1
|
Nuhu M, Lyu X, Dong X, Yin Y, Lee PH, Shrestha S. Advances and insights into modeling extracellular electron transfer in anaerobic bioprocesses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178656. [PMID: 39884191 DOI: 10.1016/j.scitotenv.2025.178656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Extracellular electron transfer (EET) plays an important role in maintaining redox balance in both natural and engineered anaerobic microbial systems, driving key biochemical processes such as energy generation, bioremediation, and waste degradation. While EET has been characterized in a limited number of microbes and applied in anaerobic digestion and bioelectrochemical systems, further research is needed to explore its mechanism across a broader range of microbial species and anaerobic processes. This review highlights advanced modeling frameworks that provide deeper insights into EET mechanisms and dynamics, aiming to optimize research efforts and minimize time and resource expenditure. Mechanistic models, encompassing thermodynamics and kinetics, are discussed for their utility in calculating conduction rates of electroactive microbes and assessing the energetics of medium chain carboxylic acids production. Genome-scale metabolic models are highlighted for elucidating the roles of cytochromes and conductive pili in the EET pathway. Machine learning is presented as a tool to improve model accuracy and predict EET mechanisms. Furthermore, the integration of quantum mechanics/molecular mechanics methods offers molecular-level insights into electron transfer, while quantum computing addresses limitations of classical computers by simulating complex electron transfer processes in multi-heme cytochromes. Developing advanced modeling techniques will complement experimental techniques, enabling precise predictions and optimization strategies for developing innovative and sustainable anaerobic biotechnologies.
Collapse
Affiliation(s)
- Mujaheed Nuhu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States
| | - Xuejiao Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States
| | - Xinyi Dong
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yue Yin
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States.
| |
Collapse
|
2
|
Costa Monteiro JM, Drigo Filho E. Tunneling Times in an Asymmetric Harmonic Double-Well with Application to Electron Transfers in Biological Macromolecules. ACS OMEGA 2024; 9:49832-49838. [PMID: 39713657 PMCID: PMC11656229 DOI: 10.1021/acsomega.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Tunneling times were calculated in electron transfer processes using an asymmetric harmonic double-well model. The simplicity of a direct variational calculation in the approximate solution of the Schrödinger equation, along with the interpretation of tunneling times within the probabilistic framework of a two-level system, allows for the efficient and accurate determination of tunneling times with minimal computational cost. These calculations were applied to electron transfer processes in the study of the photosynthetic reaction center and in the context of catalysis in UV-induced DNA lesion repair and are in agreement with the experimental, computational, and theoretical results with which they were compared. It was seen that the donor-acceptor distance needed to be adjusted for closer agreement between the calculated and experimentally observed times. However, the adjusted values for this distance remain close to those reported in the literature.
Collapse
Affiliation(s)
- João Marcos Costa Monteiro
- Department of Physics, Institute of
Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Elso Drigo Filho
- Department of Physics, Institute of
Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, 15054-000 São Paulo, Brazil
| |
Collapse
|
3
|
Li Y, Lin S, Zhang C, Chen Y, Zhou S, Wang L, Chen S, Ding T. Charge Transfer Plasmons Enabled by Supramolecular Plug: From Optoelectronic Switching to Enhanced Chiral Sensing. J Am Chem Soc 2024; 146:28739-28747. [PMID: 39385556 DOI: 10.1021/jacs.4c07322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Miniaturization and integration of plasmonic nanodevices are fundamentally limited by quantum tunneling, which leads to quantum plasmonics with reduced local E-field intensity. Despite significant efforts devoted to modeling and deterring the detrimental effect of quantum plasmonics, the modulation and application of electron transport through the subnanometer gaps seems rarely exploited due to the limited tunability of conventional quantum materials. Here, we establish a supramolecular plasmonic system made of pillar[5]arene complexes and plasmonic resonators (nanoparticle-on-mirror, NPoM). The supramolecular assemblies significantly enhance the gap conductance of NPoM, which results in a blue-shift of the coupled plasmons. Plasmonic hot-electron transport with laser excitation further modulates the gap plasmons, which are fully reversible and beneficial for enhanced chiroptic sensing. Such a conductive supramolecular plasmonic system not only suggests an optoelectronic switching strategy for charge transfer plasmons but also provides a superior sensing platform for single molecules.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| | - Siyi Lin
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| | - Yi Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
4
|
Dainiak N. Biology of Exfoliation of Plasma Membrane-Derived Vesicles and the Radiation Response: Historical Background, Applications in Biodosimetry and Cell-Free Therapeutics, and Quantal Mechanisms for Their Release and Function with Implications for Space Travel. Radiat Res 2024; 202:328-354. [PMID: 38981604 DOI: 10.1667/rade-24-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
This historical review of extracellular vesicles in the setting of exposure to ionizing radiation (IR) traces our understanding of how vesicles were initially examined and reported in the literature in the late 1970s (for secreted exosomes) and early 1980s (for plasma membrane-derived, exfoliated vesicles) to where we are now and where we may be headed in the next decade. An emphasis is placed on biophysical properties of extracellular vesicles, energy consumption and the role of vesiculation as an essential component of membrane turnover. The impact of intercellular signal trafficking by vesicle surface and intra-vesicular lipids, proteins, nucleic acids and metabolites is reviewed in the context of biomarkers for estimating individual radiation dose after exposure to radiation, pathogenesis of disease and development of cell-free therapeutics. Since vesicles express both growth stimulatory and inhibitory molecules, a hypothesis is proposed to consider superposition in a shared space and entanglement of molecules by energy sources that are external to human cells. Implications of this approach for travel in deep space are briefly discussed in the context of clinical disorders that have been observed after space travel.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
5
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
6
|
Zhou H, Li D, Ren Z, Xu C, Wang LF, Lee C. Surface plasmons-phonons for mid-infrared hyperspectral imaging. SCIENCE ADVANCES 2024; 10:eado3179. [PMID: 38809968 PMCID: PMC11135386 DOI: 10.1126/sciadv.ado3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Surface plasmons have proven their ability to boost the sensitivity of mid-infrared hyperspectral imaging by enhancing light-matter interactions. Surface phonons, a counterpart technology to plasmons, present unclear contributions to hyperspectral imaging. Here, we investigate this by developing a plasmon-phonon hyperspectral imaging system that uses asymmetric cross-shaped nanoantennas composed of stacked plasmon-phonon materials. The phonon modes within this system, controlled by light polarization, capture molecular refractive index intensity and lineshape features, distinct from those observed with plasmons, enabling more precise and sensitive molecule identification. In a deep learning-assisted imaging demonstration of severe acute respiratory syndrome coronavirus (SARS-CoV), phonons exhibit enhanced identification capabilities (230,400 spectra/s), facilitating the de-overlapping and observation of the spatial distribution of two mixed SARS-CoV spike proteins. In addition, the plasmon-phonon system demonstrates increased identification accuracy (93%), heightened sensitivity, and enhanced detection limits (down to molecule monolayers). These findings extend phonon polaritonics to hyperspectral imaging, promising applications in imaging-guided molecule screening and pharmaceutical analysis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
7
|
Jain A, Gosling J, Liu S, Wang H, Stone EM, Chakraborty S, Jayaraman PS, Smith S, Amabilino DB, Fromhold M, Long YT, Pérez-García L, Turyanska L, Rahman R, Rawson FJ. Wireless electrical-molecular quantum signalling for cancer cell apoptosis. NATURE NANOTECHNOLOGY 2024; 19:106-114. [PMID: 37709951 PMCID: PMC10796273 DOI: 10.1038/s41565-023-01496-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biological functions. Here we merge wireless nano-electrochemical tools with cancer cells for control over electron transfer to trigger cancer cell death. Gold bipolar nanoelectrodes functionalized with redox-active cytochrome c and a redox mediator zinc porphyrin are developed as electric-field-stimulating bio-actuators, termed bio-nanoantennae. We show that a remote electrical input regulates electron transport between these redox molecules, which results in quantum biological tunnelling for electron transfer to trigger apoptosis in patient-derived cancer cells in a selective manner. Transcriptomics data show that the electric-field-induced bio-nanoantenna targets the cancer cells in a unique manner, representing electrically induced control of molecular signalling. The work shows the potential of quantum-based medical diagnostics and treatments.
Collapse
Affiliation(s)
- Akhil Jain
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan Gosling
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Shaochuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haowei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Eloise M Stone
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Sajib Chakraborty
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stuart Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Neurosurgery, Nottingham University Hospitals, Nottingham, UK
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Cerdanyola, Barcelona, Spain
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (IN2UB), Barcelona, Spain
| | | | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Frankie J Rawson
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Adar O, Hollander A, Ilan Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv Respir Med 2023; 91:350-367. [PMID: 37736974 PMCID: PMC10514877 DOI: 10.3390/arm91050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Variability characterizes breathing, cellular respiration, and the underlying quantum effects. Variability serves as a mechanism for coping with changing environments; however, this hypothesis does not explain why many of the variable phenomena of respiration manifest randomness. According to the constrained disorder principle (CDP), living organisms are defined by their inherent disorder bounded by variable boundaries. The present paper describes the mechanisms of breathing and cellular respiration, focusing on their inherent variability. It defines how the CDP accounts for the variability and randomness in breathing and respiration. It also provides a scheme for the potential role of respiration variability in the energy balance in biological systems. The paper describes the option of using CDP-based artificial intelligence platforms to augment the respiratory process's efficiency, correct malfunctions, and treat disorders associated with the respiratory system.
Collapse
Affiliation(s)
- Ofek Adar
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Adi Hollander
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| |
Collapse
|
9
|
Kim I, Kim H, Han S, Kim J, Kim Y, Eom S, Barulin A, Choi I, Rho J, Lee LP. Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300229. [PMID: 37093776 DOI: 10.1002/adma.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Obtaining single-molecular-level fingerprints of biomolecules and electron-transfer dynamic imaging in living cells are critically demanded in postgenomic life sciences and medicine. However, the possible solution called plasmonic resonance energy transfer (PRET) spectroscopy remains challenging due to the fixed scattering spectrum of a plasmonic nanoparticle and limited multiplexing. Here, multiplexed metasurfaces-driven PRET hyperspectral imaging, to probe biological light-matter interactions, is reported. Pixelated metasurfaces with engineered scattering spectra are first designed over the entire visible range by the precision nanoengineering of gap plasmon and grating effects of metasurface clusters. Pixelated metasurfaces are created and their full dark-field coloration is optically characterized with visible color palettes and high-resolution color printings of the art pieces. Furthermore, three different biomolecules (i.e., chlorophyll a, chlorophyll b, and cytochrome c) are applied on metasurfaces for color palettes to obtain selective molecular fingerprint imaging due to the unique biological light-matter interactions with application-specific biomedical metasurfaces. This metasurface-driven PRET hyperspectral imaging will open up a new path for multiplexed real-time molecular sensing and imaging methods.
Collapse
Affiliation(s)
- Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seonghyeon Eom
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Chen Y, Chen Z, Li T, Qiu M, Zhang J, Wang Y, Yuan W, Ho AHP, Al-Hartomy O, Wageh S, Al-Sehemi AG, Shi X, Li J, Xie Z, Xuejin L, Zhang H. Ultrasensitive and Specific Clustered Regularly Interspaced Short Palindromic Repeats Empowered a Plasmonic Fiber Tip System for Amplification-Free Monkeypox Virus Detection and Genotyping. ACS NANO 2023; 17:12903-12914. [PMID: 37384815 PMCID: PMC10340103 DOI: 10.1021/acsnano.3c05007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
The urgent necessity for highly sensitive diagnostic tools has been accentuated by the ongoing mpox (monkeypox) virus pandemic due to the complexity in identifying asymptomatic and presymptomatic carriers. Traditional polymerase chain reaction-based tests, despite their effectiveness, are hampered by limited specificity, expensive and bulky equipment, labor-intensive operations, and time-consuming procedures. In this study, we present a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based diagnostic platform with a surface plasmon resonance-based fiber tip (CRISPR-SPR-FT) biosensor. The compact CRISPR-SPR-FT biosensor, with a 125 μm diameter, offers high stability and portability, enabling exceptional specificity for mpox diagnosis and precise identification of samples with a fatal mutation site (L108F) in the F8L gene. The CRISPR-SPR-FT system can analyze viral double-stranded DNA from mpox virus without amplification in under 1.5 h with a limit of detection below 5 aM in plasmids and about 59.5 copies/μL when in pseudovirus-spiked blood samples. Our CRISPR-SPR-FT biosensor thus offers fast, sensitive, portable, and accurate target nucleic acid sequence detection.
Collapse
Affiliation(s)
- Yuzhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Zhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, People’s Republic
of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Tianzhong Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
| | - Meng Qiu
- College
of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry
Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, People’s Republic
of China
| | - Jinghan Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Yan Wang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Wu Yuan
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Aaron Ho-Pui Ho
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Omar Al-Hartomy
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Xin Shi
- China Medical University, Shenyang, Liaoning 110001, People’s
Republic of China
- School
of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 People’s Republic
of China
- Manchester Metropolitan University (MMU), Operations, Technology, Events and Hospitality Management,
Business
School, All Saints Campus, Oxford Road, Manchester M15 6BH, United Kingdom
| | - Jingfeng Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Zhongjian Xie
- Institute
of Pediatrics, Shenzhen Children’s
Hospital, Shenzhen, Guangdong 518038, People’s Republic of China
| | - Li Xuejin
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Han Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- International
Collaborative Laboratory of 2D, Materials for Optoelectronics Science
and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
11
|
Kim Y, Barulin A, Kim S, Lee LP, Kim I. Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:413-439. [PMID: 39635391 PMCID: PMC11501129 DOI: 10.1515/nanoph-2022-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
The fundamental understanding of molecular quantum electrodynamics via the strong light-matter interactions between a nanophotonic cavity and quantum emitters opens various applications in quantum biology, biophysics, and chemistry. However, considerable obstacles to obtaining a clear understanding of coupling mechanisms via reliable experimental quantifications remain to be resolved before this field can truly blossom toward practical applications in quantitative life science and photochemistry. Here, we provide recent advancements of state-of-the-art demonstrations in plexcitonic and vibro-polaritonic strong couplings and their applications. We highlight recent studies on various strong coupling systems for altering chemical reaction landscapes. Then, we discuss reports dedicated to the utilization of strong coupling methods for biomolecular sensing, protein functioning studies, and the generation of hybrid light-matter states inside living cells. The strong coupling regime provides a tool for investigating and altering coherent quantum processes in natural biological processes. We also provide an overview of new findings and future avenues of quantum biology and biochemistry.
Collapse
Affiliation(s)
- Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sangwon Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA94720, USA
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
12
|
Electron transfer in protein modifications: from detection to imaging. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Kokin E, An HJ, Koo D, Han S, Whang K, Kang T, Choi I, Lee LP. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. NANO LETTERS 2022; 22:9861-9868. [PMID: 36484527 DOI: 10.1021/acs.nanolett.2c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmonic nanocavities have been used as a novel platform for studying strong light-matter coupling, opening access to quantum chemistry, material science, and enhanced sensing. However, the biomolecular study of cavity quantum electrodynamics (QED) is lacking. Here, we report the quantum electrodynamic behavior of chlorophyll-a in a plasmonic nanocavity. We construct an extreme plasmonic nanocavity using Au nanocages with various linker molecules and Au mirrors to obtain a strong coupling regime. Plasmon resonance energy transfer (PRET)-based hyperspectral imaging is applied to study the electrodynamic behaviors of chlorophyll-a in the nanocavity. Furthermore, we observe the energy level splitting of chlorophyll-a, similar to the cavity QED effects due to the light-matter interactions in the cavity. Our study will provide insight for further studies in quantum biological electron or energy transfer, electrodynamics, the electron transport chain of mitochondria, and energy harvesting, sensing, and conversion in both biological and biophysical systems.
Collapse
Affiliation(s)
- Egor Kokin
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul 02504, Korea
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Donghoon Koo
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Korea
- Department of Chemistry, University of Seoul, Seoul 02504, Korea
| | - Luke P Lee
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Jo Y, Woo JS, Lee AR, Lee SY, Shin Y, Lee LP, Cho ML, Kang T. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. NANO LETTERS 2022; 22:7927-7935. [PMID: 36137175 DOI: 10.1021/acs.nanolett.2c02957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.
Collapse
Affiliation(s)
- Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Luke P Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Scieneces, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
15
|
Zhang X, Zhu Z, Liu W, Gao F, Guo J, Song B, Lee LP, Zhang F. The Selective Function of Quantum Biological Electron Transfer between DNA Bases and Metal Ions in DNA Replication. J Phys Chem Lett 2022; 13:7779-7787. [PMID: 35969805 DOI: 10.1021/acs.jpclett.2c01877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal ions play vital roles in the electron transfer between biological molecules in humans, animals, and plants. However, the electron transfer between metal ions and nucleic acids and its impact on DNA-ion binding during DNA replication has been ignored. Here, we present a long-range quantum biological electron transfer (QBET) between DNA bases and metal ions and its selective function of DNA-ion binding in DNA replication. We discover biophysical DNA-ion binding and create biological filters that allow selective DNA replication by dual modulators of the valence and concentration of metal ions. QBET-based DNA replication filters provide powerful tools for ultrasensitive polymerase chain reaction (PCR) to selectively amplify target sequences with a discrete concentration window of metal ions; for example, Au3+ exhibits a concentration window that is approximately 3 orders of magnitude lower than that of Na+. DNA-ion filters provide new perspectives into metal ion-mediated QBET in DNA replication and hold great potential in life sciences and medical applications.
Collapse
Affiliation(s)
- Xianjing Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhi Zhu
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenpeng Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Feng Gao
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Song
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Feng Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
16
|
Zhang M, Zhang L, Chen Q, Bai G, Li S. A Designed Twist Sensor Based on the SPR Effect in the Thin-Gold-Film-Coated Helical Microstructured Optical Fibers. SENSORS (BASEL, SWITZERLAND) 2022; 22:5668. [PMID: 35957225 PMCID: PMC9371014 DOI: 10.3390/s22155668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The traditional optical fiber-based twist sensing has the disadvantage of low sensitivity and difficulty of distinguishing the twist direction. Moreover, chiral isomerism may lead to sensing errors. In this paper, a six-hole helical microstructured optical fiber (HMSF) with a thin-gold-film-coat based on the surface plasmon resonance (SPR) effect was designed. The twist sensing characteristics of this fiber were further analyzed. Numerical calculation and analysis show that the combination of helical effect and SPR effect can design an HMSF-based sensor that is very sensitive to distortion. In the torsion range of ±300°, the distortion sensitivity can reach 2470.7 pm/(rad/m), and the linear correlation coefficient is 0.99996. Based on the special sensing mechanism, it has a good linear coefficient over a large range. Additionally, the direction of the twist can be easily discerned. The HMSF in this work not only has high sensitivity, high linearity, high fault tolerance rate, and a wide range of measurement, but is also easy to manufacture. Therefore, it is promising in the field of twist sensing and has a good application prospect.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; (M.Z.); (Q.C.); (G.B.)
| | - Lei Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
| | - Qiang Chen
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; (M.Z.); (Q.C.); (G.B.)
| | - Ge Bai
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; (M.Z.); (Q.C.); (G.B.)
| | - Shuguang Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; (M.Z.); (Q.C.); (G.B.)
| |
Collapse
|
17
|
Chakraborty B, Jha R, Kar S, Chattaraj PK. Controlling Tunneling Oscillation and Quantum Localization in an Asymmetric Double-Well Potential: A Bohmian Perspective. J Phys Chem A 2022; 126:4834-4847. [PMID: 35834735 DOI: 10.1021/acs.jpca.2c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of spatial symmetry and strength of external time-dependent perturbation on the dynamics of a quantum particle, initially localized in one of the wells of an asymmetric double-well potential are studied using the recently developed techniques incorporating quantum theory of motion and time-dependent Fourier grid Hamiltonian methods. The model used here includes a mimic of the related experimental situations which is considered as a perturbation to the static double-well potential. Analysis of localized and delocalized phase space structures and corresponding time-profile of tunneling probability reveal the recipe toward controlling the tunneling oscillations by modulating the parameters of applied perturbation. A study on a stochastic pulsating potential also reveals the root to the quantum localization, even in moderate field strength.
Collapse
Affiliation(s)
- Bhrigu Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ruchi Jha
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Susmita Kar
- Department of Chemistry, Scottish Church College, Kolkata 700006, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
18
|
Chen Z, Li J, Li T, Fan T, Meng C, Li C, Kang J, Chai L, Hao Y, Tang Y, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, Yu J, Shao Y, Li D, Feng S, Liu WJ, He Y, Ma X, Xie Z, Zhang H. A CRISPR/Cas12a empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 2022; 9:nwac104. [PMID: 35992231 PMCID: PMC9385456 DOI: 10.1093/nsr/nwac104] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/14/2022] Open
Abstract
The outbreak of the COVID-19 pandemic was partially due to the challenge of identifying asymptomatic and presymptomatic carriers of the virus, and thus highlights a strong motivation for diagnostics with high sensitivity that can be rapidly deployed. On the other hand, several concerning SARS-CoV-2 variants, including Omicron, are required to be identified as soon as the samples are identified as ‘positive’. Unfortunately, a traditional PCR test does not allow their specific identification. Herein, for the first time, we have developed MOPCS (Methodologies of Photonic CRISPR Sensing), which combines an optical sensing technology-surface plasmon resonance (SPR) with the ‘gene scissors’ clustered regularly interspaced short palindromic repeat (CRISPR) technique to achieve both high sensitivity and specificity when it comes to measurement of viral variants. MOPCS is a low-cost, CRISPR/Cas12a-system-empowered SPR gene-detecting platform that can analyze viral RNA, without the need for amplification, within 38 min from sample input to results output, and achieve a limit of detection of 15 fM. MOPCS achieves a highly sensitive analysis of SARS-CoV-2, and mutations appear in variants B.1.617.2 (Delta), B.1.1.529 (Omicron) and BA.1 (a subtype of Omicron). This platform was also used to analyze some recently collected patient samples from a local outbreak in China, identified by the Centers for Disease Control and Prevention. This innovative CRISPR-empowered SPR platform will further contribute to the fast, sensitive and accurate detection of target nucleic acid sequences with single-base mutations.
Collapse
Affiliation(s)
- Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jinfeng Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Tianzhong Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Changle Meng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jianlong Kang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Luxiao Chai
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Yabin Hao
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Han's Tech Limited Company. Shenzhen 518000 , China
| | - Yuxuan Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Metasensing Tech Limited Company. Shenzhen 518000 , China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University , Abha 61413, Saudi Arabia
| | - Zhiguang Luo
- Zhongmin (Shenzhen) intelligent ecology Co. , Ltd., Shenzhen 518055 , China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060 , China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China , Beijing 100081 , China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing 102206 , China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences , Beijing 102206 , China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Xiaopeng Ma
- Department of Respiratory, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
19
|
Chen J, Zeng Y, Zhou J, Wang X, Jia B, Miyan R, Zhang T, Sang W, Wang Y, Qiu H, Qu J, Ho HP, Gao BZ, Shao Y, Gu Y. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosens Bioelectron 2022; 204:114084. [DOI: 10.1016/j.bios.2022.114084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 12/01/2022]
|
20
|
Zhang SQ, Cui Y, Li XW, Sun Y, Wang ZW. Multiphonon processes of the inelastic electron transfer in olfaction. Phys Chem Chem Phys 2022; 24:5048-5051. [PMID: 35144279 DOI: 10.1039/d1cp04414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inelastic electron transfer, regarded as one of the potential mechanisms to explain odorant recognition in atomic-scale processes, is still a matter of intense debate. Here, we study multiphonon processes of electron transfer using the Markvart model and calculate their lifetimes with the values of key parameters widely adopted in olfactory systems. We find that these multiphonon processes are as quick as the single phonon process, which suggests that contributions from different phonon modes of an odorant molecule should be included for electron transfer in olfaction. Meanwhile, the temperature dependence of electron transfer could be analyzed effectively based on the reorganization energy which is expanded into the linewidth of multiphonon processes. Our theoretical results not only enrich the knowledge of the mechanism of olfaction recognition, but also provide insights into quantum processes in biological systems.
Collapse
Affiliation(s)
- Shu-Quan Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300354, China
| | - Yu Cui
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China.
| | - Xue-Wei Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China.
| | - Yong Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China.
| | - Zi-Wu Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
21
|
Park Y, Yoon HJ, Lee SE, Lee LP. Multifunctional Cellular Targeting, Molecular Delivery, and Imaging by Integrated Mesoporous-Silica with Optical Nanocrescent Antenna: MONA. ACS NANO 2022; 16:2013-2023. [PMID: 35041396 DOI: 10.1021/acsnano.1c07015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multifunctional nanoprobes have attracted significant attention in a wide range of disciplines such as nanomedicine, precision medicine, and cancer diagnosis and treatment. However, integrating multifunctional ability in a nanoscale structure to precisely target, image, and deliver with cellular spatial/temporal resolution is still challenging in cellulo applications. This is because the development of such high-precision resolution needs to be carried out without labeling, photobleaching, and structurally segregating live cells. In this study, we present an integrated nanostructure of a mesoporous-silica nanosphere with an optical nanocrescent antenna (MONA) for multifunctional cellular targeting, drug delivery, and molecular imaging with spatiotemporal resolution. MONA comprises a systematically constructed Au nanocrescent (AuNC) antenna as a nanosensor and optical switch on a mesoporous-silica nanosphere as a cargo to molecular delivery. MONA made of antiepithelial cell adhesion molecules (anti-EpCAM)-conjugated AuNC facilitates the specific targeting of breast cancer cells, resulting in a highly focused photothermal gradient that functions as a molecular emitter. This light-driven molecular, doxorubicin (DOX) delivery function allows rapid apoptosis of breast cancer cells. Since MONA permits the tracking of quantum biological electron-transfer processes, in addition to its role as an on-demand optical switch, it enables the monitoring of the dynamic behavior of cellular cytochrome c pivoting cell apoptosis in response to the DOX delivery. Owing to the integrated functions of molecular actuation and direct sensing at the precisely targeted spot afforded by MONA, we anticipate that this multifunctional optical nanoantenna structure will have an impact in the fields of nanomedicine, cancer theranostics, and basic life sciences.
Collapse
Affiliation(s)
- Younggeun Park
- Department of Bioengineering and Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center and University of California, Berkeley, California 94720, United States
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyeun Joong Yoon
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Department of Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Luke P Lee
- Department of Bioengineering and Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center and University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Harvard Institute of Medicine, Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115 United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
22
|
Tan J, Li H, Ji C, Zhang L, Zhao C, Tang L, Zhang C, Sun Z, Tan W, Yuan Q. Electron transfer-triggered imaging of EGFR signaling activity. Nat Commun 2022; 13:594. [PMID: 35105871 PMCID: PMC8807759 DOI: 10.1038/s41467-022-28213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
In vivo electron transfer processes are closely related to the activation of signaling pathways, and, thus, affect various life processes. Indeed, the signaling pathway activation of key molecules may be associated with certain diseases. For example, epidermal growth factor receptor (EGFR) activation is related to the occurrence and development of tumors. Hence, monitoring the activation of EGFR-related signaling pathways can help reveal the progression of tumor development. However, it is challenging for current detection methods to monitor the activation of specific signaling pathways in complex biochemical reactions. Here we designed a highly sensitive and specific nanoprobe that enables in vivo imaging of electronic transfer over a broad range of spatial and temporal scales. By using the ferrocene-DNA polymer “wire”, the electrons transferred in a biochemical reaction can flow to persistent luminescent nanoparticles and change their electron distribution, thereby altering the optical signal of the particles. This electron transfer-triggered imaging probe enables mapping the activation of EGFR-related signaling pathways in a temporally and spatially precise manner. By offering precise visualization of signaling activity, this approach may offer a general platform not only for understanding molecular mechanisms in various biological processes but also for promoting disease therapies and drug evaluation. Here, the authors design a nanoprobe for in vivo imaging of electronic transfer, consisting of a ferrocene-DNA polymer to transfer electrons to luminescent nanoparticles, changing their optical signal. Using this probe, they map activation of EGFR signalling during tumour treatment.
Collapse
Affiliation(s)
- Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chenxuan Zhao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liming Tang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Caixin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China. .,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Bio-medicine Ministry of Education, School & Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Lee JH, Shin HJ, Kim YD, Lim DK. Real-time surface-enhanced Raman scattering-based live cell monitoring of the changes in mitochondrial membrane potential. NANOSCALE ADVANCES 2021; 3:3470-3480. [PMID: 36133723 PMCID: PMC9418680 DOI: 10.1039/d0na01076f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Obtaining molecular information on cells in real time has been a critical challenge in studying the interaction between molecules of interest and intracellular components. Fluorescence-based methods have long served as excellent tools to study such important interactions. In this paper, we introduce a Raman scattering-based method as a promising platform to achieve the real-time monitoring of subtle molecular changes occurring within cells. We found that the Raman scattering-based method enabled monitoring changes in the mitochondrial membrane potential at the single-cell level in rheumatoid arthritis synovial fibroblasts induced by tumor necrosis factor-alpha (TNF-α) protein, various chemicals (MgCl2, FCCP, and sodium pyruvate), and a non-chemical stimulus (i.e., light). The triphenylphosphine-modified gold nanoparticles were selectively localized in the mitochondria and showed the characteristic Raman spectrum of cytochrome C and other Raman spectra of molecular components inside the cell. The surface-enhanced Raman spectrum originating from mitochondria was sensitively changed over time when mitochondrial depolarization was induced by the addition of TNF-α, or chemicals known to induce mitochondrial depolarization. The Raman-based signal changes were well matched with results of the conventional fluorescence-based analysis. However, in contrast to the conventional approach, the Raman-based method enables monitoring such changes in real time and provides detailed molecular information in terms of the interaction of molecules. Therefore, these results highlight the possibility of surface-enhanced Raman scattering-based live cell analysis for future proteomics or drug-screening applications.
Collapse
Affiliation(s)
- Ji Hye Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Hyeon Jeong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| |
Collapse
|
25
|
Davids J, Lidströmer N, Ashrafian H. Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Abstract
As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.
Collapse
|
27
|
Wang J, Li XL, Chen HY, Xu JJ. "Loading-type" Plasmonic Nanoparticles for Detection of Peroxynitrite in Living Cells. Anal Chem 2020; 92:15647-15654. [PMID: 33170659 DOI: 10.1021/acs.analchem.0c04017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, plasmon resonance energy transfer (PRET)-based analytical approaches still inevitably suffer from limitations, such as lack of appropriate acceptor-donor pairs and the extra requirements of active groups of acceptors, which place great obstacles in extending the application of such methods, especially in the area of living cell studies. Herein, we design and fabricate a kind of "loading-type" plasmonic nanomaterials constituting gold nanoparticles as donors of PRET coated with mesoporous silicon, in which organic small molecules (CHCN) as acceptors of PRET were loaded (Au@MSN-CHCN). This "loading-type" strategy could conveniently integrate acceptor-donor pairs into one nanoparticle, so as to achieve the goal of sensitive detection of biomolecules in a complex physiological microenvironment. Based on the change of PRET efficiency of Au@MSN-CHCN induced by the specific reaction between CHCN and peroxynitrite (ONOO-), ONOO-, which plays an irreplaceable role in a series of physiological and pathological processes, is sensitively and selectively detected. Furthermore, in situ imaging of exogenous and endogenous ONOO- in living cells was achieved even at a single nanoparticle level. This work provides a general approach to construct PRET probes for visualizing various biomolecules in living cells.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Leem JW, Llacsahuanga Allcca AE, Kim YJ, Park J, Kim SW, Kim SR, Ryu W, Chen YP, Kim YL. Photoelectric Silk via Genetic Encoding and Bioassisted Plasmonics. ADVANCED BIOSYSTEMS 2020; 4:e2000040. [PMID: 32462817 DOI: 10.1002/adbi.202000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Genetically encoded photoelectric silk that can convert photons to electrons (light to electricity) over a wide visible range in a self-power mode is reported. As silk is a versatile host material with electrical conductivity, biocompatibility, and processability, a photoelectric protein is genetically fused with silk by silkworm transgenesis. Specifically, mKate2, which is conventionally known as a far-red fluorescent protein, is used as a photoelectric protein. Characterization of the electrochemical and optical properties of mKate2 silk allows designing a photoelectric measurement system. A series of in situ photocurrent experiments support the sensitive and stable performance of photoelectric conversion. In addition, as a plasmonic nanomaterial with a broad spectral resonance, titanium nitride (TiN) nanoparticles are biologically hybridized into the silk glands, taking full advantage of the silkworms' open circulatory system as well as the absorption band of mKate2 silk. This biological hybridization via direct feeding of TiN nanoparticles further enhances the overall photoelectric conversion ability of mKate2 silk. It is envisioned that the biologically derived photoelectric protein, its ecofriendly scalable production by transgenic silkworms, and the bioassisted plasmonic hybridization can potentially broaden the biomaterial choices for developing next-generation biosensing, retina prosthesis, and neurostimulation applications.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Yong Jae Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jongwoo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|