1
|
Sadeghinasab A, Fatahiasl J, Tahmasbi M, Razmjoo S, Yousefipour M. Assessing Glioblastoma Treatment Response Using Machine Learning Approach Based on Magnetic Resonance Images Radiomics: An Exploratory Study. Health Sci Rep 2025; 8:e70323. [PMID: 39741746 PMCID: PMC11683675 DOI: 10.1002/hsr2.70323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Background and Objectives Assessing treatment response in glioblastoma multiforme (GBM) tumors necessitates developing more objective and quantitative approaches. A machine learning-based approach is presented in this exploratory study for GBM patients' treatment response assessment based on radiomics extracted from magnetic resonance (MR) images. Methods MR images from 77 GBM patients were acquired at two post-surgery stages and preprocessed. From these images, 107 radiomics were extracted from the segmented tumoral cavities. The most informative features for training machine learning (ML) classifiers were identified using the Spearman correlation analysis of features retained by the forward sequential and LASSO algorithms. Applied machine learning models included support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), AdaBoost, categorical boosting (CatBoost), light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), Naïve Bayes (NB) and logistic regression (LR). Ten-fold cross-validation was used to validate the models. Statistical analysis was conducted using SPSS version 27; p-value < 0.05 was considered significant. Results The Naïve Bayes classifier demonstrated the highest performance among the trained models, achieving an AUC (area under the receiver operating characteristic curve) of 0.86 ± 0.13 when trained on the seven features selected by the forward sequential algorithm and an AUC of 0.84 ± 0.14 when trained using the five features chosen by the LASSO algorithm. The second-best performance was observed with the KNN classifier, which achieved an AUC of 0.80 ± 0.17 when trained on the features selected by the forward sequential algorithm. Conclusion Findings demonstrated that MRI-based radiomics could be used as distinctive features to train ML models for GBM patients' treatment response assessment. Trained ML classifiers based on these features serve as aiding tools to expedite the quantitative assessment of GBM patients' treatment response besides qualitative evaluations.
Collapse
Affiliation(s)
- Amirreza Sadeghinasab
- Department of Radiologic Technology, School of Allied Medical Sciences, AhvazJundishapur University of Medical SciencesAhvazIran
| | - Jafar Fatahiasl
- Department of Radiologic Technology, School of Allied Medical Sciences, AhvazJundishapur University of Medical SciencesAhvazIran
| | - Marziyeh Tahmasbi
- Department of Radiologic Technology, School of Allied Medical Sciences, AhvazJundishapur University of Medical SciencesAhvazIran
| | - Sasan Razmjoo
- Department of Clinical Oncology and Clinical Research Development Center, Golestan HospitalAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mohammad Yousefipour
- Department of Computer Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
2
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Guo Y, Zhang S, Sun S, Zhang Q, Zhai Y, Wang X, Ge P, Zhang D. Analysis of the role of perfusion parameters in predicting rupture of brain arteriovenous malformations: a multi-center study. Sci Rep 2024; 14:25566. [PMID: 39462139 PMCID: PMC11513006 DOI: 10.1038/s41598-024-77316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to investigate the potential correlation between the perfusion parameters of brain arteriovenous malformations (bAVMs) as determined by multiphase CT angiography and bAVM rupture. Based on the occurrence of bAVM-related hemorrhage, 480 diagnosed bAVM patients were divided into hemorrhage (n = 220) and non-hemorrhage (n = 260) groups in this retrospective multi-center study spanning 2010 to 2020. On initial rupture CT images, the bAVM nidus and major draining vein were segmented, and time-density curves were extracted to compute perfusion parameters including mean transit time (MTT), time to peak (TTP), blood volume (BV), and blood flow (BF). To examine the potential correlation between these parameters and bAVM rupture, logistic regression was utilized to analyze multifactorial data and compare differences between the two groups. The ruptured group demonstrated a bAVM nidus characterized by an increased BF, a shorter TTP and MTT, and a higher peak density. The veins that were draining exhibited a reduced TTP, MTT, and peak density. A nidus TTP of less than 4s was identified by the multifactorial analysis as a critical risk factor for bAVM rupture. The statistical results highlight the noteworthy correlation between nidus TTP and bAVM rupture, presenting an original framework for assessing the risk of rupture.
Collapse
Affiliation(s)
- Yue Guo
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, South Xixiazhuang, Shijingshan district, Beijing, China.
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Wisnu Wardhana DP, Maliawan S, Mahadewa TGB, Rosyidi RM, Wiranata S. Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2354. [PMID: 39518322 PMCID: PMC11545697 DOI: 10.3390/diagnostics14212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. METHODS We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. RESULTS In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). CONCLUSIONS An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Dewa Putu Wisnu Wardhana
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Udayana University Hospital, Denpasar 80361, Indonesia
| | - Sri Maliawan
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Tjokorda Gde Bagus Mahadewa
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Rohadi Muhammad Rosyidi
- Department of Neurosurgery, Medical Faculty of Mataram University, West Nusa Tenggara General Hospital, Mataram 84371, Indonesia
| | - Sinta Wiranata
- Faculty of Medicine, Universitas Udayana, Denpasar 80232, Indonesia
| |
Collapse
|
5
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
6
|
Zhang Y, Zou J, Li L, Han M, Dong J, Wang X. Comprehensive assessment of postoperative recurrence and survival in patients with cervical cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108583. [PMID: 39116515 DOI: 10.1016/j.ejso.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The prediction of postoperative recurrence and survival in cervical cancer patients has been a major clinical challenge. The combination of clinical parameters, inflammatory markers, intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI), and MRI-derived radiomics is expected to support the prediction of recurrence-free survival (RFS), disease-free survival (DFS), tumor-specific survival (CSS), and overall survival (OS) of cervical cancer patients after surgery. METHODS A retrospective analysis of 181 cervical cancer patients with continuous follow-up was completed. The parameters of IVIM-DWI and radiomics were measured, analyzed, and screened. The LASSO regularization was used to calculate the radiomics score (Rad-score). Multivariate Cox regression analysis was used to construct nomogram models for predicting postoperative RFS, DFS, CSS, and OS in cervical cancer patients, with internal and external validation. RESULTS Clinical stage, parametrial infiltration, internal irradiation, D-value, and Rad-score were independent prognostic factors for RFS; Squamous cell carcinoma antigen, internal irradiation, D-value, f-value and Rad-score were independent prognostic factors for DFS; Maximum tumor diameter, lymph node metastasis, platelets, D-value and Rad-score were independent prognostic factors for CSS; Lymph node metastasis, systemic inflammation response index, D-value and Rad-score were independent prognostic factors for OS. The AUCs of each model predicting RFS, DFS, CSS, and OS at 1, 3, and 5 years were 0.985, 0.929, 0.910 and 0.833, 0.818, 0.816 and 0.832, 0.863, 0.891 and 0.804, 0.812, 0.870, respectively. CONCLUSIONS Nomograms based on clinical and imaging parameters showed high clinical value in predicting postoperative RFS, DFS, CSS, and OS of cervical cancer patients and can be used as prognostic markers.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jie Zou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Linrui Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Mengyu Han
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of Chinaa, Hefei, 230031, Anhui, China
| | - Jiangning Dong
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of Chinaa, Hefei, 230031, Anhui, China.
| | - Xin Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Zhang S, Wang J, Sun S, Zhang Q, Zhai Y, Wang X, Ge P, Shi Z, Zhang D. CT Angiography Radiomics Combining Traditional Risk Factors to Predict Brain Arteriovenous Malformation Rupture: a Machine Learning, Multicenter Study. Transl Stroke Res 2024; 15:784-794. [PMID: 37311939 DOI: 10.1007/s12975-023-01166-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to develop a machine learning model for predicting brain arteriovenous malformation (bAVM) rupture using a combination of traditional risk factors and radiomics features. This multicenter retrospective study enrolled 586 patients with unruptured bAVMs from 2010 to 2020. All patients were grouped into the hemorrhage (n = 368) and non-hemorrhage (n = 218) groups. The bAVM nidus were segmented on CT angiography images using Slicer software, and radiomic features were extracted using Pyradiomics. The dataset included a training set and an independent testing set. The machine learning model was developed on the training set and validated on the testing set by merging numerous base estimators and a final estimator based on the stacking method. The area under the receiver operating characteristic (ROC) curve, precision, and the f1 score were evaluated to determine the performance of the model. A total of 1790 radiomics features and 8 traditional risk factors were contained in the original dataset, and 241 features remained for model training after L1 regularization filtering. The base estimator of the ensemble model was Logistic Regression, whereas the final estimator was Random Forest. In the training set, the area under the ROC curve of the model was 0.982 (0.967-0.996) and 0.893 (0.826-0.960) in the testing set. This study indicated that radiomics features are a valuable addition to traditional risk factors for predicting bAVM rupture. In the meantime, ensemble learning can effectively improve the performance of a prediction model.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
9
|
Ghadimi DJ, Vahdani AM, Karimi H, Ebrahimi P, Fathi M, Moodi F, Habibzadeh A, Khodadadi Shoushtari F, Valizadeh G, Mobarak Salari H, Saligheh Rad H. Deep Learning-Based Techniques in Glioma Brain Tumor Segmentation Using Multi-Parametric MRI: A Review on Clinical Applications and Future Outlooks. J Magn Reson Imaging 2024. [PMID: 39074952 DOI: 10.1002/jmri.29543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Delaram J Ghadimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M Vahdani
- Image Guided Surgery Lab, Research Center for Biomedical Technologies and Robotics, Advanced Medical Technologies and Equipment Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Ebrahimi
- Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzan Moodi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Gelareh Valizadeh
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mobarak Salari
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Li L, Xiao F, Wang S, Kuang S, Li Z, Zhong Y, Xu D, Cai Y, Li S, Chen J, Liu Y, Li J, Li H, Xu H. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis. Sci Rep 2024; 14:16031. [PMID: 38992201 PMCID: PMC11239670 DOI: 10.1038/s41598-024-66653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shouchao Wang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengyu Kuang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery&Brain Glioma Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Wuhan GE Healthcare, Wuhan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Park CJ, Kim S, Han K, Ahn SS, Kim D, Park YW, Chang JH, Kim SH, Lee SK. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas. Yonsei Med J 2024; 65:283-292. [PMID: 38653567 PMCID: PMC11045349 DOI: 10.3349/ymj.2023.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Lower-grade gliomas of histologic grades 2 and 3 follow heterogenous clinical outcomes, which necessitates risk stratification. This study aimed to evaluate whether diffusion-weighted and perfusion-weighted MRI radiomics allow overall survival (OS) prediction in patients with lower-grade gliomas and investigate its prognostic value. MATERIALS AND METHODS In this retrospective study, radiomic features were extracted from apparent diffusion coefficient, relative cerebral blood volume map, and Ktrans map in patients with pathologically confirmed lower-grade gliomas (January 2012-February 2019). The radiomics risk score (RRS) calculated from selected features constituted a radiomics model. Multivariable Cox regression analysis, including clinical features and RRS, was performed. The models' integrated area under the receiver operating characteristic curves (iAUCs) were compared. The radiomics model combined with clinical features was presented as a nomogram. RESULTS The study included 129 patients (median age, 44 years; interquartile range, 37-57 years; 63 female): 90 patients for training set and 39 patients for test set. The RRS was an independent risk factor for OS with a hazard ratio of 6.01. The combined clinical and radiomics model achieved superior performance for OS prediction compared to the clinical model in both training (iAUC, 0.82 vs. 0.72, p=0.002) and test sets (0.88 vs. 0.76, p=0.04). The radiomics nomogram combined with clinical features exhibited good agreement between the actual and predicted OS with C-index of 0.83 and 0.87 in the training and test sets, respectively. CONCLUSION Adding diffusion- and perfusion-weighted MRI radiomics to clinical features improved survival prediction in lower-grade glioma.
Collapse
Affiliation(s)
- Chae Jung Park
- Department of Radiology, Research Institute of Radiological Science, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sooyon Kim
- Department of Applied Statistics, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Dain Kim
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Korea
| | - Yae Won Park
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Cuccarini V, Savoldi F, Mardor Y, Last D, Pellegatta S, Mazzi F, Bruzzone MG, Anghileri E, Pollo B, Maddaloni L, Russo C, Bocchi E, Pinzi V, Eoli M, Aquino D. Response assessment of GBM during immunotherapy by delayed contrast treatment response assessment maps. Front Neurol 2024; 15:1374737. [PMID: 38651109 PMCID: PMC11033465 DOI: 10.3389/fneur.2024.1374737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Assessing the treatment response of glioblastoma multiforme during immunotherapy (IT) is an open issue. Treatment response assessment maps (TRAMs) might help distinguish true tumor progression (TTP) and pseudoprogression (PsP) in this setting. Methods We recruited 16 naïve glioblastoma patients enrolled in a phase II trial consisting of the Stupp protocol (a standardized treatment for glioblastoma involving combined radiotherapy and chemotherapy with temozolomide, followed by adjuvant temozolomide) plus IT with dendritic cells. Patients were followed up till progression or death; seven underwent a second surgery for suspected progression. Clinical, immunological, and MRI data were collected from all patients and histology in case of second surgery. Patients were classified as responders (progression-free survival, PFS > 12 months), and non-responders (PFS ≤ 12), HIGH-NK (natural killer cells, i.e., immunological responders), and LOW-NK (immunological non-responders) based on immune cell counts in peripheral blood. TRAMs differentiate contrast-enhancing lesions with different washout dynamics into hypothesized tumoral (conventionally blue-colored) vs. treatment-related (red-colored). Results Using receiver operating characteristic (ROC) curves, a threshold of -0.066 in VBlue/VCE (volume of the blue portion of tumoral area/volume of contrast enhancement) variation between values obtained in the MRI performed before PsP/TTP and at TTP/PSP allowed to discriminate TTP from PsP with a sensitivity of 71.4% and a specificity of 100%. Among HIGH-NK patients, at month 6 there was a significant reduction compared to baseline and month 2 in median "blue" volumes. Discussion In conclusion, in our pilot study TRAMs support the discrimination between tumoral and treatment-related enhancing features in immunological responders vs. non-responders, the distinction between PsP and TTP, and might provide surrogate markers of immunological response.
Collapse
Affiliation(s)
- Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Filippo Savoldi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Yael Mardor
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - David Last
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Serena Pellegatta
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Anghileri
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Neuro-Pathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Maddaloni
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Russo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Elisa Bocchi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Pinzi
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
13
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
14
|
Zhang L, Fan M, Li L. Deconvolution-Based Pharmacokinetic Analysis to Improve the Prediction of Pathological Information of Breast Cancer. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:13-24. [PMID: 38343210 DOI: 10.1007/s10278-023-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 03/02/2024]
Abstract
Pharmacokinetic (PK) parameters, revealing changes in the tumor microenvironment, are related to the pathological information of breast cancer. Tracer kinetic models (e.g., Tofts-Kety model) with a nonlinear least square solver are commonly used to estimate PK parameters. However, the method is sensitive to noise in images. To relieve the effects of noise, a deconvolution (DEC) method, which was validated on synthetic concentration-time series, was proposed to accurately calculate PK parameters from breast dynamic contrast-enhanced magnetic resonance imaging. A time-to-peak-based tumor partitioning method was used to divide the whole tumor into three tumor subregions with different kinetic patterns. Radiomic features were calculated from the tumor subregion and whole tumor-based PK parameter maps. The optimal features determined by the fivefold cross-validation method were used to build random forest classifiers to predict molecular subtypes, Ki-67, and tumor grade. The diagnostic performance evaluated by the area under the receiver operating characteristic curve (AUC) was compared between the subregion and whole tumor-based PK parameters. The results showed that the DEC method obtained more accurate PK parameters than the Tofts method. Moreover, the results showed that the subregion-based Ktrans (best AUCs = 0.8319, 0.7032, 0.7132, 0.7490, 0.8074, and 0.6950) achieved a better diagnostic performance than the whole tumor-based Ktrans (AUCs = 0.8222, 0.6970, 0.6511, 0.7109, 0.7620, and 0.5894) for molecular subtypes, Ki-67, and tumor grade. These findings indicate that DEC-based Ktrans in the subregion has the potential to accurately predict molecular subtypes, Ki-67, and tumor grade.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, China
| | - Ming Fan
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Sabeghi P, Zarand P, Zargham S, Golestany B, Shariat A, Chang M, Yang E, Rajagopalan P, Phung DC, Gholamrezanezhad A. Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors. Cancers (Basel) 2024; 16:576. [PMID: 38339327 PMCID: PMC10854543 DOI: 10.3390/cancers16030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
This study delineates the pivotal role of imaging within the field of neurology, emphasizing its significance in the diagnosis, prognostication, and evaluation of treatment responses for central nervous system (CNS) tumors. A comprehensive understanding of both the capabilities and limitations inherent in emerging imaging technologies is imperative for delivering a heightened level of personalized care to individuals with neuro-oncological conditions. Ongoing research in neuro-oncological imaging endeavors to rectify some limitations of radiological modalities, aiming to augment accuracy and efficacy in the management of brain tumors. This review is dedicated to the comparison and critical examination of the latest advancements in diverse imaging modalities employed in neuro-oncology. The objective is to investigate their respective impacts on diagnosis, cancer staging, prognosis, and post-treatment monitoring. By providing a comprehensive analysis of these modalities, this review aims to contribute to the collective knowledge in the field, fostering an informed approach to neuro-oncological care. In conclusion, the outlook for neuro-oncological imaging appears promising, and sustained exploration in this domain is anticipated to yield further breakthroughs, ultimately enhancing outcomes for individuals grappling with CNS tumors.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Paniz Zarand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Sina Zargham
- Department of Basic Science, California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Batis Golestany
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, 900 University Ave., Riverside, CA 92521, USA;
| | - Arya Shariat
- Kaiser Permanente Los Angeles Medical Center, 4867 W Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Myles Chang
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Evan Yang
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Priya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Daniel Chang Phung
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| |
Collapse
|
16
|
Alongi P, Arnone A, Vultaggio V, Fraternali A, Versari A, Casali C, Arnone G, DiMeco F, Vetrano IG. Artificial Intelligence Analysis Using MRI and PET Imaging in Gliomas: A Narrative Review. Cancers (Basel) 2024; 16:407. [PMID: 38254896 PMCID: PMC10814838 DOI: 10.3390/cancers16020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The lack of early detection and a high rate of recurrence/progression after surgery are defined as the most common causes of a very poor prognosis of Gliomas. The developments of quantification systems with special regards to artificial intelligence (AI) on medical images (CT, MRI, PET) are under evaluation in the clinical and research context in view of several applications providing different information related to the reconstruction of imaging, the segmentation of tissues acquired, the selection of features, and the proper data analyses. Different approaches of AI have been proposed as the machine and deep learning, which utilize artificial neural networks inspired by neuronal architectures. In addition, new systems have been developed using AI techniques to offer suggestions or make decisions in medical diagnosis, emulating the judgment of radiologist experts. The potential clinical role of AI focuses on the prediction of disease progression in more aggressive forms in gliomas, differential diagnosis (pseudoprogression vs. proper progression), and the follow-up of aggressive gliomas. This narrative Review will focus on the available applications of AI in brain tumor diagnosis, mainly related to malignant gliomas, with particular attention to the postoperative application of MRI and PET imaging, considering the current state of technical approach and the evaluation after treatment (including surgery, radiotherapy/chemotherapy, and prognostic stratification).
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Annachiara Arnone
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Viola Vultaggio
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Alessandro Fraternali
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale IRCCS, 42122 Reggio Emilia, Italy; (A.A.); (A.F.); (A.V.)
| | - Cecilia Casali
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (P.A.); (V.V.); (G.A.)
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
- Department of Oncology and Onco-Hematology, Università di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21218, USA
| | - Ignazio Gaspare Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (C.C.); (F.D.)
- Department of Biomedical Sciences for Health, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
17
|
Li X, Lu Y, Liu L, Wang D, Zhao Y, Mei N, Geng D, Ma X, Zheng W, Duan S, Wu PY, Wen H, Tan Y, Sun X, Sun S, Li Z, Yu T, Yin B. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study. Eur Radiol 2023; 33:8912-8924. [PMID: 37498381 DOI: 10.1007/s00330-023-09955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Edema is a complication of gamma knife radiosurgery (GKS) in meningioma patients that leads to a variety of consequences. The aim of this study is to construct radiomics-based machine learning models to predict post-GKS edema development. METHODS In total, 445 meningioma patients who underwent GKS in our institution were enrolled and partitioned into training and internal validation datasets (8:2). A total of 150 cases from multicenter data were included as the external validation dataset. In each case, 1132 radiomics features were extracted from each pre-treatment MRI sequence (contrast-enhanced T1WI, T2WI, and ADC maps). Nine clinical features and eight semantic features were also generated. Nineteen random survival forest (RSF) and nineteen neural network (DeepSurv) models with different combinations of radiomics, clinical, and semantic features were developed with the training dataset, and evaluated with internal and external validation. A nomogram was derived from the model achieving the highest C-index in external validation. RESULTS All the models were successfully validated on both validation datasets. The RSF model incorporating clinical, semantic, and ADC radiomics features achieved the best performance with a C-index of 0.861 (95% CI: 0.748-0.975) in internal validation, and 0.780 (95% CI: 0.673-0.887) in external validation. It stratifies high-risk and low-risk cases effectively. The nomogram based on the predicted risks provided personalized prediction with a C-index of 0.962 (95%CI: 0.951-0.973) and satisfactory calibration. CONCLUSION This RSF model with a nomogram could represent a non-invasive and cost-effective tool to predict post-GKS edema risk, thus facilitating personalized decision-making in meningioma treatment. CLINICAL RELEVANCE STATEMENT The RSF model with a nomogram built in this study represents a handy, non-invasive, and cost-effective tool for meningioma patients to assist in better counselling on the risks, appropriate individual treatment decisions, and customized follow-up plans. KEY POINTS • Machine learning models were built to predict post-GKS edema in meningioma. The random survival forest model with clinical, semantic, and ADC radiomics features achieved excellent performance. • The nomogram based on the predicted risks provides personalized prediction with a C-index of 0.962 (95%CI: 0.951-0.973) and satisfactory calibration and shows the potential to assist in better counselling, appropriate treatment decisions, and customized follow-up plans. • Given the excellent performance and convenient acquisition of the conventional sequence, we envision that this non-invasive and cost-effective tool will facilitate personalized medicine in meningioma treatment.
Collapse
Affiliation(s)
- Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Li Liu
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Yajing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China
| | - Xin Ma
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, China
| | - Weiwei Zheng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | | | | | - Hongkai Wen
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yongli Tan
- Neurosurgery Gamma Knife Centre, Zibo Wanjie Cancer Hospital, Zibo City, Shandong, China
| | - Xiaogang Sun
- Neurosurgery Gamma Knife Centre, Zibo Wanjie Cancer Hospital, Zibo City, Shandong, China
| | - Shibin Sun
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Li
- Neurosurgery Department, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Tonggang Yu
- Department of Radiology, Shanghai Gamma Hospital, Huashan Hospital, Fudan University, 518, Middle Wuzhong Rd., Xuhui District, Shanghai, 200235, China.
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, 12, Middle Wulumuqi Rd., Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
18
|
Pan I, Huang RY. Artificial intelligence in neuroimaging of brain tumors: reality or still promise? Curr Opin Neurol 2023; 36:549-556. [PMID: 37973024 DOI: 10.1097/wco.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW To provide an updated overview of artificial intelligence (AI) applications in neuro-oncologic imaging and discuss current barriers to wider clinical adoption. RECENT FINDINGS A wide variety of AI applications in neuro-oncologic imaging have been developed and researched, spanning tasks from pretreatment brain tumor classification and segmentation, preoperative planning, radiogenomics, prognostication and survival prediction, posttreatment surveillance, and differentiating between pseudoprogression and true disease progression. While earlier studies were largely based on data from a single institution, more recent studies have demonstrated that the performance of these algorithms are also effective on external data from other institutions. Nevertheless, most of these algorithms have yet to see widespread clinical adoption, given the lack of prospective studies demonstrating their efficacy and the logistical difficulties involved in clinical implementation. SUMMARY While there has been significant progress in AI and neuro-oncologic imaging, clinical utility remains to be demonstrated. The next wave of progress in this area will be driven by prospective studies measuring outcomes relevant to clinical practice and go beyond retrospective studies which primarily aim to demonstrate high performance.
Collapse
Affiliation(s)
- Ian Pan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School
| | | |
Collapse
|
19
|
Mohammed S, Kurtek S, Bharath K, Rao A, Baladandayuthapani V. Tumor radiogenomics in gliomas with Bayesian layered variable selection. Med Image Anal 2023; 90:102964. [PMID: 37797481 PMCID: PMC10653647 DOI: 10.1016/j.media.2023.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 10/07/2023]
Abstract
We propose a statistical framework to analyze radiological magnetic resonance imaging (MRI) and genomic data to identify the underlying radiogenomic associations in lower grade gliomas (LGG). We devise a novel imaging phenotype by dividing the tumor region into concentric spherical layers that mimics the tumor evolution process. MRI data within each layer is represented by voxel-intensity-based probability density functions which capture the complete information about tumor heterogeneity. Under a Riemannian-geometric framework these densities are mapped to a vector of principal component scores which act as imaging phenotypes. Subsequently, we build Bayesian variable selection models for each layer with the imaging phenotypes as the response and the genomic markers as predictors. Our novel hierarchical prior formulation incorporates the interior-to-exterior structure of the layers, and the correlation between the genomic markers. We employ a computationally-efficient Expectation-Maximization-based strategy for estimation. Simulation studies demonstrate the superior performance of our approach compared to other approaches. With a focus on the cancer driver genes in LGG, we discuss some biologically relevant findings. Genes implicated with survival and oncogenesis are identified as being associated with the spherical layers, which could potentially serve as early-stage diagnostic markers for disease monitoring, prior to routine invasive approaches. We provide a R package that can be used to deploy our framework to identify radiogenomic associations.
Collapse
Affiliation(s)
- Shariq Mohammed
- Department of Biostatistics, Boston University, 801 Massachusetts Ave, Boston, MA 02118, United States; Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48103, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, United States.
| | - Sebastian Kurtek
- Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, OH 43210, United States
| | - Karthik Bharath
- School of Mathematical Sciences, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Arvind Rao
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48103, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, United States; Department of Radiation Oncology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
20
|
Christenson C, Wu C, Hormuth DA, Huang S, Bao A, Brenner A, Yankeelov TE. Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes. BRAIN MULTIPHYSICS 2023; 5:100084. [PMID: 38187909 PMCID: PMC10768931 DOI: 10.1016/j.brain.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models. Methods We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters. Results Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively. Conclusion We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment. Statement of Significance This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.
Collapse
Affiliation(s)
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - David A. Hormuth
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shiliang Huang
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Ande Bao
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Brenner
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas E. Yankeelov
- Departments of Biomedical Engineering, USA
- Departments of Diagnostic Medicine, USA
- Departments of Oncology, USA
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Cobo M, Menéndez Fernández-Miranda P, Bastarrika G, Lloret Iglesias L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci Data 2023; 10:732. [PMID: 37865635 PMCID: PMC10590396 DOI: 10.1038/s41597-023-02641-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Miriam Cobo
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain.
| | | | - Gorka Bastarrika
- Clínica Universidad de Navarra, Department of Radiology, Pamplona, Spain
| | - Lara Lloret Iglesias
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain
| |
Collapse
|
22
|
Li L, Wang M, Jiang X, Lin Y. Universal multi-factor feature selection method for radiomics-based brain tumor classification. Comput Biol Med 2023; 164:107122. [PMID: 37517322 DOI: 10.1016/j.compbiomed.2023.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
Brain tumor mortality is high, and accurate classification before treatment can improve patient prognosis. Radiomics, which extracts numerous features from medical images, has been widely applied in brain tumor classification studies. Feature selection (FS) is a critical step in radiomics because it reduces redundant information and enhances classification performance. However, the lack of universal FS methods limits the development of radiomics-based brain tumor classification studies. To address this issue, we summarize the characteristics of the FS methods used in related studies and propose a universal method based on three selection factors called triple-factor cascaded selection (TFCS). Particularly, these factors correspond to the correlation between features and task labels, interdependence among features, and role of features in the model. The TFCS method divides FS into two steps. First, it utilizes mutual information to select features that are strongly correlated with the task and contain less redundant information. Recursive feature elimination is then employed to obtain the subset with the best classification performance. To validate the universality of the TFCS, we conducted experiments on seven datasets containing 13 brain tumor classification tasks and evaluated the overall performance using five types of indicators. Results: TFCS exhibited excellent overall performance for all tasks. Compared to the 13 related methods, it takes less time, has moderate parsimony, the best classification performance, adaptability, and stability, and shows better universality. Our study demonstrates that the reasonable utilization of multiple factors can enhance FS performance and provide new insights for future method design.
Collapse
Affiliation(s)
- Longfei Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China; Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China
| | - Meiyun Wang
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; Department of Radiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming Jiang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing University of Post and Telecommunications, Chongqing, China.
| | - Yusong Lin
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China; Hanwei IoT Institute, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Ortega-Martorell S, Olier I, Hernandez O, Restrepo-Galvis PD, Bellfield RAA, Candiota AP. Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks. Cancers (Basel) 2023; 15:4002. [PMID: 37568818 PMCID: PMC10417313 DOI: 10.3390/cancers15154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena such as pseudoprogression and pseudoresponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is underutilised due to a lack of familiarity and standardisation. METHODS This study explores the potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches, including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and validation. RESULTS The proposed 1D-CNN models successfully identify different regions of tumours sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant to the models, providing model explainability. The generated colour-coded maps showing the N, T and R regions were highly accurate (according to Dice scores) when compared against ground truth and outperformed our previous method. CONCLUSIONS The proposed methodology may provide new and better opportunities for therapy response assessment, potentially providing earlier hints of tumour relapsing stages.
Collapse
Affiliation(s)
- Sandra Ortega-Martorell
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Orlando Hernandez
- Escuela Colombiana de Ingeniería Julio Garavito, Bogota 111166, Colombia; (O.H.); (P.D.R.-G.)
| | | | - Ryan A. A. Bellfield
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Chirica C, Haba D, Cojocaru E, Mazga AI, Eva L, Dobrovat BI, Chirica SI, Stirban I, Rotundu A, Leon MM. One Step Forward-The Current Role of Artificial Intelligence in Glioblastoma Imaging. Life (Basel) 2023; 13:1561. [PMID: 37511936 PMCID: PMC10381280 DOI: 10.3390/life13071561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) is rapidly integrating into diagnostic methods across many branches of medicine. Significant progress has been made in tumor assessment using AI algorithms, and research is underway on how image manipulation can provide information with diagnostic, prognostic and treatment impacts. Glioblastoma (GB) remains the most common primary malignant brain tumor, with a median survival of 15 months. This paper presents literature data on GB imaging and the contribution of AI to the characterization and tracking of GB, as well as recurrence. Furthermore, from an imaging point of view, the differential diagnosis of these tumors can be problematic. How can an AI algorithm help with differential diagnosis? The integration of clinical, radiomics and molecular markers via AI holds great potential as a tool for enhancing patient outcomes by distinguishing brain tumors from mimicking lesions, classifying and grading tumors, and evaluating them before and after treatment. Additionally, AI can aid in differentiating between tumor recurrence and post-treatment alterations, which can be challenging with conventional imaging methods. Overall, the integration of AI into GB imaging has the potential to significantly improve patient outcomes by enabling more accurate diagnosis, precise treatment planning and better monitoring of treatment response.
Collapse
Affiliation(s)
- Costin Chirica
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Danisia Haba
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Isabela Mazga
- Faculty of General Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucian Eva
- Department of Anatomy, Apollonia University, 11 Pacurari Str., 700535 Iasi, Romania
| | - Bogdan Ionut Dobrovat
- Department of Radiology, Emergency Hospital Professor Doctor Nicolae Oblu, 700309 Iasi, Romania
| | - Sabina Ioana Chirica
- Faculty of General Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Stirban
- Department of Neurosurgery, Emergency Hospital Professor Doctor Nicolae Oblu, 700309 Iasi, Romania
| | - Andreea Rotundu
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Maria Magdalena Leon
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| |
Collapse
|
25
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
26
|
Hwang KP, Elshafeey NA, Kotrotsou A, Chen H, Son JB, Boge M, Mohamed RM, Abdelhafez AH, Adrada BE, Panthi B, Sun J, Musall BC, Zhang S, Candelaria RP, White JB, Ravenberg EE, Tripathy D, Yam C, Litton JK, Huo L, Thompson AM, Wei P, Yang WT, Pagel MD, Ma J, Rauch GM. A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer. Radiol Imaging Cancer 2023; 5:e230009. [PMID: 37505106 PMCID: PMC10413296 DOI: 10.1148/rycan.230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023]
Abstract
Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.
Collapse
Affiliation(s)
- Ken-Pin Hwang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Nabil A. Elshafeey
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Aikaterini Kotrotsou
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Huiqin Chen
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jong Bum Son
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Medine Boge
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rania M. Mohamed
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Abeer H. Abdelhafez
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Beatriz E. Adrada
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Bikash Panthi
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jia Sun
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Benjamin C. Musall
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Shu Zhang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rosalind P. Candelaria
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jason B. White
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Elizabeth E. Ravenberg
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Debu Tripathy
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Clinton Yam
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jennifer K. Litton
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Lei Huo
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Alastair M. Thompson
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Peng Wei
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Wei T. Yang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Mark D. Pagel
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jingfei Ma
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Gaiane M. Rauch
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| |
Collapse
|
27
|
Bhandari A, Scott L, Weilbach M, Marwah R, Lasocki A. Assessment of artificial intelligence (AI) reporting methodology in glioma MRI studies using the Checklist for AI in Medical Imaging (CLAIM). Neuroradiology 2023; 65:907-913. [PMID: 36746792 PMCID: PMC10105653 DOI: 10.1007/s00234-023-03126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE The Checklist for Artificial Intelligence in Medical Imaging (CLAIM) is a recently released guideline designed for the optimal reporting methodology of artificial intelligence (AI) studies. Gliomas are the most common form of primary malignant brain tumour and numerous outcomes derived from AI algorithms such as grading, survival, treatment-related effects and molecular status have been reported. The aim of the study is to evaluate the AI reporting methodology for outcomes relating to gliomas in magnetic resonance imaging (MRI) using the CLAIM criteria. METHODS A literature search was performed on three databases pertaining to AI augmentation of glioma MRI, published between the start of 2018 and the end of 2021 RESULTS: A total of 4308 articles were identified and 138 articles remained after screening. These articles were categorised into four main AI tasks: grading (n= 44), predicting molecular status (n= 50), predicting survival (n= 25) and distinguishing true tumour progression from treatment-related effects (n= 10). The average CLAIM score was 20/42 (range: 10-31). Studies most consistently reported the scientific background and clinical role of their AI approach. Areas of improvement were identified in the reporting of data collection, data management, ground truth and validation of AI performance. CONCLUSION AI may be a means of producing high-accuracy results for certain tasks in glioma MRI; however, there remain issues with reporting quality. AI reporting guidelines may aid in a more reproducible and standardised approach to reporting and will aid in clinical integration.
Collapse
Affiliation(s)
- Abhishta Bhandari
- Townsville University Hospital, 100 Angus Smith Drive, Townsville, QLD, 4814, Australia.
- School of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4814, Australia.
| | - Luke Scott
- Cairns Hospital, 165 Esplanade, Cairns, QLD, 4870, Australia
| | - Manuela Weilbach
- Redcliffe Hospital, Anzac Avenue, Redcliffe, QLD, 4020, Australia
| | - Ravi Marwah
- Townsville University Hospital, 100 Angus Smith Drive, Townsville, QLD, 4814, Australia
- School of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4814, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and prediction of glioblastoma therapy response: challenges and opportunities. Brain 2023; 146:1281-1298. [PMID: 36445396 PMCID: PMC10319779 DOI: 10.1093/brain/awac450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is the most aggressive type of primary adult brain tumour. The median survival of patients with glioblastoma remains approximately 15 months, and the 5-year survival rate is <10%. Current treatment options are limited, and the standard of care has remained relatively constant since 2011. Over the last decade, a range of different treatment regimens have been investigated with very limited success. Tumour recurrence is almost inevitable with the current treatment strategies, as glioblastoma tumours are highly heterogeneous and invasive. Additionally, another challenging issue facing patients with glioblastoma is how to distinguish between tumour progression and treatment effects, especially when relying on routine diagnostic imaging techniques in the clinic. The specificity of routine imaging for identifying tumour progression early or in a timely manner is poor due to the appearance similarity of post-treatment effects. Here, we concisely describe the current status and challenges in the assessment and early prediction of therapy response and the early detection of tumour progression or recurrence. We also summarize and discuss studies of advanced approaches such as quantitative imaging, liquid biomarker discovery and machine intelligence that hold exceptional potential to aid in the therapy monitoring of this malignancy and early prediction of therapy response, which may decisively transform the conventional detection methods in the era of precision medicine.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Medical Education, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, USA
- Department of Oncology and LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
30
|
Zhang Y, Liu L, Zhang K, Su R, Jia H, Qian L, Dong J. Nomograms Combining Clinical and Imaging Parameters to Predict Recurrence and Disease-free Survival After Concurrent Chemoradiotherapy in Patients With Locally Advanced Cervical Cancer. Acad Radiol 2023; 30:499-508. [PMID: 36050264 DOI: 10.1016/j.acra.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
PURPOSES To investigate the value of nomograms based on clinical prognostic factors (CPF), intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and MRI-derived radiomics in predicting recurrence and disease-free survival (DFS) after concurrent chemoradiotherapy (CCRT) for locally advanced cervical cancer (LACC). METHODS Retrospective analysis of data from 115 patients with ⅠB-ⅣA cervical cancer who underwent CCRT and had been followed up consistently. All patients were randomized 2:1 into training and validation groups. Pre-treatment IVIM-DWI parameters (ADC-value, D-value, D*-value and f-value) and pre- and post-treatment three-dimensional radiomics parameters (from axial T2WI) of primary lesions were measured. The LASSO algorithm and Logistic regression analysis were used to filter texture features and calculate radiomics score (Rad-score). Multivariate Logistic and Cox regression analysis was used to construct nomograms to predict recurrence and DFS for patients with LACC after CCRT respectively, with internal and external validation. RESULTS External beam radiotherapy dose, f-value, pre-treatment and post-treatment Rad-score were independent prognostic factors for recurrence and DFS in patients with cervical cancer, forming Model1 and Model2, with OR values of 0.480, 1.318, 3.071, 3.200 and HR values of 0.322, 3.372, 5.138, 7.204. The area under the curve (AUC) of Model1 for predicting recurrence of cervical cancer was 0.977, with internal and external validation C-indexes of 0.977 and 0.962. The AUC for Model2 predicting disease-free survival (DFS) at 1, 3, and 5 years was 0.895, 0.888 and 0.916 respectively, with internal and external C-indexes of 0.860 and 0.892. The decision curves analysis and clinical impact curves further indicate the high predictive efficiency and stability of nomograms. CONCLUSION The nomograms based on clinical, IVIM-DWI and radiomics parameters have high clinical value in predicting recurrence and DFS of patients with LACC after CCRT and can provide a reference for prognostic assessment and individualized treatment of cervical cancer patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang University, Taizhou, Zhejiang, China
| | - Kaiyue Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Rixin Su
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Haodong Jia
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China
| | - Jiangning Dong
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, China; Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
31
|
Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers (Basel) 2023; 15:cancers15041105. [PMID: 36831445 PMCID: PMC9954441 DOI: 10.3390/cancers15041105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
Collapse
|
32
|
A radiomics feature-based machine learning models to detect brainstem infarction (RMEBI) may enable early diagnosis in non-contrast enhanced CT. Eur Radiol 2023; 33:1004-1014. [PMID: 36169689 DOI: 10.1007/s00330-022-09130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Magnetic resonance imaging has high sensitivity in detecting early brainstem infarction (EBI). However, MRI is not practical for all patients who present with possible stroke and would lead to delayed treatment. The detection rate of EBI on non-contrast computed tomography (NCCT) is currently very low. Thus, we aimed to develop and validate the radiomics feature-based machine learning models to detect EBI (RMEBIs) on NCCT. METHODS In this retrospective observational study, 355 participants from a multicentre multimodal database established by Huashan Hospital were randomly divided into two data sets: a training cohort (70%) and an internal validation cohort (30%). Fifty-seven participants from the Second Affiliated Hospital of Xuzhou Medical University were included as the external validation cohort. Brainstems were segmented by a radiologist committee on NCCT and 1781 radiomics features were automatically computed. After selecting the relevant features, 7 machine learning models were assessed in the training cohort to predict early brainstem infarction. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and the area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the prediction models. RESULTS The multilayer perceptron (MLP) RMEBI showed the best performance (AUC: 0.99 [95% CI: 0.96-1.00]) in the internal validation cohort. The AUC value in external validation cohort was 0.91 (95% CI: 0.82-0.98). CONCLUSIONS RMEBIs have the potential in routine clinical practice to enable accurate computer-assisted diagnoses of early brainstem infarction in patients with NCCT, which may have important clinical value in reducing therapeutic decision-making time. KEY POINTS • RMEBIs have the potential to enable accurate diagnoses of early brainstem infarction in patients with NCCT. • RMEBIs are suitable for various multidetector CT scanners. • The patient treatment decision-making time is shortened.
Collapse
|
33
|
Hooper GW, Ginat DT. MRI radiomics and potential applications to glioblastoma. Front Oncol 2023; 13:1134109. [PMID: 36874083 PMCID: PMC9982088 DOI: 10.3389/fonc.2023.1134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
MRI plays an important role in the evaluation of glioblastoma, both at initial diagnosis and follow up after treatment. Quantitative analysis via radiomics can augment the interpretation of MRI in terms of providing insights regarding the differential diagnosis, genotype, treatment response, and prognosis. The various MRI radiomic features of glioblastoma are reviewed in this article.
Collapse
Affiliation(s)
- Grayson W Hooper
- Landstuhl Regional Medical Center, Department of Radiology, Landstuhl, Germany
| | - Daniel T Ginat
- University of Chicago, Department of Radiology, Chicago, IL, United States
| |
Collapse
|
34
|
McKenney AS, Weg E, Bale TA, Wild AT, Um H, Fox MJ, Lin A, Yang JT, Yao P, Birger ML, Tixier F, Sellitti M, Moss NS, Young RJ, Veeraraghavan H. Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients. Adv Radiat Oncol 2023; 8:100916. [PMID: 36711062 PMCID: PMC9873493 DOI: 10.1016/j.adro.2022.100916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose Pseudoprogression mimicking recurrent glioblastoma remains a diagnostic challenge that may adversely confound or delay appropriate treatment or clinical trial enrollment. We sought to build a radiomic classifier to predict pseudoprogression in patients with primary isocitrate dehydrogenase wild type glioblastoma. Methods and Materials We retrospectively examined a training cohort of 74 patients with isocitrate dehydrogenase wild type glioblastomas with brain magnetic resonance imaging including dynamic contrast enhanced T1 perfusion before resection of an enhancing lesion indeterminate for recurrent tumor or pseudoprogression. A recursive feature elimination random forest classifier was built using nested cross-validation without and with O6-methylguanine-DNA methyltransferase status to predict pseudoprogression. Results A classifier constructed with cross-validation on the training cohort achieved an area under the receiver operating curve of 81% for predicting pseudoprogression. This was further improved to 89% with the addition of O6-methylguanine-DNA methyltransferase status into the classifier. Conclusions Our results suggest that radiomic analysis of contrast T1-weighted images and magnetic resonance imaging perfusion images can assist the prompt diagnosis of pseudoprogression. Validation on external and independent data sets is necessary to verify these advanced analyses, which can be performed on routinely acquired clinical images and may help inform clinical treatment decisions.
Collapse
Affiliation(s)
- Anna Sophia McKenney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Emily Weg
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Tejus A. Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron T. Wild
- Department Southeast Radiation Oncology, Levine Cancer Institute, Charlotte, North Carolina
| | - Hyemin Um
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J. Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Lin
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan T. Yang
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Yao
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maxwell L. Birger
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew Sellitti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Corresponding author: Robert J. Young, MD
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
35
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
36
|
Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients. J Neurooncol 2022; 160:253-263. [DOI: 10.1007/s11060-022-04150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
37
|
Jing H, Yang F, Peng K, Qin D, He Y, Yang G, Zhang H. Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4667117. [PMID: 36246986 PMCID: PMC9553483 DOI: 10.1155/2022/4667117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the diagnostic value of multimodal MRI radiomics based on T2-weighted fluid attenuated inversion recovery imaging (T2WI-FLAIR) combined with T1-weighted contrast enhanced imaging (T1WI-CE) in the early differentiation of high-grade glioma recurrence from pseudoprogression. Methods A total of one hundred eighteen patients with brain gliomas who were diagnosed from March 2014 to April 2020 were retrospectively analyzed. According to the clinical characteristics, the patients were randomly split into a training group (n = 83) and a test group (n = 35) at a 7 : 3 ratio. The region of interest (ROI) was delineated, and 2632 radiomic features were extracted. We used multiple logistic regression to establish a classification model, including the T1 model, T2 model, and T1 + T2 model, to differentiate recurrence from pseudoprogression. The diagnostic efficiency of the model was evaluated by calculating the area under the receiver operating characteristic curve (AUC) and accuracy (ACC) and by analyzing the calibration curve of the nomogram and decision curve. Results There were 75 cases of recurrence and 43 cases of pseudoprogression. The diagnostic efficacies of the multimodal MRI-based radiomic model were relatively high. The AUC values and ACC of the training group were 0.831 and 77.11%, respectively, and the AUC values and ACC of the test group were 0.829 and 88.57%, respectively. The calibration curve of the nomogram showed that the discrimination probability was consistent with the actual occurrence in the training group, and the discrimination probability was roughly the same as the actual occurrence in the test group. In the decision curve analysis, the T1 + T2 model showed greater overall net efficiency. Conclusion The multimodal MRI radiomic model has relatively high efficiency in the early differentiation of recurrence from pseudoprogression, and it could be helpful for clinicians in devising correct treatment plans so that patients can be treated in a timely and accurate manner.
Collapse
Affiliation(s)
- Hui Jing
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fan Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kun Peng
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yexin He
- Department of Radiology, Shanxi Provincial People's Hospital, Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
38
|
Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin Cancer Biol 2022; 84:310-328. [PMID: 33290844 PMCID: PMC8319834 DOI: 10.1016/j.semcancer.2020.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Radiological imaging is an integral component of cancer care, including diagnosis, staging, and treatment response monitoring. It contains rich information about tumor phenotypes that are governed not only by cancer cellintrinsic biological processes but also by the tumor microenvironment, such as the composition and function of tumor-infiltrating immune cells. By analyzing the radiological scans using a quantitative radiomics approach, robust relations between specific imaging and molecular phenotypes can be established. Indeed, a number of studies have demonstrated the feasibility of radiogenomics for predicting intrinsic molecular subtypes and gene expression signatures in breast cancer based on MRI. In parallel, promising results have been shown for inferring the amount of tumor-infiltrating lymphocytes, a key factor for the efficacy of cancer immunotherapy, from standard-of-care radiological images. Compared with the biopsy-based approach, radiogenomics offers a unique avenue to profile the molecular makeup of the tumor and immune microenvironment as well as its evolution in a noninvasive and holistic manner through longitudinal imaging scans. Here, we provide a systematic review of the state of the art radiogenomics studies in the era of immunotherapy and discuss emerging paradigms and opportunities in AI and deep learning approaches. These technical advances are expected to transform the radiogenomics field, leading to the discovery of reliable imaging biomarkers. This will pave the way for their clinical translation to guide precision cancer therapy.
Collapse
Affiliation(s)
- Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Texas, 77030, USA; Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, Texas, 77030, USA.
| | - Aaron T Mayer
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA; Department of Radiology, Stanford University, Stanford, California, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, California, 94305, USA; BioX Program at Stanford, Stanford University, Stanford, California, 94305, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
39
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
40
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
41
|
Wang Y, Lang J, Zuo JZ, Dong Y, Hu Z, Xu X, Zhang Y, Wang Q, Yang L, Wong STC, Wang H, Li H. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Eur Radiol 2022; 32:8737-8747. [PMID: 35678859 DOI: 10.1007/s00330-022-08887-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To develop and validate a pretreatment magnetic resonance imaging (MRI)-based radiomic-clinical model to assess the treatment response of whole-brain radiotherapy (WBRT) by using SHapley Additive exPlanations (SHAP), which is derived from game theory, and can explain the output of different machine learning models. METHODS We retrospectively enrolled 228 patients with brain metastases from two medical centers (184 in the training cohort and 44 in the validation cohort). Treatment responses of patients were categorized as a non-responding group vs. a responding group according to the Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria. For each tumor, 960 features were extracted from the MRI sequence. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. A support vector machine (SVM) model incorporating clinical factors and radiomic features wase used to construct the radiomic-clinical model. SHAP method explained the SVM model by prioritizing the importance of features, in terms of assessment contribution. RESULTS Three radiomic features and three clinical factors were identified to build the model. Radiomic-clinical model yielded AUCs of 0.928 (95%CI 0.901-0.949) and 0.851 (95%CI 0.816-0.886) for assessing the treatment response in the training cohort and validation cohort, respectively. SHAP summary plot illustrated the feature's value affected the feature's impact attributed to model, and SHAP force plot showed the integration of features' impact attributed to individual response. CONCLUSION The radiomic-clinical model with the SHAP method can be useful for assessing the treatment response of WBRT and may assist clinicians in directing personalized WBRT strategies in an understandable manner. KEY POINTS • Radiomic-clinical model can be useful for assessing the treatment response of WBRT. • SHAP could explain and visualize radiomic-clinical machine learning model in a clinician-friendly way.
Collapse
Affiliation(s)
- Yixin Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, People's Republic of China.,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Jinwei Lang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Joey Zhaoyu Zuo
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yaqin Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zongtao Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Xiuli Xu
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yongkang Zhang
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qinjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Lizhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, People's Republic of China.,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,University of Science and Technology of China, Hefei, 230026, People's Republic of China. .,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,University of Science and Technology of China, Hefei, 230026, People's Republic of China. .,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
42
|
When artificial intelligence meets PD-1/PD-L1 inhibitors: Population screening, response prediction and efficacy evaluation. Comput Biol Med 2022; 145:105499. [DOI: 10.1016/j.compbiomed.2022.105499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
43
|
Bhandari A, Marwah R, Smith J, Nguyen D, Bhatti A, Lim CP, Lasocki A. Machine learning imaging applications in the differentiation of true tumour progression from
treatment‐related
effects in brain tumours: A systematic review and
meta‐analysis. J Med Imaging Radiat Oncol 2022; 66:781-797. [PMID: 35599360 PMCID: PMC9545346 DOI: 10.1111/1754-9485.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Introduction Chemotherapy and radiotherapy can produce treatment‐related effects, which may mimic tumour progression. Advances in Artificial Intelligence (AI) offer the potential to provide a more consistent approach of diagnosis with improved accuracy. The aim of this study was to determine the efficacy of machine learning models to differentiate treatment‐related effects (TRE), consisting of pseudoprogression (PsP) and radiation necrosis (RN), and true tumour progression (TTP). Methods The systematic review was conducted in accordance with PRISMA‐DTA guidelines. Searches were performed on PubMed, Scopus, Embase, Medline (Ovid) and ProQuest databases. Quality was assessed according to the PROBAST and CLAIM criteria. There were 25 original full‐text journal articles eligible for inclusion. Results For gliomas: PsP versus TTP (16 studies, highest AUC = 0.98), RN versus TTP (4 studies, highest AUC = 0.9988) and TRE versus TTP (3 studies, highest AUC = 0.94). For metastasis: RN vs. TTP (2 studies, highest AUC = 0.81). A meta‐analysis was performed on 9 studies in the gliomas PsP versus TTP group using STATA. The meta‐analysis reported a high sensitivity of 95.2% (95%CI: 86.6–98.4%) and specificity of 82.4% (95%CI: 67.0–91.6%). Conclusion TRE can be distinguished from TTP with good performance using machine learning‐based imaging models. There remain issues with the quality of articles and the integration of models into clinical practice. Future studies should focus on the external validation of models and utilize standardized criteria such as CLAIM to allow for consistency in reporting.
Collapse
Affiliation(s)
- Abhishta Bhandari
- Townsville University Hospital Townsville Queensland Australia
- College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Ravi Marwah
- Townsville University Hospital Townsville Queensland Australia
| | - Justin Smith
- Townsville University Hospital Townsville Queensland Australia
- College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Duy Nguyen
- Institute for Intelligent Systems Research and Innovation Deakin University Melbourne Victoria Australia
| | - Asim Bhatti
- Department of Cancer Imaging Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Chee Peng Lim
- Institute for Intelligent Systems Research and Innovation Deakin University Melbourne Victoria Australia
| | - Arian Lasocki
- Department of Cancer Imaging Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
44
|
Maiter A, Butteriss D, English P, Lewis J, Hassani A, Bhatnagar P. Assessing the diagnostic accuracy and interobserver agreement of MRI perfusion in differentiating disease progression and pseudoprogression following treatment for glioblastoma in a tertiary UK centre. Clin Radiol 2022; 77:e568-e575. [DOI: 10.1016/j.crad.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
|
45
|
Viswanathan VS, Gupta A, Madabhushi A. Novel Imaging Biomarkers to Assess Oncologic Treatment-Related Changes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35671432 DOI: 10.1200/edbk_350931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer therapeutics cause various treatment-related changes that may impact patient follow-up and disease monitoring. Although atypical responses such as pseudoprogression may be misinterpreted as treatment nonresponse, other changes, such as hyperprogressive disease seen with immunotherapy, must be recognized early for timely management. Radiation necrosis in the brain is a known response to radiotherapy and must be distinguished from local tumor recurrence. Radiotherapy can also cause adverse effects such as pneumonitis and local tissue toxicity. Systemic therapies, like chemotherapy and targeted therapies, are known to cause long-term cardiovascular effects. Thus, there is a need for robust biomarkers to identify, distinguish, and predict cancer treatment-related changes. Radiomics, which refers to the high-throughput extraction of subvisual features from radiologic images, has been widely explored for disease classification, risk stratification, and treatment-response prediction. Lately, there has been much interest in investigating the role of radiomics to assess oncologic treatment-related changes. We review the utility and various applications of radiomics in identifying and distinguishing atypical responses to treatments, as well as in predicting adverse effects. Although artificial intelligence tools show promise, several challenges-including multi-institutional clinical validation, deployment in health care settings, and artificial-intelligence bias-must be addressed for seamless clinical translation of these tools.
Collapse
Affiliation(s)
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| |
Collapse
|
46
|
Ren Q, An P, Jin K, Xia X, Huang Z, Xu J, Huang C, Jiang Q, Meng X. A Pilot Study of Radiomic Based on Routine CT Reflecting Difference of Cerebral Hemispheric Perfusion. Front Neurosci 2022; 16:851720. [PMID: 35431785 PMCID: PMC9009332 DOI: 10.3389/fnins.2022.851720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background To explore the effectiveness of radiomics features based on routine CT to reflect the difference of cerebral hemispheric perfusion. Methods We retrospectively recruited 52 patients with severe stenosis or occlusion in the unilateral middle cerebral artery (MCA), and brain CT perfusion showed an MCA area with deficit perfusion. Radiomics features were extracted from the stenosis side and contralateral of the MCA area based on precontrast CT. Two different region of interest drawing methods were applied. Then the patients were randomly grouped into training and testing sets by the ratio of 8:2. In the training set, ANOVA and the Elastic Net Regression with fivefold cross-validation were conducted to filter and choose the optimized features. Moreover, different machine learning models were built. In the testing set, the area under the receiver operating characteristic (AUC) curve, calibration, and clinical utility were applied to evaluate the predictive performance of the models. Results The logistic regression (LR) for the triangle-contour method and artificial neural network (ANN) for the semiautomatic-contour method were chosen as radiomics models for their good prediction efficacy in the training phase (AUC = 0.869, 0.873) and the validation phase (AUC = 0.793, 0.799). The radiomics algorithms of the triangle-contour and semiautomatic-contour method were implemented in the whole training set (AUC = 0.870, 0.867) and were evaluated in the testing set (AUC = 0.760, 0.802). According to the optimal cutoff value, these two methods can classify the vascular stenosis side class and normal side class. Conclusion Radiomic predictive feature based on precontrast CT image could reflect the difference of cerebral hemispheric perfusion to some extent.
Collapse
Affiliation(s)
- Qingguo Ren
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Panpan An
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ke Jin
- Deepwise AI Lab, Beijing Deepwise and League of PHD Technology Co., Ltd., Beijing, China
| | - Xiaona Xia
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhaodi Huang
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jingxu Xu
- Deepwise AI Lab, Beijing Deepwise and League of PHD Technology Co., Ltd., Beijing, China
| | - Chencui Huang
- Deepwise AI Lab, Beijing Deepwise and League of PHD Technology Co., Ltd., Beijing, China
| | - Qingjun Jiang
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangshui Meng
- Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Xiangshui Meng,
| |
Collapse
|
47
|
Candiota AP, Arús C. Establishing Imaging Biomarkers of Host Immune System Efficacy during Glioblastoma Therapy Response: Challenges, Obstacles and Future Perspectives. Metabolites 2022; 12:metabo12030243. [PMID: 35323686 PMCID: PMC8950145 DOI: 10.3390/metabo12030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
This hypothesis proposal addresses three major questions: (1) Why do we need imaging biomarkers for assessing the efficacy of immune system participation in glioblastoma therapy response? (2) Why are they not available yet? and (3) How can we produce them? We summarize the literature data supporting the claim that the immune system is behind the efficacy of most successful glioblastoma therapies but, unfortunately, there are no current short-term imaging biomarkers of its activity. We also discuss how using an immunocompetent murine model of glioblastoma, allowing the cure of mice and the generation of immune memory, provides a suitable framework for glioblastoma therapy response biomarker studies. Both magnetic resonance imaging and magnetic resonance-based metabolomic data (i.e., magnetic resonance spectroscopic imaging) can provide non-invasive assessments of such a system. A predictor based in nosological images, generated from magnetic resonance spectroscopic imaging analyses and their oscillatory patterns, should be translational to clinics. We also review hurdles that may explain why such an oscillatory biomarker was not reported in previous imaging glioblastoma work. Single shot explorations that neglect short-term oscillatory behavior derived from immune system attack on tumors may mislead actual response extent detection. Finally, we consider improvements required to properly predict immune system-mediated early response (1–2 weeks) to therapy. The sensible use of improved biomarkers may enable translatable evidence-based therapeutic protocols, with the possibility of extending preclinical results to human patients.
Collapse
Affiliation(s)
- Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
48
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
49
|
Classification of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Radiomic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5334095. [PMID: 35237341 PMCID: PMC8885247 DOI: 10.1155/2022/5334095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Introduction Considering the narrow window of surgery, early diagnosis of liver cancer is still a fundamental issue to explore. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA) are considered as two different types of liver cancer because of their distinct pathogenesis, pathological features, prognosis, and responses to adjuvant therapies. Qualitative analysis of image is not enough to make a discrimination of liver cancer, especially early-stage HCC or ICCA. Methods This retrospective study developed a radiomic-based model in a training cohort of 122 patients. Radiomic features were extracted from computed tomography (CT) scans. Feature selection was operated with the least absolute shrinkage and operator (LASSO) logistic method. The support vector machine (SVM) was selected to build a model. An internal validation was conducted in 89 patients. Results In the training set, the AUC of the evaluation of the radiomics was 0.855 higher than for radiologists at 0.689. In the valuation cohorts, the AUC of the evaluation was 0.847 and the validation was 0.659, which indicated that the established model has a significantly better performance in distinguishing the HCC from ICCA. Conclusion We developed a radiomic diagnosis model based on CT image that can quickly distinguish HCC from ICCA, which may facilitate the differential diagnosis of HCC and ICCA in the future.
Collapse
|
50
|
Zheng T, Wang W, Mohammadniaei M, Ashley J, Zhang M, Zhou N, Shen J, Sun Y. Anti-MicroRNA-21 Oligonucleotide Loaded Spermine-Modified Acetalated Dextran Nanoparticles for B1 Receptor-Targeted Gene Therapy and Antiangiogenesis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103812. [PMID: 34936240 PMCID: PMC8844571 DOI: 10.1002/advs.202103812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Indexed: 05/10/2023]
Abstract
The use of nanoparticles (NPs) to deliver small inhibiting microRNAs (miRNAs) has shown great promise for treating cancer. However, constructing a miRNA delivery system that targets brain cancers, such as glioblastoma multiforme (GBM), remains technically challenging due to the existence of the blood-tumor barrier (BTB). In this work, a novel targeted antisense miRNA-21 oligonucleotide (ATMO-21) delivery system is developed for GBM treatment. Bradykinin ligand agonist-decorated spermine-modified acetalated dextran NPs (SpAcDex NPs) could temporarily open the BTB by activating G-protein-coupled receptors that are expressed in tumor blood vessels and tumor cells, which increase transportation to and accumulation in tumor sites. ATMO-21 achieves high loading in the SpAcDex NPs (over 90%) and undergoes gradual controlled release with the degradation of the NPs in acidic lysosomal compartments. This allows for cell apoptosis and inhibition of the expression of vascular endothelial growth factor by downregulating hypoxia-inducible factor (HIF-1α) protein. An in vivo orthotopic U87MG glioma model confirms that the released ATMO-21 shows significant therapeutic efficacy in inhibiting tumor growth and angiogenesis, demonstrating that agonist-modified SpAcDex NPs represent a promising strategy for GBM treatment combining targeted gene therapy and antiangiogenic therapy.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Wentao Wang
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Mohsen Mohammadniaei
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Jon Ashley
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| | - Ming Zhang
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yi Sun
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDK‐2800Denmark
| |
Collapse
|