Rochefort
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Laure Rondi-Reig
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Aziliz Leboucher
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
- Centre d’Étude du Polymorphisme Humain, Paris, France
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Elodie Ey
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm UMR-S 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Fallahnezhad M, Le Mero J, Zenelaj X, Vincent J, Rochefort C, Rondi-Reig L. Cerebellar control of a unitary head direction sense. Proc Natl Acad Sci U S A 2023; 120:e2214539120. [PMID: 36812198 PMCID: PMC9992783 DOI: 10.1073/pnas.2214539120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.
Collapse
Affiliation(s)
- Mehdi Fallahnezhad
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
- Inovarion, 75005Paris, France
| | - Julia Le Mero
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Xhensjana Zenelaj
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Jean Vincent
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Christelle Rochefort
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Laure Rondi-Reig
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| |
Collapse
|
9
|
Laidi C, Neu N, Watilliaux A, Martinez-Teruel A, Razafinimanana M, Boisgontier J, Hotier S, d'Albis MA, Delorme R, Amestoy A, Holiga Š, Moal MLL, Coupé P, Leboyer M, Houenou J, Rondi-Reig L, Paradis AL. Preserved navigation abilities and spatio-temporal memory in individuals with autism spectrum disorder. Autism Res 2023; 16:280-293. [PMID: 36495045 DOI: 10.1002/aur.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Cerebellar abnormalities have been reported in autism spectrum disorder (ASD). Beyond its role in hallmark features of ASD, the cerebellum and its connectivity with forebrain structures also play a role in navigation. However, the current understanding of navigation abilities in ASD is equivocal, as is the impact of the disorder on the functional anatomy of the cerebellum. In the present study, we investigated the navigation behavior of a population of ASD and typically developing (TD) adults related to their brain anatomy as assessed by structural and functional MRI at rest. We used the Starmaze task, which permits assessing and distinguishing two complex navigation behaviors, one based on allocentric learning and the other on egocentric learning of a route with multiple decision points. Compared to TD controls, individuals with ASD showed similar exploration, learning, and strategy performance and preference. In addition, there was no difference in the structural or functional anatomy of the cerebellar circuits involved in navigation between the two groups. The findings of our work suggest that navigation abilities, spatio-temporal memory, and their underlying circuits are preserved in individuals with ASD.
Collapse
Affiliation(s)
- Charles Laidi
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Nathan Neu
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Aurélie Watilliaux
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Axelle Martinez-Teruel
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Mihoby Razafinimanana
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Jennifer Boisgontier
- UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Sevan Hotier
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France
| | - Marc-Antoine d'Albis
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Richard Delorme
- Service de psychiatrie de l'enfant et de l'adolescent, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | | | - Štefan Holiga
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Pierrick Coupé
- Pictura Research Group, Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), University Bordeaux, Talence, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France
| | - Josselin Houenou
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Laure Rondi-Reig
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Anne-Lise Paradis
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| |
Collapse
|
10
|
Cheron G, Ristori D, Marquez-Ruiz J, Cebolla AM, Ris L. Electrophysiological alterations of the Purkinje cells and deep cerebellar neurons in a mouse model of Alzheimer disease (electrophysiology on cerebellum of AD mice). Eur J Neurosci 2022; 56:5547-5563. [PMID: 35141975 DOI: 10.1111/ejn.15621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is histopathologically well defined by the presence of amyloid deposits and tau-related neurofibrillary tangles in crucial regions of the brain. Interest is growing in revealing and determining possible pathological markers also in the cerebellum as its involvement in cognitive functions is now well supported. Despite the central position of the Purkinje cell in the cerebellum, its electrophysiological behaviour in mouse models of Alzheimer's disease is scarce in the literature. Our first aim was here to focus on the electrophysiological behaviour of the cerebellum in awake mouse model of Alzheimer's disease (APPswe/PSEN1dE9) and the related performance on the water-maze test classically used in behavioural studies. We found prevalent signs of electrophysiological alterations in both Purkinje cells and deep cerebellar nuclei neurons which might explain the behavioural deficits reported during the water-maze test. The alterations of neurons firing were accompanied by a dual (~16 and ~228 Hz) local field potential's oscillation in the Purkinje cell layer of Alzheimer's disease mice which was concomitant to an important increase of both the simple and the complex spikes. In addition, β-amyloid deposits were present in the molecular layer of the cerebellum. These results highlight the importance of the output firing modification of the AD cerebellum that may indirectly impact the activity of its subcortical and cortical targets.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institut, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Marquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Anna-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium.,UMONS Research Institut for health and technology, Université de Mons, Mons, Belgium
| |
Collapse
|
11
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
13
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
14
|
Distinct Fastigial Output Channels and Their Impact on Temporal Lobe Seizures. J Neurosci 2021; 41:10091-10107. [PMID: 34716233 DOI: 10.1523/jneurosci.0683-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear whether this broad targeting underlies seizure suppression, or whether a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely nonoverlapping populations of neurons that send collaterals to unique sets of additional, somewhat overlapping, thalamic and brainstem regions. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with important consequences for therapeutic interventions.SIGNIFICANCE STATEMENT The cerebellum has an emerging relationship with nonmotor systems and may represent a powerful target for therapeutic intervention in temporal lobe epilepsy. We find, as previously reported, that fastigial neurons project to numerous brain regions via largely segregated output channels, and that projection targets cannot be predicted simply by somatic locations within the nucleus. We further find that on-demand optogenetic excitation of fastigial neurons projecting to the central lateral nucleus of the thalamus-but not fastigial neurons projecting to the reticular formation, superior colliculus, or ventral lateral thalamus-is sufficient to attenuate hippocampal seizures.
Collapse
|
15
|
Abstract
Epilepsy is the fourth most common neurological disorder, but current treatment options provide limited efficacy and carry the potential for problematic adverse effects. There is an immense need to develop new therapeutic interventions in epilepsy, and targeting areas outside the seizure focus for neuromodulation has shown therapeutic value. While not traditionally associated with epilepsy, anatomical, clinical, and electrophysiological studies suggest the cerebellum can play a role in seizure networks, and importantly, may be a potential therapeutic target for seizure control. However, previous interventions targeting the cerebellum in both preclinical and clinical studies have produced mixed effects on seizures. These inconsistent results may be due in part to the lack of specificity inherent with open-loop electrical stimulation interventions. More recent studies, using more targeted closed-loop optogenetic approaches, suggest the possibility of robust seizure inhibition via cerebellar modulation for a range of seizure types. Therefore, while the mechanisms of cerebellar inhibition of seizures have yet to be fully elucidated, the cerebellum should be thoroughly revisited as a potential target for therapeutic intervention in epilepsy. This article is part of the Special Issue "NEWroscience 2018.
Collapse
|
16
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
17
|
HippoBellum: Acute Cerebellar Modulation Alters Hippocampal Dynamics and Function. J Neurosci 2020; 40:6910-6926. [PMID: 32769107 DOI: 10.1523/jneurosci.0763-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Here we examine what effects acute manipulation of the cerebellum, a canonically motor structure, can have on the hippocampus, a canonically cognitive structure. In male and female mice, acute perturbation of the cerebellar vermis (lobule 4/5) or simplex produced reliable and specific effects in hippocampal function at cellular, population, and behavioral levels, including evoked local field potentials, increased hippocampal cFos expression, and altered CA1 calcium event rate, amplitudes, and correlated activity. We additionally noted a selective deficit on an object location memory task, which requires objection-location pairing. We therefore combined cerebellar optogenetic stimulation and CA1 calcium imaging with an object-exploration task, and found that cerebellar stimulation reduced the representation of place fields near objects, and prevented a shift in representation to the novel location when an object was moved. Together, these results clearly demonstrate that acute modulation of the cerebellum alters hippocampal function, and further illustrates that the cerebellum can influence cognitive domains.SIGNIFICANCE STATEMENT The cerebellum, a canonically motor-related structure, is being increasingly recognized for its influence on nonmotor functions and structures. The hippocampus is a brain region critical for cognitive functions, such as episodic memory and spatial navigation. To investigate how modulation of the cerebellum may impact the hippocampus, we stimulated two sites of the cerebellar cortex and examined hippocampal function at multiple levels. We found that cerebellar stimulation strongly modulates hippocampal activity, disrupts spatial memory, and alters object-location processing. Therefore, a canonically cognitive brain area, the hippocampus, is sensitive to cerebellar modulation.
Collapse
|
18
|
Translation information processing is regulated by protein kinase C-dependent mechanism in Purkinje cells in murine posterior vermis. Proc Natl Acad Sci U S A 2020; 117:17348-17358. [PMID: 32636261 DOI: 10.1073/pnas.2002177117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebellar posterior vermis generates an estimation of our motion (translation) and orientation (tilt) in space using cues originating from semicircular canals and otolith organs. Theoretical work has laid out the basic computations necessary for this signal transformation, but details on the cellular loci and mechanisms responsible are lacking. Using a multicomponent modeling approach, we show that canal and otolith information are spatially and temporally matched in mouse posterior vermis Purkinje cells and that Purkinje cell responses combine translation and tilt information. Purkinje cell-specific inhibition of protein kinase C decreased and phase-shifted the translation component of Purkinje cell responses, but did not affect the tilt component. Our findings suggest that translation and tilt signals reach Purkinje cells via separate information pathways and that protein kinase C-dependent mechanisms regulate translation information processing in cerebellar cortex output neurons.
Collapse
|
19
|
Ohtsuki G, Shishikura M, Ozaki A. Synergistic excitability plasticity in cerebellar functioning. FEBS J 2020; 287:4557-4593. [PMID: 32367676 DOI: 10.1111/febs.15355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.
Collapse
Affiliation(s)
- Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Biophysics, Kyoto University Graduate School of Science, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Mari Shishikura
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| | - Akitoshi Ozaki
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| |
Collapse
|
20
|
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, Petrankova Z, Tuma Z, Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep 2020; 10:5418. [PMID: 32214165 PMCID: PMC7096488 DOI: 10.1038/s41598-020-62308-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1154Q/2Q) model and to identify the underlying neuropathology. We found that the SCA1 mice exhibit previously undescribed behavioral impairments such as increased anxiety- and depressive-like behavior and reduced prepulse inhibition and cognitive flexibility. Surprisingly, non-motor deficits characterize the early SCA1 stage in mice better than does ataxia. Moreover, the SCA1 mice exhibit significant hippocampal atrophy with decreased plasticity-related markers and markedly impaired neurogenesis. Interestingly, the hippocampal atrophy commences earlier than the cerebellar degeneration and directly reflects the individual severity of some of the behavioral deficits. Finally, mitochondrial respirometry suggests profound mitochondrial dysfunction in the hippocampus, but not in the cerebellum of the young SCA1 mice. These findings imply the essential role of hippocampal impairments, associated with profound mitochondrial dysfunction, in SCA1 behavioral deficits. Moreover, they underline the view of SCA1 as a complex neurodegenerative disease and suggest new avenues in the search for novel SCA1 therapies.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia. .,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
| | - Martina Salomova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Jedlicka
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tereza Macanova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zuzana Petrankova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zdenek Tuma
- Laboratory of Proteomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
21
|
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet 2020; 29:117-131. [PMID: 31696233 PMCID: PMC8216071 DOI: 10.1093/hmg/ddz265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.
Collapse
Affiliation(s)
- Melissa Asher
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Bennyworth
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| | - Ruo-Yah Lai
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - CRC-SCA
- Clinical Research Consortium for Spinocerebellar Ataxia (CRC-SCA)#
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| |
Collapse
|
22
|
Streng ML, Krook-Magnuson E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures. J Physiol 2019; 598:171-187. [PMID: 31682010 DOI: 10.1113/jp278747] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS On-demand optogenetic inhibition of glutamatergic neurons in the fastigial nucleus of the cerebellum does not alter hippocampal seizures in a mouse model of temporal lobe epilepsy. In contrast, on-demand optogenetic excitation of glutamatergic neurons in the fastigial nucleus successfully inhibits hippocampal seizures. With this approach, even a single 50 ms pulse of light is able to significantly inhibit seizures. On-demand optogenetic excitation of glutamatergic fastigial neurons either ipsilateral or contralateral to the seizure focus is able to inhibit seizures. Selective excitation of glutamatergic nuclear neurons provides greater seizure inhibition than broadly exciting nuclear neurons without cell-type specificity. ABSTRACT Temporal lobe epilepsy is the most common form of epilepsy in adults, but current treatment options provide limited efficacy, leaving as many as one-third of patients with uncontrolled seizures. Recently, attention has shifted towards more closed-loop therapies for seizure control, and on-demand optogenetic modulation of the cerebellar cortex was shown to be highly effective at attenuating hippocampal seizures. Intriguingly, both optogenetic excitation and inhibition of cerebellar cortical output neurons, Purkinje cells, attenuated seizures. The mechanisms by which the cerebellum impacts seizures, however, are unknown. In the present study, we targeted the immediate downstream projection of vermal Purkinje cells - the fastigial nucleus - in order to determine whether increases and/or decreases in fastigial output can underlie seizure cessation. Though Purkinje cell input to fastigial neurons is inhibitory, direct optogenetic inhibition of the fastigial nucleus had no effect on seizure duration. Conversely, however, fastigial excitation robustly attenuated hippocampal seizures. Seizure cessation was achieved at multiple stimulation frequencies, regardless of laterality relative to seizure focus, and even with single light pulses. Seizure inhibition was greater when selectively targeting glutamatergic fastigial neurons than when an approach that lacked cell-type specificity was used. Together, these results suggest that stimulating excitatory neurons in the fastigial nucleus may be a promising approach for therapeutic intervention in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
23
|
Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C, Rondi-Reig L. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 2019; 8:e41896. [PMID: 31205000 PMCID: PMC6579515 DOI: 10.7554/elife.41896] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple lines of evidence suggest that functionally intact cerebello-hippocampal interactions are required for appropriate spatial processing. However, how the cerebellum anatomically and physiologically engages with the hippocampus to sustain such communication remains unknown. Using rabies virus as a retrograde transneuronal tracer in mice, we reveal that the dorsal hippocampus receives input from topographically restricted and disparate regions of the cerebellum. By simultaneously recording local field potential from both the dorsal hippocampus and anatomically connected cerebellar regions, we additionally suggest that the two structures interact, in a behaviorally dynamic manner, through subregion-specific synchronization of neuronal oscillations in the 6-12 Hz frequency range. Together, these results reveal a novel neural network macro-architecture through which we can understand how a brain region classically associated with motor control, the cerebellum, may influence hippocampal neuronal activity and related functions, such as spatial navigation.
Collapse
Affiliation(s)
- Thomas Charles Watson
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Pauline Obiang
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Arturo Torres-Herraez
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Aurélie Watilliaux
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Patrice Coulon
- Institut de Neurosciences de la TimoneCNRS and Aix Marseille UniversitéMarseilleFrance
| | - Christelle Rochefort
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| |
Collapse
|