1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Xiong LL, Sun YF, Niu RZ, Xue LL, Chen L, Huangfu LR, Li J, Wang YY, Liu X, Wang WY, Zuo ZF, Wang TH. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. RESEARCH (WASHINGTON, D.C.) 2024; 7:0536. [PMID: 39574940 PMCID: PMC11579486 DOI: 10.34133/research.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Tree shrews (TSs) possess a highly developed visual system. Here, we establish an age-related single-cell RNA sequencing atlas of retina cells from 15 TSs, covering 6 major retina cell classes and 3 glial cell types. An age effect is observed on the cell subset composition and gene expression pattern. We then verify the cell subtypes and identify specific markers in the TS retina including CA10 for bipolar cells, MEGF11 for H1 horizontal cells, and SLIT2, RUNX1, FOXP2, and SPP1 for retinal ganglion cell subpopulations. The cross-species analysis elucidates the cell type-specific transcriptional programs, different cell compositions, and cell communications. The comparisons also reveal that TS cones and subclasses of bipolar and amacrine cells exhibit the closest relationship with humans and macaques. Our results suggests that TS could be used as a better disease model to understand age-dependent cellular and genetic mechanisms of the retina, particularly for the retinal diseases associated with cones.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology,
The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yi-Fei Sun
- Department of Urology,
the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rui-Ze Niu
- Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Chen
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yu-Ying Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Xin Liu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Zhong-Fu Zuo
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| |
Collapse
|
3
|
Islam S, Gleber-Netto FO, Mulcahy CF, Glaun MDE, Srivastava S, Hunt PJ, Williams MD, Barbon CE, Spiotto M, Zhao W, Adebayo A, Akhter S, Xie T, Debnath KC, Sathishkumar HN, Myers B, Lothumalla S, Yaman I, Burks JK, Gomez J, Rao X, Wang J, Woodman K, Mansour J, Arenkiel B, Osman KL, Haxton C, Lever TE, Hutcheson KA, Amit M. Neural landscape is associated with functional outcomes in irradiated patients with oropharyngeal squamous cell carcinoma. Sci Transl Med 2024; 16:eabq5585. [PMID: 39083586 DOI: 10.1126/scitranslmed.abq5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The incidence of human papilloma virus-mediated oropharyngeal squamous cell carcinoma (OPSCC) has increased over the past 40 years, particularly among young individuals with a favorable prognosis; however, current therapy often leads to unfortunate side effects, such as dysphagia. Despite the emphasis on dysphagia in previous studies, there is an important research gap in understanding the correlation between neuronal changes and patient-reported and functional outcomes in patients with OPSCC. To address this issue, we examined pathologic tissue samples from patients with OPSCC using multiplex immunofluorescence staining and machine learning to correlate tumor-associated neuronal changes with prospectively collected patient-reported and functional outcomes. We found that tumor enrichment of adrenergic (TH+) and CGRP+ sensory-afferent nerves correlated with poorer swallowing outcomes. Functional electromyography recordings showed correlations between growing (GAP43+) and immature cholinergic (ChAT+DCX+) nerves and denervation patterns in survivors of OPSCC. A murine model of radiation-induced dysphagia further confirmed that immature cholinergic and CGRP+ nerves were correlated with impaired swallowing. Preclinical interventional studies also supported the independent contributions of CGRP+ and cholinergic (ChAT+) nerves to dysphagia in treated mouse models of OPSCC. Our results suggest that CGRP+ and ChAT+ neuronal signaling play distinct roles in tumor- and radiation-induced dysphagia in OPSCC and offer a comprehensive dataset on the neural landscape of OPSCC. These insights may guide early interventions for swallow preservation and the repurposing of neurology-related drugs, such as CGRP blockers, in clinical oncology and survivorship.
Collapse
Affiliation(s)
- Shajedul Islam
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Collin F Mulcahy
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carly E Barbon
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weilu Zhao
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX 77030, USA
| | - Adewale Adebayo
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hinduja Naidu Sathishkumar
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Blake Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sahana Lothumalla
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ismail Yaman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Gomez
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karin Woodman
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jobran Mansour
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Shreveport Medical Center, Shreveport, LA 71103, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kate L Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Teresa E Lever
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Katherine A Hutcheson
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Fan Y, Zhang W, Huang X, Fan M, Shi C, Zhao L, Pi G, Zhang H, Ni S. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice. Nat Commun 2024; 15:2939. [PMID: 38580630 PMCID: PMC10997778 DOI: 10.1038/s41467-024-47317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.
Collapse
Affiliation(s)
- Yonggang Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Weixin Zhang
- Zhejiang Chinese Medicine University, Hangzhou, 310053, PR China
| | - Xiusheng Huang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Mingzhe Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Chenhao Shi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Lantian Zhao
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Guofu Pi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Huafeng Zhang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Shuangfei Ni
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China.
| |
Collapse
|
7
|
Zhu H, Qu Y, Du Z, Zhou Q, Shen Y, Jiang Y, Zhou Z, Zhou H. Mining and analysis of adverse event signals of Cariprazine based on the real-world data of FAERS database. J Affect Disord 2024; 347:45-50. [PMID: 37992768 DOI: 10.1016/j.jad.2023.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE This study aims to analyze the adverse events (AEs) of Cariprazine based on the FAERS database, providing evidence for its safety surveillance. METHODS For signal quantification of Cariprazine-related AEs, we used disproportionality analysis including the Ratio of Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) algorithms. RESULTS We selected Cariprazine-related AE reports from the FAERS database from the fourth quarter of 2015 to the first quarter of 2023, and performed a detailed data analysis. Out of a total of 12,278,580 case reports, 3659 were found to be directly related to Cariprazine. We identified 140 Preferred Terms (PT) to describe these AEs, finding that they involved 27 organ systems. Specifically, AEs related to eye disorders such as Cataract cortical, Cataract nuclear, Accommodation disorder, Lenticular opacities, Oculogyric crisis, Dyschromatopsia were not explicitly mentioned in the drug's leaflet, indicating the presence of new ADR signals. CONCLUSION Analysis of the FAERS database identified AEs associated with Cariprazine, notably in eye disorders not previously documented in the drug's official leaflet. These findings emphasize the need for continuous post-market surveillance and awareness among healthcare professionals regarding potential new ADR signals.
Collapse
Affiliation(s)
- Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yucai Qu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Zhiqiang Du
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yuan Shen
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Zhenhe Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China.
| | - Hongliang Zhou
- Department of Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
9
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Liang JH, Akhanov V, Ho A, Tawfik M, D'Souza SP, Cameron MA, Lang RA, Samuel MA. Dopamine signaling from ganglion cells directs layer-specific angiogenesis in the retina. Curr Biol 2023; 33:3821-3834.e5. [PMID: 37572663 PMCID: PMC10529464 DOI: 10.1016/j.cub.2023.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.
Collapse
Affiliation(s)
- Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anthony Ho
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shane P D'Souza
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Morven A Cameron
- School of Medicine, Western Sydney University, Western Sydney University Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Richard A Lang
- Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
12
|
Abstract
Retinopathy of prematurity (ROP) is a complex disease involving development of the neural retina, ocular circulations, and other organ systems of the premature infant. The external stresses of the ex utero environment also influence the pathophysiology of ROP through interactions among retinal neural, vascular, and glial cells. There is variability among individual infants and presentations of the disease throughout the world, making ROP challenging to study. The methods used include representative animal models, cell culture, and clinical studies. This article describes the impact of maternal-fetal interactions; stresses that the preterm infant experiences; and biologic pathways of interest, including growth factor effects and cell-cell interactions, on the complex pathophysiology of ROP phenotypes in developed and emerging countries.
Collapse
|
13
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Derbyshire ML, Akula S, Wong A, Rawlins K, Voura EB, Brunken WJ, Zuber ME, Fuhrmann S, Moon AM, Viczian AS. Loss of Tbx3 in Mouse Eye Causes Retinal Angiogenesis Defects Reminiscent of Human Disease. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37126314 PMCID: PMC10155871 DOI: 10.1167/iovs.64.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.
Collapse
Affiliation(s)
- Mark L Derbyshire
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Sruti Akula
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Austin Wong
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Karisa Rawlins
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Evelyn B Voura
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - William J Brunken
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Michael E Zuber
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States
| | - Andrea S Viczian
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
15
|
Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, Tiriac A. Circuit mechanisms underlying embryonic retinal waves. eLife 2023; 12:e81983. [PMID: 36790167 PMCID: PMC9988258 DOI: 10.7554/elife.81983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Spontaneous activity is a hallmark of developing neural systems. In the retina, spontaneous activity comes in the form of retinal waves, comprised of three stages persisting from embryonic day 16 (E16) to eye opening at postnatal day 14 (P14). Though postnatal retinal waves have been well characterized, little is known about the spatiotemporal properties or the mechanisms mediating embryonic retinal waves, designated stage 1 waves. Using a custom-built macroscope to record spontaneous calcium transients from whole embryonic retinas, we show that stage 1 waves are initiated at several locations across the retina and propagate across a broad range of areas. Blocking gap junctions reduced the frequency and size of stage 1 waves, nearly abolishing them. Global blockade of nAChRs similarly nearly abolished stage 1 waves. Thus, stage 1 waves are mediated by a complex circuitry involving subtypes of nAChRs and gap junctions. Stage 1 waves in mice lacking the β2 subunit of the nAChRs (β2-nAChR-KO) persisted with altered propagation properties and were abolished by a gap junction blocker. To assay the impact of stage 1 waves on retinal development, we compared the spatial distribution of a subtype of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), which undergo a significant amount of cell death, in WT and β2-nAChR-KO mice. We found that the developmental decrease in ipRGC density is preserved between WT and β2-nAChR-KO mice, indicating that processes regulating ipRGC numbers and distributions are not influenced by spontaneous activity.
Collapse
Affiliation(s)
- Christiane Voufo
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Andy Quaen Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Benjamin E Smith
- School of Optometry, University of California, BerkeleyBerkeleyUnited States
| | - Rongshan Yan
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexandre Tiriac
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
16
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
17
|
Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas. Nat Commun 2022; 13:7637. [PMID: 36496409 PMCID: PMC9741628 DOI: 10.1038/s41467-022-35262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Although mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFβ signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas. Mechanistic studies suggest that mitochondrial dysfunction from Tfam, Cox10, or Trx2 depletion induces a mitochondrial localization and MAPKs-mediated phosphorylation of SMAD2, leading to enhanced ALK5-SMAD2 signaling. Importantly, pharmacological blockade of ALK5 signaling or genetic deficiency of SMAD2 prevented retinal vessel growth retardation and AVM in all three mutant mice. Our studies uncover a novel mechanism whereby mitochondrial dysfunction via the ALK5-SMAD2 signaling induces retinal vascular malformations, and have therapeutic values for the alleviation of angiogenesis-associated human retinal diseases.
Collapse
|
18
|
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Neurovascular responses to neuronal activity during sensory development. Front Cell Neurosci 2022; 16:1025429. [DOI: 10.3389/fncel.2022.1025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.
Collapse
|
19
|
Liang JH, Alevy J, Akhanov V, Seo R, Massey CA, Jiang D, Zhou J, Sillitoe RV, Noebels JL, Samuel MA. Kctd7 deficiency induces myoclonic seizures associated with Purkinje cell death and microvascular defects. Dis Model Mech 2022; 15:dmm049642. [PMID: 35972048 PMCID: PMC9509889 DOI: 10.1242/dmm.049642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.
Collapse
Affiliation(s)
- Justine H. Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Seo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cory A. Massey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joy Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeffrey L. Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
21
|
Yemanyi F, Bora K, Blomfield AK, Wang Z, Chen J. Wnt Signaling in Inner Blood-Retinal Barrier Maintenance. Int J Mol Sci 2021; 22:11877. [PMID: 34769308 PMCID: PMC8584977 DOI: 10.3390/ijms222111877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
The retina is a light-sensing ocular tissue that sends information to the brain to enable vision. The blood-retinal barrier (BRB) contributes to maintaining homeostasis in the retinal microenvironment by selectively regulating flux of molecules between systemic circulation and the retina. Maintaining such physiological balance is fundamental to visual function by facilitating the delivery of nutrients and oxygen and for protection from blood-borne toxins. The inner BRB (iBRB), composed mostly of inner retinal vasculature, controls substance exchange mainly via transportation processes between (paracellular) and through (transcellular) the retinal microvascular endothelium. Disruption of iBRB, characterized by retinal edema, is observed in many eye diseases and disturbs the physiological quiescence in the retina's extracellular space, resulting in vision loss. Consequently, understanding the mechanisms of iBRB formation, maintenance, and breakdown is pivotal to discovering potential targets to restore function to compromised physiological barriers. These unraveled targets can also inform potential drug delivery strategies across the BRB and the blood-brain barrier into retinas and brain tissues, respectively. This review summarizes mechanistic insights into the development and maintenance of iBRB in health and disease, with a specific focus on the Wnt signaling pathway and its regulatory role in both paracellular and transcellular transport across the retinal vascular endothelium.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.Y.); (K.B.); (A.K.B.); (Z.W.)
| |
Collapse
|
22
|
Zarkada G, Howard JP, Xiao X, Park H, Bizou M, Leclerc S, Künzel SE, Boisseau B, Li J, Cagnone G, Joyal JS, Andelfinger G, Eichmann A, Dubrac A. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 2021; 56:2237-2251.e6. [PMID: 34273276 PMCID: PMC9951594 DOI: 10.1016/j.devcel.2021.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-β signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-β receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-β signaling could improve retinal revascularization and neural function in ischemic retinopathy.
Collapse
Affiliation(s)
- Georgia Zarkada
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel P. Howard
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,These authors contributed equally
| | - Xue Xiao
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada,These authors contributed equally
| | - Hyojin Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mathilde Bizou
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Severine Leclerc
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Steffen E. Künzel
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Blanche Boisseau
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Jinyu Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Gael Cagnone
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | | | | | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
23
|
Nakazawa S, Iwasato T. Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Dev Growth Differ 2021; 63:323-339. [PMID: 34166527 DOI: 10.1111/dgd.12739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The sensory cortex underlies our ability to perceive and interact with the external world. Sensory perceptions are controlled by specialized neuronal circuits established through fine-tuning, which relies largely on neuronal activity during the development. Spontaneous neuronal activity is an essential driving force of neuronal circuit refinement. At early developmental stages, sensory cortices display spontaneous activities originating from the periphery and characterized by correlated firing arranged spatially according to the modality. The firing patterns are reorganized over time and become sparse, which is typical for the mature brain. This review focuses mainly on rodent sensory cortices. First, the features of the spontaneous activities during early postnatal stages are described. Then, the developmental changes in the spatial organization of the spontaneous activities and the transition mechanisms involved are discussed. The identification of the principles controlling the spatial organization of spontaneous activities in the developing sensory cortex is essential to understand the self-organization process of neuronal circuits.
Collapse
Affiliation(s)
- Shingo Nakazawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
24
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy. Dev Dyn 2021; 251:321-335. [PMID: 34148274 DOI: 10.1002/dvdy.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The coordinated wiring of neurons, glia and endothelial cells into neurovascular units is critical for central nervous system development. This is best exemplified in the mammalian retina where interneurons, astrocytes and retinal ganglion cells sculpt their vascular environment to meet the metabolic demands of visual function. Identifying the molecular networks that underlie neurovascular unit formation is an important step towards a deeper understanding of nervous system development and function. RESULTS Here, we report that cell-to-cell mTORC1-signaling is essential for neurovascular unit formation during mouse retinal development. Using a conditional knockout approach we demonstrate that reduced mTORC1 activity in asymmetrically positioned retinal ganglion cells induces a delay in postnatal vascular network formation in addition to the production of rudimentary and tortuous vessel networks in adult animals. The severity of this vascular phenotype is directly correlated to the degree of mTORC1 down regulation within the neighboring retinal ganglion cell population. CONCLUSIONS This study establishes a cell nonautonomous role for mTORC1-signaling during retinal development. These findings contribute to our current understanding of neurovascular unit formation and demonstrate how ganglion cells actively sculpt their local environment to ensure that the retina is perfused with an appropriate supply of oxygen and nutrients.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
26
|
Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21:416-432. [PMID: 32636528 DOI: 10.1038/s41583-020-0322-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.
Collapse
|
27
|
Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 2020; 147:dev182279. [PMID: 32358096 PMCID: PMC7197727 DOI: 10.1242/dev.182279] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular pathologies of the central nervous system (CNS), which are associated with barrier dysfunction, are leading causes of death and disability. The roles that neuronal and glial progenitors and mature cells play in CNS angiogenesis and neurovascular barrier maturation have been elucidated in recent years. Yet how neuronal activity influences these processes remains largely unexplored. Here, we discuss our current understanding of how neuronal and glial development affects CNS angiogenesis and barriergenesis, and outline future directions to elucidate how neuronal activity might influence these processes. An understanding of these mechanisms is crucial for developing new interventions to treat neurovascular pathologies.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Azzurra Cottarelli
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|