1
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Kahl RT, Erhardt A, Krauss G, Seibold F, Dolynchuk O, Thelakkat M, Thurn-Albrecht T. Effect of Chemical Modification on Molecular Ordering in Polydiketopyrrolopyrrole Copolymers: From Liquid Crystalline to Crystalline. Macromolecules 2024; 57:5243-5252. [PMID: 38882198 PMCID: PMC11173490 DOI: 10.1021/acs.macromol.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
The chemical architecture of conjugated polymers is often designed by contemplating and understanding the consequences of structural changes on electronic properties at the molecular level. However, even minor changes to the chemical structure of a polymer can significantly influence the packing arrangement, which also influences the electronic properties of the bulk material. Here, we investigate the molecular arrangement in the ordered state at room temperature of a series of three different polydiketopyrrolopyrroles (PDPPs) in bulk and oriented thin films in detail by wide-angle X-ray scattering and by atomic force microscopy. The changes in the chemical structure of the investigated PDPPs, namely, an additional side chain or a different flanking unit, lead to an increase in long-range order and thereby to a change in the phase state from sanidic ordered via sanidic rectangular or oblique to crystalline.
Collapse
Affiliation(s)
- Robert T Kahl
- Experimental Polymer Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Andreas Erhardt
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Gert Krauss
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Ferdinand Seibold
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Oleksandr Dolynchuk
- Experimental Polymer Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Thomas Thurn-Albrecht
- Experimental Polymer Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| |
Collapse
|
3
|
Moro S, Spencer SE, Lester DW, Nübling F, Sommer M, Costantini G. Molecular-Scale Imaging Enables Direct Visualization of Molecular Defects and Chain Structure of Conjugated Polymers. ACS NANO 2024; 18:11655-11664. [PMID: 38652866 PMCID: PMC11080458 DOI: 10.1021/acsnano.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.
Collapse
Affiliation(s)
- Stefania Moro
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Daniel W. Lester
- Polymer
Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K.
| | - Fritz Nübling
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | - Michael Sommer
- Institute
for Chemistry, Chemnitz University of Technology, Chemnitz 09111, Germany
- Center
for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Giovanni Costantini
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
4
|
Zhang W, Shi K, Lai J, Zhou Y, Wei X, Che Q, Wei J, Wang L, Yu G. Record-High Electron Mobility Exceeding 16 cm 2 V - 1 s - 1 in Bisisoindigo-Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300145. [PMID: 36849648 DOI: 10.1002/adma.202300145] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Indexed: 05/17/2023]
Abstract
Polymer semiconductors with mobilities exceeding 10 cm2 V- 1 s- 1 , especially ambipolar and n-type polymer semiconductors, are still rare, although they are of great importance for fabricating polymer field-effect transistors (PFETs) toward commercial high-grade electronics. Herein, two novel donor-acceptor copolymers, PNFFN-DTE and PNFFN-FDTE, are designed and synthesized based on the electron-deficient bisisoindigo (NFFN) and electron-rich dithienylethylenes (DTE or FDTE). The copolymer PNFFN-DTE, containing NFFN and DTE, possesses a partially locked polymeric conjugated backbone, whereas PNFFN-FDTE, containing NFFN and FDTE, has a fully locked one. Fluorine atoms in FDTE not only induce the formation of additional CH∙∙∙F hydrogen bonds, but also lower frontier molecular orbitals for PNFFN-FDTE. Both PNFFN-DTE and PNFFN-FDTE form more ordered molecular packing in thin films prepared from a polymer solution in bicomponent solvent containing 1,2-dichlorobenzene (DCB) and 1-chloronaphthalene (with volume ratio of 99.2/0.8) than pure DCB. The two copolymers-based flexible PFETs exhibit ambipolar charge-transport properties. Notably, the bicomponent solvent-processed PNFFN-FDTE-based PFETs afford a high electron mobility of 16.67 cm2 V-1 s-1 , which is the highest electron-transport mobility for PFETs reported so far. The high electron mobility of PNFFN-FDTE is attributed to its fully locked conjugated backbone, dense molecular packing, and much matched LUMO energy level.
Collapse
Affiliation(s)
- Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Keli Shi
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Jing Lai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Che
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Pirela V, Campoy-Quiles M, Müller AJ, Martín J. Unraveling the Influence of the Preexisting Molecular Order on the Crystallization of Semiconducting Semicrystalline Poly(9,9-di- n-octylfluorenyl-2,7-diyl (PFO). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10744-10751. [PMID: 36530941 PMCID: PMC9754006 DOI: 10.1021/acs.chemmater.2c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Understanding the complex crystallization process of semiconducting polymers is key for the advance of organic electronic technologies as the optoelectronic properties of these materials are intimately connected to their solid-state microstructure. These polymers often have semirigid backbones and flexible side chains, which results in a strong tendency to organize/order in the liquid state. Therefore, crystallization of these materials frequently occurs from liquid states that exhibit-at least partial-molecular order. However, the impact of the preexisting molecular order on the crystallization process of semiconducting polymers- indeed, of any polymer-remained hitherto unknown. This study uses fast scanning calorimetry (FSC) to probe the crystallization kinetics of poly(9,9-di-n-octylfluorenyl-2,7-diyl (PFO) from both an isotropic disordered melt state (ISO state) and a liquid-crystalline ordered state (NEM state). Our results demonstrate that the preexisting molecular order has a profound impact on the crystallization of PFO. More specifically, it favors the formation of effective crystal nucleation centers, speeding up the crystallization kinetics at the early stages of phase transformation. However, samples crystallized from the NEM state require longer times to reach full crystallization (during the secondary crystallization stage) compared to those crystallized from the ISO state, likely suggesting that the preexisting molecular order slows down the advance in the latest stages of the crystallization, that is, those governed by molecular diffusion. The fitting of the data with the Avrami model reveals different crystallization mechanisms, which ultimately result in a distinct semicrystalline morphology and photoluminescence properties. Therefore, this work highlights the importance of understanding the interrelationships between processing, structure, and properties of polymer semiconductors and opens the door for performing fundamental investigations via newly developed FSC methodologies of such materials that otherwise are not possible with conventional techniques.
Collapse
Affiliation(s)
- Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
| | - Mariano Campoy-Quiles
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra08193, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
| | - Jaime Martín
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol15403, Spain
| |
Collapse
|
6
|
Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyethylene is amongst the most used polymers, finding a plethora of applications in our lives owing to its high impact resistance, non-corrosive nature, light weight, cost effectiveness, and easy processing into various shapes from different sizes. Despite these outstanding features, the commodity polymer has been underexplored in the field of organic electronics. This work focuses on the development of new polymer blends based on a low molecular weight linear polyethylene (LPE) derivative with a high-performance diketopyrrolopyrrole-based semiconducting polymer. Physical blending of the polyethylene with semiconducting polymers was performed at ratios varying from 0 to 75 wt.%, and the resulting blends were carefully characterized to reveal their electronic and solid-state properties. The new polymer blends were also characterized to reveal the influence of polyethylene on the mechanical robustness and stretchability of the semiconducting polymer. Overall, the introduction of LPE was shown to have little to no effect on the solid-state properties of the materials, despite some influence on solid-state morphology through phase separation. Organic field-effect transistors prepared from the new blends showed good device characteristics, even at higher ratios of polyethylene, with an average mobility of 0.151 cm2 V−1 s−1 at a 25 wt.% blend ratio. The addition of polyethylene was shown to have a plasticizing effect on the semiconducting polymers, helping to reduce crack width upon strain and contributing to devices accommodating more strain without suffering from decreased performance. The new blends presented in this work provide a novel platform from which to access more mechanically robust organic electronics and show promising features for the utilization of polyethylene for the solution processing of advanced semiconducting materials toward novel soft electronics and sensors.
Collapse
|
7
|
Marina S, Gutierrez-Fernandez E, Gutierrez J, Gobbi M, Ramos N, Solano E, Rech J, You W, Hueso L, Tercjak A, Ade H, Martin J. Semi-paracrystallinity in semi-conducting polymers. MATERIALS HORIZONS 2022; 9:1196-1206. [PMID: 34984421 DOI: 10.1039/d1mh01349a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise determination of structural organization of semi-conducting polymers is of paramount importance for the further development of these materials in organic electronic technologies. Yet, prior characterization of some of the best-performing materials for transistor and photovoltaic applications, which are based on polymers with rigid backbones, often resulted in conundrums in which X-ray scattering and microscopy yielded seemingly contradicting results. Here we solve the paradox by introducing a new structural model, i.e., semi-paracrystalline organization. The model establishes that the microstructure of these materials relies on a dense array of small paracrystalline domains embedded in a more disordered matrix. Thus, the overall structural order relies on two parameters: the novel concept of degree of paracrystallinity (i.e., paracrystalline volume/mass fraction, introduced here for the first time) and the lattice distortion parameter of paracrystalline domains (g-parameter from X-ray scattering). Structural parameters of the model are correlated with long-range charge carrier transport, revealing that charge transport in semi-paracrystalline materials is particularly sensitive to the interconnection of paracrystalline domains.
Collapse
Affiliation(s)
- Sara Marina
- POLYMAT, University of the Basque Country UPV/EHU Av. de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU Av. de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Junkal Gutierrez
- Group 'Materials + Technologies', Faculty of Engineering Guipuzcoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia, Spain
- Faculty of Engineering Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), C/Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
| | - Marco Gobbi
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
- Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastian, Basque Country, Spain
| | - Nicolás Ramos
- POLYMAT, University of the Basque Country UPV/EHU Av. de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Vallès, Spain
| | - Jeromy Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Luis Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Agnieszka Tercjak
- Group 'Materials + Technologies', Faculty of Engineering Guipuzcoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia, Spain
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jaime Martin
- POLYMAT, University of the Basque Country UPV/EHU Av. de Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Universidade da Coruña, Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Esteiro, 15471 Ferrol, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
8
|
Gutierrez‐Fernandez E, Scaccabarozzi AD, Basu A, Solano E, Anthopoulos TD, Martín J. Y6 Organic Thin-Film Transistors with Electron Mobilities of 2.4 cm 2 V -1 s -1 via Microstructural Tuning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104977. [PMID: 34854574 PMCID: PMC8728851 DOI: 10.1002/advs.202104977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/13/2023]
Abstract
There is a growing demand to attain organic materials with high electron mobility, μe , as current reliable reported values are significantly lower than those exhibited by their hole mobility counterparts. Here, it is shown that a well-known nonfullerene-acceptor commonly used in organic solar cells, that is, BTP-4F (aka Y6), enables solution-processed organic thin-film transistors (OTFT) with a μe as high as 2.4 cm2 V-1 s-1 . This value is comparable to those of state-of-the-art n-type OTFTs, opening up a plethora of new possibilities for this class of materials in the field of organic electronics. Such efficient charge transport is linked to a readily achievable highly ordered crystalline phase, whose peculiar structural properties are thoroughly discussed. This work proves that structurally ordered nonfullerene acceptors can exhibit intrinsically high mobility and introduces a new approach in the quest of high μe organic materials, as well as new guidelines for future materials design.
Collapse
Affiliation(s)
| | - Alberto D. Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955Saudi Arabia
| | - Eduardo Solano
- ALBA Synchrotron Light SourceNCD‐SWEET BeamlineCerdanyola del Vallès08290Spain
| | - Thomas D. Anthopoulos
- King Abdullah University of Science and Technology (KAUST)KAUST Solar Center (KSC)Thuwal23955Saudi Arabia
| | - Jaime Martín
- POLYMATUniversity of the Basque CountryUPV/EHUAv. de Tolosa 72San Sebastián20018Spain
- Ikerbasque Basque Foundation for ScienceBilbao48013Spain
- University of A CoruñaGroup of PolymersCentro de Investigacións Tecnolóxicas (CIT)Esteiro CampusFerrol15471Spain
| |
Collapse
|
9
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
10
|
Jiang Y, Ning L, Liu C, Sun Y, Li J, Liu Z, Yi Y, Qiu D, He C, Guo Y, Hu W, Liu Y. Alignment of linear polymeric grains for highly stable N-type thin-film transistors. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Xiao M, Carey RL, Chen H, Jiao X, Lemaur V, Schott S, Nikolka M, Jellett C, Sadhanala A, Rogers S, Senanayak SP, Onwubiko A, Han S, Zhang Z, Abdi-Jalebi M, Zhang Y, Thomas TH, Mahmoudi N, Lai L, Selezneva E, Ren X, Nguyen M, Wang Q, Jacobs I, Yue W, McNeill CR, Liu G, Beljonne D, McCulloch I, Sirringhaus H. Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. SCIENCE ADVANCES 2021; 7:eabe5280. [PMID: 33910909 PMCID: PMC8081371 DOI: 10.1126/sciadv.abe5280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/10/2021] [Indexed: 06/01/2023]
Abstract
We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.
Collapse
Affiliation(s)
- Mingfei Xiao
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Remington L Carey
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Hu Chen
- KSC, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, BE-7000 Mons, Belgium
| | - Sam Schott
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Mark Nikolka
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Cameron Jellett
- Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Aditya Sadhanala
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarah Rogers
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Satyaprasad P Senanayak
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
| | - Ada Onwubiko
- Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Sanyang Han
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Zhilong Zhang
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Mojtaba Abdi-Jalebi
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Institute for Materials Discovery, University College London, Torrington Place, London WC1E 7JE, UK
| | - Youcheng Zhang
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Tudor H Thomas
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Lianglun Lai
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Ekaterina Selezneva
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Xinglong Ren
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Malgorzata Nguyen
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Qijing Wang
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ian Jacobs
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Wan Yue
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Guoming Liu
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, BE-7000 Mons, Belgium
| | - Iain McCulloch
- KSC, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
12
|
Zhao F, Filbrun SL, Huang T, Dong B, Fang N. Multiscale Evolution of Bulk Heterojunction Solar Cell Active Layers under Thermal Stress. Anal Chem 2021; 93:1232-1236. [PMID: 33331762 DOI: 10.1021/acs.analchem.0c04461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multimodality spectromicroscopy imaging system has been developed to offer the essential capability of in situ characterization of functional materials at multiple length scales during the morphology evolution and phase development under external stimuli. The photoactive layer of bulk heterojunction solar cell, whose performance is strongly correlated to the structural features over a wide range of length scales, was characterized under thermal stress. Three stages of thermotropic evolution were monitored continuously by the spectromicroscopy imaging system to reveal the critical information from the molecular level to meso- and microscale. The optimized thermal annealing temperature window and preferred temperature dropping operation were identified to promote the performance of the photoactive layer.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Tengxiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
13
|
Wang J, Niu J, Shao B, Yang G, Lu C, Li M, Zhou Z, Chuai X, Chen J, Lu N, Huang B, Wang Y, Li L, Liu M. A tied Fermi liquid to Luttinger liquid model for nonlinear transport in conducting polymers. Nat Commun 2021; 12:58. [PMID: 33397910 PMCID: PMC7782818 DOI: 10.1038/s41467-020-20238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 12/03/2022] Open
Abstract
Organic conjugated polymers demonstrate great potential in transistors, solar cells and light-emitting diodes, whose performances are fundamentally governed by charge transport. However, the morphology-property relationships and the underpinning charge transport mechanisms remain unclear. Particularly, whether the nonlinear charge transport in conducting polymers is appropriately formulated within non-Fermi liquids is not clear. In this work, via varying crystalline degrees of samples, we carry out systematic investigations on the charge transport nonlinearity in conducting polymers. Possible charge carriers' dimensionality is discussed when varying the molecular chain's crystalline orders. A heterogeneous-resistive-network (HRN) model is proposed based on the tied-link between Fermi liquids (FL) and Luttinger liquids (LL), related to the high-ordered crystalline zones and weak-coupled amorphous regions, respectively. The HRN model is supported by precise electrical and microstructural characterizations, together with theoretic evaluations, which well describes the nonlinear transport behaviors and provides new insights into the microstructure-correlated charge transport in organic solids.
Collapse
Affiliation(s)
- Jiawei Wang
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiebin Niu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bin Shao
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518110, China
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Guanhua Yang
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Congyan Lu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Mengmeng Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zheng Zhou
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xichen Chuai
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiezhi Chen
- School of Information Science and Engineering, Shandong University, Shandong, 266237, China
| | - Nianduan Lu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Yeliang Wang
- School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Ming Liu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
14
|
Lenjani SV, Zerson M, Wang Q, Sommer M, Magerle R. Liquid-Crystalline Order and Film Thickness Determine the Semicrystalline Morphology in Diketopyrrolopyrrole-Based Copolymers. ACS Macro Lett 2019; 8:1611-1616. [PMID: 35619397 DOI: 10.1021/acsmacrolett.9b00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lyotropic liquid crystalline (LC) phases offer a means of controlling molecular order and orientation in thin films of conjugated polymers. Surface energy, surface-induced ordering, and film thickness are additional factors determining the molecular order in thin films. Through solvent vapor annealing and in situ atomic force microscopy in the swollen state, we show that in ultrathin films of a poly(dithiazolyldiketopyrrolopyrrole-tetrafluorobenzene) (PTzDPPTzF4) alternating copolymer stacks of monomolecular-thick layers with a 2.1 nm step height form, which resemble a lyotropic smectic LC phase. Within the smectic layers, the polymer backbones are aligned parallel to the film plane, with edge-on oriented diketopyrrolopyrrole (DPP) cores. Thicker films resemble a semicrystalline morphology with lamellae consisting of blocks. Such lamellae are typical for polymers crystallizing via Strobl's block-forming model. Our findings indicate that molecular order, molecular orientation, and the morphology of PTzDPPTzF4 copolymer films are tunable by LC order and by varying the film thickness according to the desired application of the particular organic electronic devices.
Collapse
Affiliation(s)
- Shayan Vazirieh Lenjani
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| | - Mario Zerson
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| | - Qian Wang
- Polymerchemie, Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Michael Sommer
- Polymerchemie, Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Robert Magerle
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| |
Collapse
|