1
|
Wang C, Xin Y, Gu H, Ye L, Liu Y, Zhou Y, Deng Y, Geng Y. An n-Doping Cross-Linkable Quinoidal Compound as an Electron Transport Material for Fully Stretchable Inverted Organic Solar Cells. Angew Chem Int Ed Engl 2024:e202415440. [PMID: 39257370 DOI: 10.1002/anie.202415440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy has been developed. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain>45 %). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27 % and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01 %, and 80 % of the initial PCE was maintained after 21 % strain, showcasing its potential for wearable electronics.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Haoran Gu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
2
|
Wang X, Wei N, Chen YN, Ran G, Zhang A, Lu H, Wei Z, Liu Y, Zhang W, Bo Z. Highly efficient and stable binary and ternary organic solar cells using polymerized nonfused ring electron acceptors. Natl Sci Rev 2024; 11:nwae258. [PMID: 39206047 PMCID: PMC11350609 DOI: 10.1093/nsr/nwae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
This study reports the successful design and synthesis of two novel polymerized nonfused ring electron acceptors, P-2BTh and P-2BTh-F, derived from the high-performance nonfused ring electron acceptor, 2BTh-2F. Prepared via Stille polymerization, these polymers feature thiophene and fluorinated thiophene as π-bridge units. Notably, P-2BTh-F, with difluorothiophene as the π-bridge, exhibits a more planar backbone and red-shifted absorption spectrum compared with P-2BTh. When employed in organic solar cells (OSCs) with PBDB-T as the donor material, P-2BTh-F-based devices demonstrate an outstanding power conversion efficiency (PCE) of over 11%, exceeding the 8.7% achieved by P-2BTh-based devices. Furthermore, all-polymer solar cells utilizing PBDB-T:P-2BTh-F exhibit superior storage stability. Additionally, P-2BTh-F was explored as a functional additive in a high-performance binary system, enhancing stability while maintaining comparable PCE (19.45%). This strategy offers a cost-effective approach for fabricating highly efficient and stable binary and ternary organic solar cells, opening new horizons for cost-effective and durable solar cell development.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-nan Chen
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Guangliu Ran
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hao Lu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengdong Wei
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Zhou Q, Yan C, Li H, Zhu Z, Gao Y, Xiong J, Tang H, Zhu C, Yu H, Lopez SPG, Wang J, Qin M, Li J, Luo L, Liu X, Qin J, Lu S, Meng L, Laquai F, Li Y, Cheng P. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics. NANO-MICRO LETTERS 2024; 16:224. [PMID: 38888701 PMCID: PMC11189398 DOI: 10.1007/s40820-024-01442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Organic photovoltaics (OPVs) need to overcome limitations such as insufficient thermal stability to be commercialized. The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology, however, exhibiting limited applicability. Therefore, it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor-acceptor compatibilizers, or by introducing another third component. Herein, a unique approach is presented, based on constructing a polymer fiber rigid network with a high glass transition temperature (Tg) to impede the movement of acceptor and donor molecules, to immobilize the active layer morphology, and thereby to improve thermal stability. A high-Tg one-dimensional aramid nanofiber (ANF) is utilized for network construction. Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart. The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart, thereby leaving fundamental processes such as charge separation, transport, and collection, determining the device efficiency, largely unaltered. This strategy is also successfully applied to other photovoltaic systems. The strategy of incorporating a polymer fiber rigid network with high Tg offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
Collapse
Affiliation(s)
- Qiao Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhendong Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yujie Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jie Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hua Tang
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Hailin Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Sandra P Gonzalez Lopez
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jiayu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiaqiang Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
5
|
Ma X, Wang C, Deng D, Zhang H, Zhang L, Zhang J, Yang Y, Wei Z. Small Molecule Donors Design Rules for Non-Halogen Solvent Fabricated Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309042. [PMID: 38063814 DOI: 10.1002/smll.202309042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Indexed: 05/12/2024]
Abstract
Compared with all-small-molecule (ASM) and other types of organic solar cells (OSCs), the small molecule donor:polymer acceptor (SMD:PA) OSCs develop much slower due to the lack of material matching rules. Herein, by changing the end-cap substituent of the small molecule donor from ethyl (MPhS-C2) to benzyl (MPhS-Ph), the different selection rules of donor properties and thermal annealing (TA) treatment between the ASM and the SMD:PA system under tetrahydrofuran processing are thoroughly investigated. Therefore, MPhS-Ph exhibits more ordered molecular packing, leading to better adaptability in the SMD:PA system without TA; while the inferior molecular packing of MPhS-C2 after spin-coating performs better in the ASM system with TA. Whether spin-coating or TA process dominates morphological optimization also dominates their energy loss. Therefore, the MPhS-Ph:PYF-T-o and MPhS-C2:BTP-eC9 based devices achieve the highest power conversion efficiency (PCE) of 12.1% and 15.7%, respectively, both of which are cutting-edge PCEs in their own type of OSCs fabricated by non-halogen solvent. This result suggests that intrinsic strong crystallization independent of the thermal drive is hoped in SMD:PA-OSCs, while high miscibility after spin-coating and proper assembly under thermal drive is expected in ASM-OSCs, providing deep understanding and guidance in highly efficient materials design rules in both ASM-OSCs and SMD:PA-OSCs.
Collapse
Affiliation(s)
- Xiaoming Ma
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Caixuan Wang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hao Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
7
|
Esa Z, Nauman MM, Jin L, Khalid MU, Hj Zaini J, Iqbal A, Ali K, Aïssa B, Rosei F. An additive manufacturing approach based on electrohydrodynamic printing to fabricate P3HT:PCBM thin films. Sci Rep 2023; 13:16319. [PMID: 37770516 PMCID: PMC10539302 DOI: 10.1038/s41598-023-43113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Additive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. We report here on the fabrication of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PCBM) thin films through the electrohydrodynamic atomization (EHDA) process and its integration as absorber layer for organic solar cells. Prior to the film fabrication, the optimization of the process was carried out by developing the operating envelope for the P3HT:PCBM ink to determine the optimal flow rate and the appropriate applied voltage to achieve a stable-cone deposition mode. The EHDA printed thin-film's topography, morphology and optical properties were systematically analyzed. The root-mean-square roughness was found to vary significantly with the annealing temperature and the flow rate and ranged from 1.938 to 3.345 nm. The estimated film mass and thickness were found between 3.235 and 23.471 mg and 597.5 nm to 1.60 µm, respectively. The films exhibited a broad visible absorption spectrum ranging from ~ 340 to ~ 600 nm, with a maximum peak λmax located at ~ 500 nm. As the annealing temperature and the flow rate were increased, discernible alterations in the PCBM clusters were consequently observed in the blends of the film and the size of the PCBM clusters has decreased by 3% while the distance between them was highly reduced by as much as 82%.
Collapse
Affiliation(s)
- Zulfikre Esa
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, BE 1410, Brunei Darussalam
| | - Malik Muhammad Nauman
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, BE 1410, Brunei Darussalam.
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Muhammad Usman Khalid
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, 11564, Riyadh, Saudi Arabia
| | - Juliana Hj Zaini
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, BE 1410, Brunei Darussalam
| | - Asif Iqbal
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, BE 1410, Brunei Darussalam
| | - Kamran Ali
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, BE 1410, Brunei Darussalam
| | - Brahim Aïssa
- College of Science and Engineering, Hamad Bin Khalifa University, Ar Rayyan, Qatar
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| |
Collapse
|
8
|
Su M, Lin M, Mo S, Chen J, Shen X, Xiao Y, Wang M, Gao J, Dang L, Huang XC, He F, Wu Q. Manipulating the Alkyl Chains of Naphthodithiophene Imide-Based Polymers to Concurrently Boost the Efficiency and Stability of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37371-37380. [PMID: 37515570 DOI: 10.1021/acsami.3c05668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Morphology instability holds the major responsibility for efficiency degradation of organic solar cells (OSCs). However, how to develop polymer donors simultaneously with high efficiency and excellent morphology stability remains challenging. Herein, we reported naphtho[2,1-b:3,4-b']dithiophene-5,6-imide (NDTI)-based new polymers PNDT1 and PNDT2. The alkyl chain engineering leads to high crystallinity, high hole mobility (>10-3 cm2 V-1 S-1), and nanofibrous film morphology, which enable PNDT2 to exhibit an efficiency of 18.13% and a remarkable FF value of 0.80. Moreover, the NDTIs have short π-π stacking and abundant short interactions, and their polymers exhibit superior morphological stability. Therefore, the PNDT2-based OSCs exhibit much better device stability than that of PNDT1, PAB-α, and benchmark polymers PM6 and D18. This work suggests the great importance of the large conjugated backbone of the monomer and alkyl chain engineering to develop high-performance and morphology-stable polymers for OSCs.
Collapse
Affiliation(s)
- Mingbin Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Man Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Songmin Mo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiangyu Shen
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Meijiang Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinping Gao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| |
Collapse
|
9
|
Zhang C, Cheng J, Wu Q, Hou S, Feng S, Jiang B, Lambert CJ, Gao X, Li Y, Li J. Enhanced π-π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement. J Am Chem Soc 2023; 145:1617-1630. [PMID: 36625785 DOI: 10.1021/jacs.2c09656] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au-π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.
Collapse
Affiliation(s)
- Chengyang Zhang
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jie Cheng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Songjun Hou
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Sai Feng
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Colin J Lambert
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yueqi Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jinghong Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China.,Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
10
|
Zha H, Fang J, Yan L, Yang Y, Ma C. Research Progress of Thermal Failure Mechanism and Ternary Blending to Improve Thermal Stability of Organic Solar Cells. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Ma BS, Lee JW, Park H, Kim BJ, Kim TS. Thermomechanical Behavior of Poly(3-hexylthiophene) Thin Films on the Water Surface. ACS OMEGA 2022; 7:19706-19713. [PMID: 35721964 PMCID: PMC9202286 DOI: 10.1021/acsomega.2c01451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The thermomechanical behavior of a conjugated polymer (CP) in a thin film state has rarely been studied despite the importance of understanding the polymer morphologies and optimizing the thermal processes of organic semiconductors. Moreover, the seamless integration of multilayers without mechanical failures in CP-based electronic devices is crucial for determining their operational stability. Large differences in the coefficients of thermal expansion (CTEs) between the multilayers can cause serious degradation of devices under thermal stress. In this study, we measure the intrinsic thermomechanical properties of poly(3-hexylthiophene) (P3HT) thin films in a pseudo-freestanding state on the water surface. The as-cast P3HT thin films exhibited a large thermal shrinkage (-1001 ppm K-1) during heating on the water surface. Morphological analyses revealed that the thermal shrinkage of the polymer films was caused by the rearrangement of the polymer chain networks accompanied by crystallization, thus indicating that preheating the polymer films is essential for estimating their intrinsic CTE values. Moreover, the rigidity of the substrate significantly influences the thermomechanical behavior of the polymer films. The polymer films that were preheated on the glass substrate showed nonlinear thermal expansion due to the substrate constraint inhibiting sufficient relaxation of the polymer chains. In comparison, a linear expansion behavior is observed after preheating the films on the water surface, exhibiting a consistent CTE value (185 ppm K-1) regardless of the number of thermal strain measurements. Thus, this work provides a direct method for measuring in-plane CTE values and an in-depth understanding of the thermomechanical behaviors of CP thin films to design thermomechanically reliable organic semiconductors.
Collapse
Affiliation(s)
- Boo Soo Ma
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Woo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyeonjung Park
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J. Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Guo Y, Li Z, Sha M, Deng P, Lin X, Li J, Zhang L, Yin H, Zhan H. Synthesis of a Low-Cost Thiophene-Indoloquinoxaline Polymer Donor and Its Application to Polymer Solar Cells. Polymers (Basel) 2022; 14:polym14081554. [PMID: 35458305 PMCID: PMC9030569 DOI: 10.3390/polym14081554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and lower-lying highest occupied molecular orbital energy level of −5.58 eV. Polymer solar cells based on PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of 6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer donor materials for polymer solar cells.
Collapse
Affiliation(s)
- Yiping Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Zeyang Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Mengzhen Sha
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
| | - Ping Deng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
- Key Laboratory of Eco-materials Advanced Technology Fuzhou University, Fuzhou 350108, China
- Correspondence: (P.D.); (H.Y.)
| | - Xinyu Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Jun Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Liang Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Hang Yin
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
- Correspondence: (P.D.); (H.Y.)
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| |
Collapse
|
13
|
Zhou S, Xia D, Liang S, Liu B, Wang J, Xiao C, Tang Z, Li W. Enhancing the Performance of Small-Molecule Organic Solar Cells via Fused-Ring Design. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7093-7101. [PMID: 35099921 DOI: 10.1021/acsami.1c22135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic solar cells (OSCs) as the promising green energy technology have drawn much attention in the last two decades. In comparison to polymer solar cells, small-molecule organic solar cells (SMOSCs) have the advantages of precise chemical structure and molecular weight, purification feasibility, batch reproducibility, etc. Despite of the recent advances in molecular design, the efficiencies of SMOSCs are still lagging behind those of polymer-based OSCs. In this work, a new small-molecule donor (SMD) with a fused-ring-connected bridge denoted F-MD has been designed and synthesized. When F-MD was applied into SMOSCs, the F-MD:N3 blends exhibited a power conversion efficiency (PCE) of over 13%, which is much higher than that of the linear π-bridged molecule L-MD based devices (8.12%). Further studies revealed that the fused-ring design promoted the planarity of the molecular conformation and facilitated charge transport in OSCs. More importantly, this strategy also lowered the crystallinity and self-aggregation of the films, and hence optimized the microstructure and phase separation in the corresponding blends. Thereby, the F-MD-based blends have been evidenced to have better exciton dissociation and reduced charge recombination in comparison with the L-MD counterparts, explaining the enhanced PCEs. Our work demonstrates that the fused-ring π-bridge strategy in small-molecule-donor design is an effective pathway to promote the efficiency of SMOSCs as well as enhance the diversity of SMD materials.
Collapse
Affiliation(s)
- Shengxi Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, People's Republic of China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
14
|
Mehdizadeh-Rad H, Sreedhar Ram K, Mehdizadeh-Rad F, Ompong D, Setsoafia DDY, Elumalai NK, Zhu F, Singh J. Sources of Thermal Power Generation and Their Influence on the Operating Temperature of Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:420. [PMID: 35159768 PMCID: PMC8838742 DOI: 10.3390/nano12030420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
Thermal stability, closely associated with the operating temperature, is one of the desired properties for practical applications of organic solar cells (OSCs). In this paper, an OSC of the structure of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag was fabricated, and its current-voltage (J-V) characteristics and operating temperature were measured. The operating temperature of the same OSC was simulated using an analytical model, taking into consideration the heat transfer, charge carrier drift-diffusion and different thermal generation processes. The simulated results agreed well with the experimental ones. It was found that the thermalization of charge carriers above the band gap had the highest influence on the operating temperature of the OSCs. The energy off-set at the donor/acceptor interface in the bulk heterojunction (BHJ) was shown to have a negligible impact on the thermal stability of the OSCs. However, the energy off-sets at the electrode/charge-transporting layer and BHJ/charge-transporting layer interfaces had greater impacts on the operating temperature of OSCs at the short circuit current and maximum power point conditions. Our results revealed that a variation over the energy off-set range from 0.1 to 0.9 eV would induce an almost 10-time increase in the corresponding thermal power generation, e.g., from 0.001 to 0.01 W, in the cells operated at the short circuit current condition, contributing to about 16.7% of the total solar power absorbed in the OSC.
Collapse
Affiliation(s)
- Hooman Mehdizadeh-Rad
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Kiran Sreedhar Ram
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Farhad Mehdizadeh-Rad
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Dallas, TX 75080, USA;
| | - David Ompong
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Daniel Dodzi Yao Setsoafia
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Naveen Kumar Elumalai
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| | - Furong Zhu
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong;
| | - Jai Singh
- Energy and Resources Institute and College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia; (H.M.-R.); (K.S.R.); (D.O.); (D.D.Y.S.); (N.K.E.)
| |
Collapse
|
15
|
Liu W, Sun S, Zhou L, Cui Y, Zhang W, Hou J, Liu F, Xu S, Zhu X. Design of Near‐Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High‐Performance Semitransparent Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wuyue Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shaoming Sun
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory Center for Advanced Quantum Studies Beijing Normal University Beijing 100875 P. R. China
| | - Yong Cui
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory Center for Advanced Quantum Studies Beijing Normal University Beijing 100875 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 P. R. China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
|
17
|
Liu Y, Li S, Jing Y, Xiao L, Zhou H. Research Progress in Degradation Mechanism of Organic Solar Cells. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liu W, Sun S, Zhou L, Cui Y, Zhang W, Hou J, Liu F, Xu S, Zhu X. Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2021; 61:e202116111. [PMID: 34962046 DOI: 10.1002/anie.202116111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/12/2022]
Abstract
Semitransparent organic solar cells (ST-OSCs) are considered as one of the most valuable applications of OSCs and a strong contender in the market. However, the optical bandgap of current high-performance ST-OSCs is still not low enough to achieve the optimal balance between power conversion efficiency (PCE) and average visible transmittance (AVT). An N- substituted asymmetric nonfullerene acceptor SN with over 40 nm bathochromically shifted absorption compared to Y6 was designed and synthesized, based on which the device with PM6 as donor obtained a PCE of 14.3%, accompanied with a nonradiative voltage loss as low as 0.15 eV. Meanwhile, ternary devices with the addition of SN into PM6:Y6 can achieve a PCE of 17.5% with an unchanged open-circuit voltage and improved short-circuit current. Benefiting from extended NIR absorption and lowered voltage loss, ST-OSCs based on PM6:SN:Y6 were fabricated and the optimized device demonstrated a PCE of 14.0% at an AVT of 20.2%, which is the highest PCE at an AVT over 20%.
Collapse
Affiliation(s)
- Wuyue Liu
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Shaoming Sun
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Liang Zhou
- Beijing Normal University, Department of Physics, CHINA
| | - Yong Cui
- Institute of Chemistry Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, CHINA
| | - Wenkai Zhang
- Beijing Normal University, Department of Physics, CHINA
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, CHINA
| | - Feng Liu
- Shanxi University, School of Chemistry and Chemical Engineering, CHINA
| | - Shengjie Xu
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Xiaozhang Zhu
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Organic Solids, Zhongguancun North First Street 2, Haidi, 100190, Beijing, CHINA
| |
Collapse
|
19
|
Lee JW, Sun C, Kim DJ, Ha MY, Han D, Park JS, Wang C, Lee WB, Kwon SK, Kim TS, Kim YH, Kim BJ. Donor-Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells. ACS NANO 2021; 15:19970-19980. [PMID: 34797652 DOI: 10.1021/acsnano.1c07471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small-molecule acceptor (SMA)-based organic solar cells (OSCs) have achieved high power conversion efficiencies (PCEs), while their long-term stabilities remain to be improved to meet the requirements for real applications. Herein, we demonstrate the use of donor-acceptor alternating copolymer-type compatibilizers (DACCs) in high-performance SMA-based OSCs, enhancing their PCE, thermal stability, and mechanical robustness simultaneously. Detailed experimental and computational studies reveal that the addition of DACCs to polymer donor (PD)-SMA blends effectively reduces PD-SMA interfacial tensions and stabilizes the interfaces, preventing the coalescence of the phase-separated domains. As a result, desired morphologies with exceptional thermal stability and mechanical robustness are obtained for the PD-SMA blends. The addition of 20 wt % DACCs affords OSCs with a PCE of 17.1% and a cohesive fracture energy (Gc) of 0.89 J m-2, higher than those (PCE = 13.6% and Gc = 0.35 J m-2) for the control OSCs without DACCs. Moreover, at an elevated temperature of 120 °C, the OSCs with 20 wt % DACC exhibit excellent morphological stability, retaining over 95% of the initial PCE after 300 h. In contrast, the control OSCs without the DACC rapidly degraded to below 60% of the initial PCE after 144 h.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cheng Sun
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju 52828, South Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daehee Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju 52828, Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju 52828, South Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
21
|
Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meeting our current energy demands requires a reliable and efficient renewable energy source that will bring balance between power generation and energy consumption. Organic photovoltaic cells (OPVs), perovskite solar cells and dye-sensitized solar cells (DSSCs) are among the next-generation technologies that are progressing as potential sustainable renewable energy sources. Since the discoveries of highly conductive organic charge-transfer compounds in the 1950s, organic semiconductors have captured attention. Organic photovoltaic solar cells possess key characteristics ideal for emerging next-generation technologies such as being nontoxic, abundant, an inexpensive nanomaterial with ease of production, including production under ambient conditions. In this review article, we discuss recent methods developed towards improving the stability and average efficiency of nanostructured materials in OPVs aimed at sustainable agriculture and improve land-use efficiency. A comprehensive overview on developing cost-effective and user-friendly organic solar cells to contribute towards improved environmental stability is provided. We also summarize recent advances in the synthetic methods used to produce nanostructured active absorber layers of OPVs with improved efficiencies to supply the energy required towards ending poverty and protecting the planet.
Collapse
|
22
|
Ye L, Gao M, Hou J. Advances and prospective in thermally stable nonfullerene polymer solar cells. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1087-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Cheng Z, O'Carroll DM. Photon Recycling in Semiconductor Thin Films and Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004076. [PMID: 34411461 PMCID: PMC8529496 DOI: 10.1002/advs.202004076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/10/2021] [Indexed: 06/02/2023]
Abstract
Photon recycling (PR) plays an important role in the study of semiconductor materials and impacts the properties of their optoelectronic applications. However, PR has not been investigated comprehensively and it has not been demonstrated experimentally in many different kinds of semiconductor materials and devices. In this review paper, first, the authors introduce the background of PR and describe how this phenomenon was originally identified in semiconductors. Then, the theory and modelling of PR is reviewed and some of the important parameters that are used to quantify PR are highlighted. Next, a variety of the methods used to achieve and characterize PR in materials and devices are discussed. Examples of how the performance parameters of different types of optoelectronic devices are affected by PR are described. Finally, a summary of the roles of PR in semiconductor materials and devices and an outlook on how PR can be used to solve existing problems and challenges in the field of optoelectronics are provided. From this review, it is apparent that PR can have a positive impact on optoelectronic device performance, and that further in-depth theoretical and experimental studies are needed to rigorously demonstrate the advantages and importance of PR.
Collapse
Affiliation(s)
- Zhongkai Cheng
- Department of Chemistry and Chemical BiologyRutgers University123 Bevier RoadPiscatawayNJ08854USA
| | - Deirdre M. O'Carroll
- Department of Chemistry and Chemical BiologyRutgers University123 Bevier RoadPiscatawayNJ08854USA
- Department of Materials Science and EngineeringRutgers University607 Taylor RoadPiscatawayNJ08854USA
| |
Collapse
|
24
|
Kim M, Choi Y, Hwan Lee D, Min J, Pu YJ, Park T. Roles and Impacts of Ancillary Materials for Multi-Component Blend Organic Photovoltaics towards High Efficiency and Stability. CHEMSUSCHEM 2021; 14:3475-3487. [PMID: 34164933 DOI: 10.1002/cssc.202100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Organic photovoltaics (OPVs) are a promising next-generation photovoltaic technology with great potential for wearable and transparent device applications. Over the past decades, remarkable advances in device efficiency close to 20 % have been made for bulk heterojunction (BHJ)-based OPV devices with long-term stability, and room for further improvements still exists. In recent years, ancillary components have been demonstrated as effective in improving the photovoltaic performance of OPVs by controlling the optoelectronic and morphological properties of BHJ blends. Herein, an updated understanding of polymer-based blend OPVs is provided, and the role and impact of ancillary components in various blend systems are categorized and discussed. Lastly, a strategic perspective on the ancillary components of blend-based OPVs for commercialization is provided.
Collapse
Affiliation(s)
- Minjun Kim
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Yelim Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Jihyun Min
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, 37673, Pohang, Kyoungbuk, Korea
| |
Collapse
|
25
|
Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
|
27
|
Wang Q, Lei S, Luo M, Liang J, Zhou D, Zhang L, Chen J. Introducing Siloxane-Terminated Side Chains in Small Molecular Donors for All-Small-Molecule Organic Solar Cells: Modulated Molecular Orientation and Enhanced Efficiency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36080-36088. [PMID: 34291893 DOI: 10.1021/acsami.1c07863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, three small molecular donors (SMDs) S35, S35-1Si, and S35-2Si, with 3,5-difluorophenyl-substituted benzodithiophene as the central 2-dimensional unit to combine different numbers of siloxane-terminated side chain, were synthesized for all-small-molecule organic solar cells (ASM-OSCs). The three SMDs showed comparable film absorption peaks at 570 nm and optical band gaps of 1.8 eV. Relative to S35 and S35-1Si with symmetric alkyl side chains and asymmetric side chains on the central unit, respectively, the S35-2Si carrying two symmetric siloxane-terminated side chains displayed largely elevated melting and crystalline temperatures, lowered surface energy, and modulated molecular orientation. The three SMDs possessed edge-on dominated molecular orientations of their neat films; however, a big difference was found for their blend films with nonfullerene acceptor Y6. The S35:Y6 and S35-1Si:Y6 blends exhibited edge-on and face-on bimodal orientations but the S35-2Si:Y6 blend showed pure face-on orientation, indicating quite different donor:acceptor intermolecular interactions. Some large domains existed in the S35:Y6 and S35-1Si:Y6 blends, but could be suppressed by the S35-2Si:Y6 blend, leading to a more balanced charge transport. In ASM-OSCs, the two S35:Y6 and S35-1Si:Y6 active layers showed comparable power conversion efficiencies (PCE) of ∼12% but a much higher efficiency of 13.50% could be achieved with the S35-2Si:Y6 active layer. Our results suggest that the siloxane-terminated side chain is promising to regulate crystalline ability of a SMD, paving a way for high performance ASM-OSCs.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuyi Lei
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Mei Luo
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiahao Liang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Deng Zhou
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Min Y, Dou C, Tian H, Liu J, Wang L. Isomers of B←N‐Fused Dibenzo‐azaacenes: How B←N Affects Opto‐electronic Properties and Device Behaviors? Chemistry 2021; 27:4364-4372. [DOI: 10.1002/chem.202004615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
- University of Chinese Academy of Science 19(A) Yuquan Road Beijing 100049 China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| |
Collapse
|
29
|
Influence of end-capped group on structural and electronic properties of the At-π-Ac-π-At small molecule donor for high-performance organic solar cells. Struct Chem 2021. [DOI: 10.1007/s11224-020-01620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Wei R, Chen H, Guo Y, Han H, Zhang D, Zhu Y, He F, Zhao D. Thiophene-Fused Perylenediimide-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rong Wei
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yikun Guo
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Han Han
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Miao J, Ding Z, Liu J, Wang L. Research Progress in Organic Solar Cells Based on Small Molecule Donors and Polymer Acceptors. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Park S, Kim T, Yoon S, Koh CW, Woo HY, Son HJ. Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002217. [PMID: 33020976 DOI: 10.1002/adma.202002217] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/09/2020] [Indexed: 05/20/2023]
Abstract
Organic solar cells based on bulk heterojunctions (BHJs) are attractive energy-conversion devices that can generate electricity from absorbed sunlight by dissociating excitons and collecting charge carriers. Recent breakthroughs attained by development of nonfullerene acceptors result in significant enhancement in power conversion efficiency (PCEs) exceeding 17%. However, most of researches have focused on pursuing high efficiency of small-area (<1 cm2 ) unit cells fabricated usually with spin coating. For practical application of organic photovoltaics (OPVs) from lab-scale unit cells to industrial products, it is essential to develop efficient technologies that can extend active area of devices with minimized loss of performance and ensured operational stability. In this progress report, an overview of recent advancements in materials and processing technologies is provided for transitioning from small-area laboratory-scale devices to large-area industrial scale modules. First, development of materials that satisfy requirements of high tolerability in active layer thickness and large-area adaptability is introduced. Second, morphology control using various coating techniques in a large active area is discussed. Third, the recent research progress is also underlined for understanding mechanisms of OPV degradation and studies for improving device long-term stability along with reliable evaluation procedures.
Collapse
Affiliation(s)
- Sungmin Park
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taehee Kim
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongwon Yoon
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Jung Son
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
33
|
Abstract
ConspectusOrganic photovoltaics (OPVs), in which blend films of organic or polymer electron donor and electron acceptor are used as the active layer, are a promising photovoltaic technology with the great advantages of solution processing, low cost, and flexibility. The development of small molecular or polymer electron acceptors has boosted power conversion efficiency (PCE) of OPVs from 10% to 18%. Among them, polymer acceptors have the merits of superior morphology stability and excellent mechanical properties. However, owing to the key requirement of very low-lying LUMO/HOMO energy levels for polymer acceptors, very few conjugated polymers can work as polymer acceptors in OPVs. The majority of polymer electron acceptors are based on strong electron-withdrawing imide units or cyano substituents. Since 2015, conjugated polymers containing the boron-nitrogen coordination bond (B←N) have emerged as a new kind of polymer electron acceptor with excellent photovoltaic performance in various kinds of organic photovoltaic devices. In this Account, we summarize our research progress on polymer acceptors containing B←N units.At first, we introduce the principle of B←N to greatly down shift LUMO/HOMO energy levels, which enables B←N to be used to design polymer acceptors. Then we describe the two molecular design strategies for polymer acceptors containing B←N units. For high-efficiency OPVs, polymer acceptors should have wide absorption spectra, proper LUMO/HOMO energy levels, high electron mobility, and good donor/acceptor blend morphology. We discuss how to use molecular design to finely tune the absorption spectra, energy levels, and electron mobility of the B←N-containing polymer acceptors. We also discuss how to improve the phase separation morphology of the blends of these polymer acceptors with small molecular donors or polymer donors. These improvements lead to excellent performance of the polymer acceptors containing B←N units in three kinds of organic photovoltaic devices. The small molecular donor/polymer acceptor type organic solar cells show excellent thermal stability and PCE of 8.0%, which is the highest value reported so far. The all-polymer solar cells exhibit PCE of 10.1%. The all-polymer indoor photovoltaics show PCE as high as 27.4% under fluorescent lamp illumination at 2000 lx. This PCE is fairly comparable to those of the best organic or inorganic indoor photovoltaics. These results provide a solid foundation for future advances. Finally, we propose that great attention should be paid to further PCE enhancement of OPVs and indoor photovoltaic applications of this new emerging kind of polymer acceptor.
Collapse
Affiliation(s)
- Ruyan Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
34
|
Yan C, Tang H, Ma R, Zhang M, Liu T, Lv J, Huang J, Yang Y, Xu T, Kan Z, Yan H, Liu F, Lu S, Li G. Synergy of Liquid-Crystalline Small-Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000149. [PMID: 32775152 PMCID: PMC7404173 DOI: 10.1002/advs.202000149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Indexed: 05/27/2023]
Abstract
Achieving an ideal morphology is an imperative avenue for enhancing key parameters toward high-performing organic solar cells (OSCs). Among a myriad of morphological-control methods, the strategy of incorporating a third component with structural similarity and crystallinity difference to construct ternary OSCs has emerged as an effective approach to regulate morphology. A nematic liquid-crystalline benzodithiophene terthiophene rhodamine (BTR) molecule, which possesses the same alkylthio-thienyl-substituted benzo moiety but obviously stronger crystallinity compared to classical medium-bandgap polymeric donor PM6, is employed as a third component to construct ternary OSCs based on a PM6:BTR:Y6 system. The doping of BTR (5 wt%) is found to be enough to improve the OSC morphology-significantly enhancing the crystallinity of the photoactive layer while slightly reducing the donor/acceptor phase separation scale simultaneously. Rarely is such a morphology evolution reported. It positively affects the electronic properties of the device-prolongs the carrier lifetime, shortens the photocurrent decay time, facilitates exciton dissociation, charge transport, and collection, and ultimately boosts the power conversion efficiency from 15.7% to 16.6%. This result demonstrates that the successful synergy of liquid-crystalline small-molecule and polymeric donors delicately adjusts the active-layer morphology and refines device performance, which brings vibrancy to the OSC research field.
Collapse
Affiliation(s)
- Cenqi Yan
- The Hong Kong Polytechnic University ShenZhen Research instituteShenzhen518057China
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HumKowloonHong Kong999077China
| | - Hua Tang
- The Hong Kong Polytechnic University ShenZhen Research instituteShenzhen518057China
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HumKowloonHong Kong999077China
- Organic Semiconductor Research CenterChongqing Institute of Green and Intelligent TechnologyChongqing400714China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & ReconstructionHong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Ming Zhang
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiaotong UniversityShanghai200240China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & ReconstructionHong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Jie Lv
- Organic Semiconductor Research CenterChongqing Institute of Green and Intelligent TechnologyChongqing400714China
| | - Jiaming Huang
- The Hong Kong Polytechnic University ShenZhen Research instituteShenzhen518057China
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HumKowloonHong Kong999077China
| | - YanKang Yang
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiaotong UniversityShanghai200240China
| | - Tongle Xu
- Organic Semiconductor Research CenterChongqing Institute of Green and Intelligent TechnologyChongqing400714China
| | - Zhipeng Kan
- Organic Semiconductor Research CenterChongqing Institute of Green and Intelligent TechnologyChongqing400714China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & ReconstructionHong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiaotong UniversityShanghai200240China
| | - Shirong Lu
- Organic Semiconductor Research CenterChongqing Institute of Green and Intelligent TechnologyChongqing400714China
| | - Gang Li
- The Hong Kong Polytechnic University ShenZhen Research instituteShenzhen518057China
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HumKowloonHong Kong999077China
| |
Collapse
|
35
|
Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman‐Pelaez A, Zhu C, Zhang Z, Ade H, Li Y. High‐Performance All‐Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angew Chem Int Ed Engl 2020; 59:15181-15185. [DOI: 10.1002/anie.202005357] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaqi Du
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke Hu
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Indunil Angunawela
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Alex Liebman‐Pelaez
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Chenhui Zhu
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Zhanjun Zhang
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
36
|
Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman‐Pelaez A, Zhu C, Zhang Z, Ade H, Li Y. High‐Performance All‐Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaqi Du
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke Hu
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Indunil Angunawela
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Alex Liebman‐Pelaez
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Chenhui Zhu
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Zhanjun Zhang
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
37
|
Sun H, Guo X, Facchetti A. High-Performance n-Type Polymer Semiconductors: Applications, Recent Development, and Challenges. Chem 2020. [DOI: 10.1016/j.chempr.2020.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2429-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9669-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. 13.34 % Efficiency Non‐Fullerene All‐Small‐Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy. Angew Chem Int Ed Engl 2020; 59:2808-2815. [DOI: 10.1002/anie.201910297] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Lingchao Xie
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Billy Fanady
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Jiaming Huang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Tingting Yan
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenxia Zhang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
41
|
Meng H, Li Y, Pang B, Li Y, Xiang Y, Guo L, Li X, Zhan C, Huang J. Effects of Halogenation in B ← N Embedded Polymer Acceptors on Performance of All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2733-2742. [PMID: 31856566 DOI: 10.1021/acsami.9b20214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halogenation, for example, fluorination and chlorination, is an effective strategy to regulate the performance of organic photovoltaic materials. Although fluorination has been widely applied to polymer acceptors, systematic studies on the comparison of nonhalogenated, fluorinated, and chlorinated polymer acceptors have been a blank to now. Herein, a B ← N embedded electron-deficient unit (A), namely, BNIDT was copolymerized with three electron-rich units (D), that is, benzodithiophene (BDT), fluorinated BDT, and chlorinated BDT to obtain three D-A polymers of BN-BDT, BN-BDT-F, and BN-BDT-Cl, respectively. The three polymers exhibit similar LUMOs of ca. -3.77 eV, whereas the HOMOs are remarkably decreased from BN-BDT (-5.46 eV) to BN-BDT-F (-5.71 eV) and further slightly lowered to BN-BDT-Cl (-5.74 eV). All-polymer solar cells (all-PSCs) were fabricated using PBDB-T as the donor and the three B ← N-based polymers as the acceptors. The efficiencies of all-PSCs were significantly promoted from nonhalogenated BN-BDT (1.60%) to fluorinated BN-BDT-F (3.71%) and further elevated to chlorinated BN-BDT-Cl (4.23%). Device characterizations revealed that halogenation on the polymer acceptors leads to enhanced hole-transfer driving forces and better donor/acceptor miscibility, for example, smaller domain sizes and root-mean-square roughness (rms) values, which further gives rise to higher and more balanced hole/electron mobilities and efficient physical processes, for example, efficient exciton dissociation and collection and weaker recombination losses in halogenated devices. This work demonstrates that the photovoltaic performance of nonhalogenated polymer acceptors can be remarkably boosted by fluorination and further enhanced by chlorination. This is the first systematic study on the halogenated polymer acceptors by comprehensively comparing nonhalogenated, fluorinated, and chlorinated ones.
Collapse
Affiliation(s)
- Huifeng Meng
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
- CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongchun Li
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
- CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Bo Pang
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
| | - Yuqing Li
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
- CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Ying Xiang
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
| | - Liang Guo
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
| | - Xuemei Li
- School of Chemistry & Chemical Engineering , Linyi University , Linyi 276000 , China
| | - Chuanlang Zhan
- CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jianhua Huang
- College of Materials Science and Engineering , Huaqiao University , Xiamen 361021 , P. R. China
| |
Collapse
|
42
|
Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. 13.34 % Efficiency Non‐Fullerene All‐Small‐Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Lingchao Xie
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Billy Fanady
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Jiaming Huang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
| | - Tingting Yan
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenxia Zhang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
43
|
Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun (Camb) 2020; 56:12463-12478. [PMID: 32969427 DOI: 10.1039/d0cc04869k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecule acceptors are a very attractive technology for solar energy conversion, and their performance is heavily determined by film morphology. It is of considerable interest to reveal instructive morphology-performance relationships of these blends. This feature article discusses the recent advances in analysing the morphology formation of nonfullerene PSCs with an effective polymer thermodynamic quantity, i.e., Flory-Huggins interaction parameter χ. In particular, guidelines of high and low χ systems are summarized. The fundamental understanding of χ and its correlations to film morphology and photovoltaic device parameters is of utmost relevance for providing essential material design criteria, establishing suitable morphology processing guidelines, and thus advancing the practical applications of PSCs based on nonfullerene acceptors.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Ziqi Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
44
|
Zhu C, An K, Zhong W, Li Z, Qian Y, Su X, Ying L. Design and synthesis of non-fullerene acceptors based on a quinoxalineimide moiety as the central building block for organic solar cells. Chem Commun (Camb) 2020; 56:4700-4703. [DOI: 10.1039/d0cc00896f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The imide-functionalized quinoxaline unit allows for the incorporation of an additional solubilizing group without disturbing the planar structure of the core unit.
Collapse
Affiliation(s)
- Chunguang Zhu
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Kang An
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Wenkai Zhong
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Zhenye Li
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Yu Qian
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Xiaozhe Su
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory, of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
45
|
Wan P, An C, Zhang T, Ma K, Liang N, Xu Y, Zhang S, Xu B, Zhang J, Hou J. The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Polym Chem 2020. [DOI: 10.1039/c9py01438a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two thiazolothiazole-based polymers were designed and synthesized, which exhibited significantly different aggregation and photovoltaic properties.
Collapse
|
46
|
Zhang Z, Wang T, Ding Z, Miao J, Wang J, Dou C, Meng B, Liu J, Wang L. Small Molecular Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Molecular Weight on Active Layer Morphology. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01666] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zijian Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tao Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Zicheng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiahui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|