1
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 PMCID: PMC11552652 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Xu Z, Ma W, Wang J, Chen H, Li H, Yin Z, Hao J, Chen K. Nuclear HMGB1 is critical for CD8 T cell IFN-γ production and anti-tumor immunity. Cell Rep 2024; 43:114591. [PMID: 39116204 DOI: 10.1016/j.celrep.2024.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
HMGB1 (high-mobility group box-1) has been extensively studied as a damage-associated molecular pattern, with secreted cytokine function. However, its regulation on T cells, especially the function in the nucleus, has not been elucidated. Here, we use conditional knockout (HMGB1-f/f; CD2-cre) mice and find that HMGB1 potentiates the proliferation and interferon gamma (IFN-γ) expression of CD8 T cells rather than CD4 T cells. Notably, nuclear, but not secreted, HMGB1 supports the expression of IFN-γ in CD8 T cells via directly regulating the activity of Eomes, the transcription factor for IFN-γ. Functional study shows that HMGB1 promotes the anti-tumor ability of CD8 T cells in vitro and in vivo. Finally, tumor environmental interleukin-7 promotes HMGB1 and IFN-γ production via fatty acid oxidation in CD8 T cells. Overall, we identify the role of nuclear HMGB1 in CD8 T cell differentiation and demonstrate that it plays an important role in the anti-tumor programs of CD8 T cells.
Collapse
Affiliation(s)
- Zhiguang Xu
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ji Wang
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Haofan Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China.
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China.
| | - Kebing Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
3
|
Sumaria N, Fiala GJ, Inácio D, Curado-Avelar M, Cachucho A, Pinheiro R, Wiesheu R, Kimura S, Courtois L, Blankenhaus B, Darrigues J, Suske T, Almeida ARM, Minguet S, Asnafi V, Lhermitte L, Mullighan CG, Coffelt SB, Moriggl R, Barata JT, Pennington DJ, Silva-Santos B. Perinatal thymic-derived CD8αβ-expressing γδ T cells are innate IFN-γ producers that expand in IL-7R-STAT5B-driven neoplasms. Nat Immunol 2024; 25:1207-1217. [PMID: 38802512 PMCID: PMC11224017 DOI: 10.1038/s41590-024-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αβ heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αβ+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αβ+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αβ+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αβ+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Thymus Gland/immunology
- Receptors, Interleukin-7/metabolism
- Immunity, Innate
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- Mice, Inbred C57BL
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- CD8 Antigens/metabolism
- Female
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interleukin-7/metabolism
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Gina J Fiala
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Daniel Inácio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Curado-Avelar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben Pinheiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Robert Wiesheu
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Lucien Courtois
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | - Birte Blankenhaus
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tobias Suske
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Vahid Asnafi
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | | | | | - Seth B Coffelt
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Bafor EE, Erwin-Cohen RA, Martin T, Baker C, Kimmel AE, Duverger O, Fenimore JM, Ramba M, Spindel T, Hess MM, Sanford M, Lazarevic V, Benayoun BA, Young HA, Valencia JC. Aberrant CD8 +T cells drive reproductive dysfunction in female mice with elevated IFN-γ levels. Front Immunol 2024; 15:1368572. [PMID: 38698852 PMCID: PMC11064017 DOI: 10.3389/fimmu.2024.1368572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.
Collapse
Affiliation(s)
- Enitome E. Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Rebecca A. Erwin-Cohen
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Toni Martin
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Clayton Baker
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Adrienne E. Kimmel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - John M. Fenimore
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Meredith Ramba
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Thea Spindel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Megan M. Hess
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Michael Sanford
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julio C. Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
5
|
Lee S, Song SG, Kim G, Kim S, Yoo HJ, Koh J, Kim YJ, Tian J, Cho E, Choi YS, Chang S, Shin HM, Jung KC, Kim JH, Kim TM, Jeon YK, Kim HY, Shong M, Kim JH, Chung DH. CRIF1 deficiency induces FOXP3 LOW inflammatory non-suppressive regulatory T cells, thereby promoting antitumor immunity. SCIENCE ADVANCES 2024; 10:eadj9600. [PMID: 38536932 PMCID: PMC10971410 DOI: 10.1126/sciadv.adj9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.
Collapse
Affiliation(s)
- Sangsin Lee
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jingwen Tian
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eunji Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoe Chang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Pathology, Asan Medical Center (AMC), Ulsan University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the Phenotypic States of Human innate-like T Cells: Comparative Insights with Conventional T Cells and Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570707. [PMID: 38105962 PMCID: PMC10723458 DOI: 10.1101/2023.12.07.570707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paul J. Norman
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah V. Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
7
|
Won HY, Liman N, Li C, Park JH. Proinflammatory IFNγ Is Produced by but Not Required for the Generation of Eomes + Thymic Innate CD8 T Cells. Cells 2023; 12:2433. [PMID: 37887277 PMCID: PMC10605631 DOI: 10.3390/cells12202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Innate CD8 T cells are proinflammatory effector T cells that achieve functional maturation in the thymus prior to their export into and maturation in peripheral tissues. Innate CD8 T cells produce the Th1 cytokine IFNγ but depend on the Th2 cytokine IL-4 for their generation. Thus, innate CD8 T cells can permute the intrathymic cytokine milieu by consuming a Th2 cytokine but driving a Th1 cytokine response. The cellular source of IL-4 is the NKT2 subset of invariant NKT (iNKT) cells. Consequently, NKT2 deficiency results in the lack of innate CD8 T cells. Whether NKT2 is the only iNKT subset and whether IL-4 is the only cytokine required for innate CD8 T cell generation, however, remains unclear. Here, we employed a mouse model of NKT1 deficiency, which is achieved by overexpression of the cytokine receptor IL-2Rβ, and assessed the role of other iNKT subsets and cytokines in innate CD8 T cell differentiation. Because IL-2Rβ-transgenic mice failed to generate both NKT1 and innate CD8 T cells, we postulated an in vivo requirement for IFNγ-producing NKT1 cells for innate CD8 T cell development. In-depth analyses of IL-2Rβ-transgenic mice and IFNγ-deficient mice, however, demonstrated that neither NKT1 nor IFNγ was required to induce Eomes or to drive innate CD8 T cell generation. Instead, in vivo administration of recombinant IL-4 sufficed to restore the development of innate CD8 T cells in NKT1-deficient mice, affirming that intrathymic IL-4, and not IFNγ, is the limiting factor and key regulator of innate CD8 T cell generation in the thymus.
Collapse
Affiliation(s)
| | | | | | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (H.Y.W.); (N.L.); (C.L.)
| |
Collapse
|
8
|
Le Moine M, Azouz A, Sanchez Sanchez G, Dejolier S, Nguyen M, Thomas S, Shala V, Dreidi H, Denanglaire S, Libert F, Vermijlen D, Andris F, Goriely S. Homeostatic PD-1 signaling restrains EOMES-dependent oligoclonal expansion of liver-resident CD8 T cells. Cell Rep 2023; 42:112876. [PMID: 37543948 DOI: 10.1016/j.celrep.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The co-inhibitory programmed death (PD)-1 signaling pathway plays a major role in the context of tumor-specific T cell responses. Conversely, it also contributes to the maintenance of peripheral tolerance, as patients receiving anti-PD-1 treatment are prone to developing immune-related adverse events. Yet, the physiological role of the PD-1/PDL-1 axis in T cell homeostasis is still poorly understood. Herein, we show that under steady-state conditions, the absence of PD-1 signaling led to a preferential expansion of CD8+ T cells in the liver. These cells exhibit an oligoclonal T cell receptor (TCR) repertoire and a terminally differentiated exhaustion profile. The transcription factor EOMES is required for the clonal expansion and acquisition of this differentiation program. Finally, single-cell transcriptomics coupled with TCR repertoire analysis support the notion that these cells arise locally from liver-resident memory CD8+ T cells. Overall, we show a role for PD-1 signaling in liver memory T cell homeostasis.
Collapse
Affiliation(s)
- Marie Le Moine
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium
| | - Solange Dejolier
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Valdrin Shala
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Hacene Dreidi
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sébastien Denanglaire
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM) and Brightcore, ULB, Brussels, Belgium
| | - David Vermijlen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Andris
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
9
|
Wong P, Foltz JA, Chang L, Neal CC, Yao T, Cubitt CC, Tran J, Kersting-Schadek S, Palakurty S, Jaeger N, Russler-Germain DA, Marin ND, Gang M, Wagner JA, Zhou AY, Jacobs MT, Foster M, Schappe T, Marsala L, McClain E, Pence P, Becker-Hapak M, Fisk B, Petti AA, Griffith OL, Griffith M, Berrien-Elliott MM, Fehniger TA. T-BET and EOMES sustain mature human NK cell identity and antitumor function. J Clin Invest 2023; 133:e162530. [PMID: 37279078 PMCID: PMC10313375 DOI: 10.1172/jci162530] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Collapse
Affiliation(s)
- Pamela Wong
- Department of Medicine, Division of Oncology
| | | | - Lily Chang
- Department of Medicine, Division of Oncology
| | | | - Tony Yao
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | | | | | | | | | | | | | - Mark Foster
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | - Bryan Fisk
- Department of Medicine, Division of Oncology
| | | | | | | | | | - Todd A. Fehniger
- Department of Medicine, Division of Oncology
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Chen S, Huang C, Liao G, Sun H, Xie Y, Liao C, Wang J, He M, Hu H, Dai Z, Ren X, Zeng X, Lin Z, Zhang GP, Xie W, Shen S, Li S, Peng S, Kuang DM, Zhao Q, Duda DG, Kuang M. Distinct single-cell immune ecosystems distinguish true and de novo HBV-related hepatocellular carcinoma recurrences. Gut 2023; 72:1196-1210. [PMID: 36596711 DOI: 10.1136/gutjnl-2022-328428] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Revealing the single-cell immune ecosystems in true versus de novo hepatocellular carcinoma (HCC) recurrences could help the optimal development of immunotherapies. DESIGN We performed 5'and VDJ single-cell RNA-sequencing on 34 samples from 20 recurrent HCC patients. Bulk RNA-sequencing, flow cytometry, multiplexed immunofluorescence, and in vitro functional analyses were performed on samples from two validation cohorts. RESULTS Analyses of mutational profiles and evolutionary trajectories in paired primary and recurrent HCC samples using whole-exome sequencing identified de novo versus true recurrences, some of which occurred before clinical diagnosis. The tumour immune microenvironment (TIME) of truly recurrent HCCs was characterised by an increased abundance in KLRB1+CD8+ T cells with memory phenotype and low cytotoxicity. In contrast, we found an enrichment in cytotoxic and exhausted CD8+ T cells in the TIME of de novo recurrent HCCs. Transcriptomic and interaction analyses showed elevated GDF15 expression on HCC cells in proximity to dendritic cells, which may have dampened antigen presentation and inhibited antitumour immunity in truly recurrent lesions. In contrast, myeloid cells' cross talk with T cells-mediated T cell exhaustion and immunosuppression in the TIME of de novo recurrent HCCs. Consistent with these findings, a phase 2 trial of neoadjuvant anti-PD-1 immunotherapy showed more responses in de novo recurrent HCC patients. CONCLUSION True and de novo HCC recurrences occur early, have distinct TIME and may require different immunotherapy strategies. Our study provides a source for genomic diagnosis and immune profiling for guiding immunotherapy based on the type of HCC recurrence and the specific TIME.
Collapse
Affiliation(s)
- Shuling Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guanrui Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huichuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yubin Xie
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Changyi Liao
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minghui He
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huanjing Hu
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoxue Ren
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuezhen Zeng
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhilong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guo-Pei Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenxuan Xie
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sui Peng
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Dong-Ming Kuang
- State Key Laboratory of Oncology in South China, Cancer Center, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, People's Republic of China
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Bowakim-Anta N, Acolty V, Azouz A, Yagita H, Leo O, Goriely S, Oldenhove G, Moser M. Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs. Front Immunol 2023; 14:1023064. [PMID: 36993956 PMCID: PMC10041113 DOI: 10.3389/fimmu.2023.1023064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMost T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.MethodsIn this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.ResultsOur data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.ConclusionWe conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Collapse
Affiliation(s)
- Natalia Bowakim-Anta
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Valérie Acolty
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Oberdan Leo
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stanislas Goriely
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- *Correspondence: Muriel Moser,
| |
Collapse
|
12
|
Wang Y, Zhang H, Du G, Luo H, Su J, Sun Y, Zhou M, Shi B, Li HQX, Jiang H, Li Z. Enforced expression of Runx3 improved CAR-T cell potency in solid tumor via enhancing resistance to activation-induced cell death. Mol Ther 2023; 31:701-714. [PMID: 36523165 PMCID: PMC10014350 DOI: 10.1016/j.ymthe.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Limited T cell persistence restrains chimeric antigen receptor (CAR)-T cell therapy in solid tumors. To improve persistence, T cells have been engineered to secrete proinflammatory cytokines, but other possible methods have been understudied. Runx3 has been considered a master regulator of T cell development, cytotoxic T lymphocyte differentiation, and tissue-resident memory T (Trm)-cell formation. A study using a transgenic mouse model revealed that overexpression of Runx3 promoted T cell persistence in solid tumors. Here, we generated CAR-T cells overexpressing Runx3 (Run-CAR-T cells) and found that Run-CAR-T cells had long-lasting antitumor activities and achieved better tumor control than conventional CAR-T cells. We observed that more Run-CAR-T cells circulated in the peripheral blood and accumulated in tumor tissue, indicating that Runx3 coexpression improved CAR-T cell persistence in vivo. Tumor-infiltrating Run-CAR-T cells showed less cell death with enhanced proliferative and effector activities. Consistently, in vitro studies indicated that AICD was also decreased in Run-CAR-T cells via downregulation of tumor necrosis factor (TNF) secretion. Further studies revealed that Runx3 could bind to the TNF promoter and suppress its gene transcription after T cell activation. In conclusion, Runx3-armored CAR-T cells showed increased antitumor activities and could be a new modality for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics Co., Ltd, Shanghai 200231, China
| | | | - Guoxiu Du
- CARsgen Therapeutics Co., Ltd, Shanghai 200231, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Jingwen Su
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yansha Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Min Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Life Sciences Co., Ltd, Shanghai 200231, China
| | - Henry Q X Li
- Crown Bioscience, Inc, Santa Clara, CA 95050, USA
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics Co., Ltd, Shanghai 200231, China; CARsgen Life Sciences Co., Ltd, Shanghai 200231, China.
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics Co., Ltd, Shanghai 200231, China; CARsgen Life Sciences Co., Ltd, Shanghai 200231, China.
| |
Collapse
|
13
|
Tokić S, Jirouš M, Plužarić V, Mihalj M, Šola M, Tolušić Levak M, Glavaš K, Balogh P, Štefanić M. The miR-20a/miR-92b Profile Is Associated with Circulating γδ T-Cell Perturbations in Mild Psoriasis. Int J Mol Sci 2023; 24:4323. [PMID: 36901753 PMCID: PMC10001743 DOI: 10.3390/ijms24054323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Psoriasis vulgaris (PV) is an autoinflammatory dermatosis of unknown etiology. Current evidence suggests a pathogenic role of γδT cells, but the growing complexity of this population has made the offending subset difficult to pinpoint. The work on γδTCRint and γδTCRhi subsets, which express intermediate and high levels of γδTCR at their surface, respectively, is particularly scarce, leaving their inner workings in PV essentially unresolved. We have shown here that the γδTCRint/γδTCRhi cell composition and their transcriptom are related to the differential miRNA expression by performing a targeted miRNA and mRNA quantification (RT-qPCR) in multiplexed, flow-sorted γδ blood T cells from healthy controls (n = 14) and patients with PV (n = 13). A significant loss of miR-20a in bulk γδT cells (~fourfold decrease, PV vs. controls) largely mirrored increasing Vδ1-Vδ2- and γδintVδ1-Vδ2- cell densities in the bloodstream, culminating in a relative excess of γδintVδ1-Vδ2- cells for PV. Transcripts encoding DNA-binding factors (ZBTB16), cytokine receptors (IL18R1), and cell adhesion molecules (SELPLG) were depleted in the process, closely tracking miR-20a availability in bulk γδ T-cell RNA. Compared to controls, PV was also associated with enhanced miR-92b expression (~13-fold) in bulk γδT cells that lacked association with the γδT cell composition. The miR-29a and let-7c expressions remained unaltered in case-control comparisons. Overall, our data expand the current landscape of the peripheral γδT cell composition, underlining changes in its mRNA/miRNA transcriptional circuits that may inform PV pathogenesis.
Collapse
Affiliation(s)
- Stana Tokić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Maja Jirouš
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Vera Plužarić
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Kristina Glavaš
- Department of Transfusion Medicine, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, 7622 Pecs, Hungary
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
14
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
15
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
16
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
17
|
Jing R, Scarfo I, Najia MA, Lummertz da Rocha E, Han A, Sanborn M, Bingham T, Kubaczka C, Jha DK, Falchetti M, Schlaeger TM, North TE, Maus MV, Daley GQ. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity. Cell Stem Cell 2022; 29:1181-1196.e6. [PMID: 35931029 PMCID: PMC9386785 DOI: 10.1016/j.stem.2022.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 01/12/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited resource for cell therapies, but the derivation of mature cell types remains challenging. The histone methyltransferase EZH1 is a negative regulator of lymphoid potential during embryonic hematopoiesis. Here, we demonstrate that EZH1 repression facilitates in vitro differentiation and maturation of T cells from iPSCs. Coupling a stroma-free T cell differentiation system with EZH1-knockdown-mediated epigenetic reprogramming, we generated iPSC-derived T cells, termed EZ-T cells, which display a highly diverse T cell receptor (TCR) repertoire and mature molecular signatures similar to those of TCRαβ T cells from peripheral blood. Upon activation, EZ-T cells give rise to effector and memory T cell subsets. When transduced with chimeric antigen receptors (CARs), EZ-T cells exhibit potent antitumor activities in vitro and in xenograft models. Epigenetic remodeling via EZH1 repression allows efficient production of developmentally mature T cells from iPSCs for applications in adoptive cell therapy.
Collapse
Affiliation(s)
- Ran Jing
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Scarfo
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mohamad Ali Najia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Areum Han
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Sanborn
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak K Jha
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcelo Falchetti
- Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thorsten M Schlaeger
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Zhao Y, Zhang Q, Tu K, Chen Y, Peng Y, Ni Y, Zhu G, Cheng C, Li Y, Xiao X, Yu C, Lu K, Chen Y, Li C, Tang J, Wang G, Luo W, Zhang W, Che G, Li W, Wang Z, Xie D. Single-Cell Transcriptomics of Immune Cells Reveal Diversity and Exhaustion Signatures in Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:854724. [PMID: 35874785 PMCID: PMC9299430 DOI: 10.3389/fimmu.2022.854724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding immune cell phenotypes in the tumor microenvironment (TME) is essential for explaining and predicting progression of non-small cell lung cancer (NSCLC) and its response to immunotherapy. Here we describe the single-cell transcriptomics of CD45+ immune cells from tumors, normal tissues and blood of NSCLC patients. We identified three clusters of immune cells exerting immunosuppressive effects: CD8+ T cells with exhausted phenotype, tumor-associated macrophages (TAMs) with a pro-inflammatory M2 phenotype, and regulatory B cells (B regs) with tumor-promoting characteristics. We identified genes that may be mediating T cell phenotypes, including the transcription factors ONECUT2 and ETV4 in exhausted CD8+ T cells, TIGIT and CTL4 high expression in regulatory T cells. Our results highlight the heterogeneity of CD45+ immune cells in the TME and provide testable hypotheses about the cell types and genes that define the TME.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Qilin Zhang
- Laboratory of Omics Technology and Bioinformatics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kailin Tu
- Laboratory of Omics Technology and Bioinformatics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- Health Management Center, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yuxuan Peng
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Cheng
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Xiao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Yu
- Laboratory of Omics Technology and Bioinformatics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Keying Lu
- Laboratory of Omics Technology and Bioinformatics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Chengpin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxin Luo
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wengeng Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Hu W, Li YJ, Zhen C, Wang YY, Huang HH, Zou J, Zheng YQ, Huang GC, Meng SR, Jin JH, Li J, Zhou MJ, Fu YL, Zhang P, Li XY, Yang T, Wang XW, Yang XH, Song JW, Fan X, Jiao YM, Xu RN, Zhang JY, Zhou CB, Yuan JH, Huang L, Qin YQ, Wu FY, Shi M, Wang FS, Zhang C. CCL5-Secreting Virtual Memory CD8+ T Cells Inversely Associate With Viral Reservoir Size in HIV-1-Infected Individuals on Antiretroviral Therapy. Front Immunol 2022; 13:897569. [PMID: 35720272 PMCID: PMC9204588 DOI: 10.3389/fimmu.2022.897569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - You-Yuan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Qing Zheng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Gui-Chan Huang
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Wen Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Han Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ya-Qin Qin
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Feng-Yao Wu
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
20
|
Yu L, Guan Y, Li L, Lu N, Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8
+
T cells during HBV persistence. FEBS J 2022; 289:3241-3261. [DOI: 10.1111/febs.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Linyan Yu
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
- Jining NO. 1 People’s Hospital China
| | - Lei Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Nan Lu
- Institute of Diagnostics School of Medicine Cheeloo College of Medicine Shandong University Jinan China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
21
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
22
|
Zhang J, Rousseaux N, Walzer T. Eomes and T‐bet, a dynamic duo regulating NK cell differentiation. Bioessays 2022; 44:e2100281. [DOI: 10.1002/bies.202100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jiang Zhang
- Department of Dermatology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Noémi Rousseaux
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| | - Thierry Walzer
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| |
Collapse
|
23
|
Interleukin-10 induces interferon-γ-dependent emergency myelopoiesis. Cell Rep 2021; 37:109887. [PMID: 34706233 DOI: 10.1016/j.celrep.2021.109887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
In emergency myelopoiesis (EM), expansion of the myeloid progenitor compartment and increased myeloid cell production are observed and often mediated by the pro-inflammatory cytokine interferon gamma (IFN-γ). Interleukin-10 (IL-10) inhibits IFN-γ secretion, but paradoxically, its therapeutic administration to humans causes hematologic changes similar to those observed in EM. In this work, we use different in vivo systems, including a humanized immune system mouse model, to show that IL-10 triggers EM, with a significant expansion of the myeloid progenitor compartment and production of myeloid cells. Hematopoietic progenitors display a prominent IFN-γ transcriptional signature, and we show that IFN-γ mediates IL-10-driven EM. We also find that IL-10, unexpectedly, reprograms CD4 and CD8 T cells toward an activation state that includes IFN-γ production by these T cell subsets in vivo. Therefore, in addition to its established anti-inflammatory properties, IL-10 can induce IFN-γ production and EM, opening additional perspectives for the design of IL-10-based immunotherapies.
Collapse
|
24
|
Abbas HA, Hao D, Tomczak K, Barrodia P, Im JS, Reville PK, Alaniz Z, Wang W, Wang R, Wang F, Al-Atrash G, Takahashi K, Ning J, Ding M, Beird HC, Mathews JT, Little L, Zhang J, Basu S, Konopleva M, Marques-Piubelli ML, Solis LM, Parra ER, Lu W, Tamegnon A, Garcia-Manero G, Green MR, Sharma P, Allison JP, Kornblau SM, Rai K, Wang L, Daver N, Futreal A. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nat Commun 2021; 12:6071. [PMID: 34663807 PMCID: PMC8524723 DOI: 10.1038/s41467-021-26282-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
In contrast to the curative effect of allogenic stem cell transplantation in acute myeloid leukemia via T cell activity, only modest responses are achieved with checkpoint-blockade therapy, which might be explained by T cell phenotypes and T cell receptor (TCR) repertoires. Here, we show by paired single-cell RNA analysis and TCR repertoire profiling of bone marrow cells in relapsed/refractory acute myeloid leukemia patients pre/post azacytidine+nivolumab treatment that the disease-related T cell subsets are highly heterogeneous, and their abundance changes following PD-1 blockade-based treatment. TCR repertoires expand and primarily emerge from CD8+ cells in patients responding to treatment or having a stable disease, while TCR repertoires contract in therapy-resistant patients. Trajectory analysis reveals a continuum of CD8+ T cell phenotypes, characterized by differential expression of granzyme B and a bone marrow-residing memory CD8+ T cell subset, in which a population with stem-like properties expressing granzyme K is enriched in responders. Chromosome 7/7q loss, on the other hand, is a cancer-intrinsic genomic marker of PD-1 blockade resistance in AML. In summary, our study reveals that adaptive T cell plasticity and genomic alterations determine responses to PD-1 blockade in acute myeloid leukemia.
Collapse
Affiliation(s)
- Hussein A. Abbas
- grid.240145.60000 0001 2291 4776Division of Cancer Medicine, Medical Oncology Fellowship, University of Texas M D Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Dapeng Hao
- grid.240145.60000 0001 2291 4776Division of Cancer Medicine, Medical Oncology Fellowship, University of Texas M D Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Katarzyna Tomczak
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Praveen Barrodia
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Jin Seon Im
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick K. Reville
- grid.240145.60000 0001 2291 4776Division of Cancer Medicine, Medical Oncology Fellowship, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Zoe Alaniz
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wei Wang
- grid.240145.60000 0001 2291 4776Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ruiping Wang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Feng Wang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Gheath Al-Atrash
- grid.240145.60000 0001 2291 4776Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Koichi Takahashi
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Jing Ning
- grid.240145.60000 0001 2291 4776Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maomao Ding
- grid.240145.60000 0001 2291 4776Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA
| | - Hannah C. Beird
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Jairo T. Mathews
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Latasha Little
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Sreyashi Basu
- grid.240145.60000 0001 2291 4776Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marina Konopleva
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mario L. Marques-Piubelli
- grid.240145.60000 0001 2291 4776Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Luisa M. Solis
- grid.240145.60000 0001 2291 4776Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Edwin Roger Parra
- grid.240145.60000 0001 2291 4776Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Wei Lu
- grid.240145.60000 0001 2291 4776Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Auriole Tamegnon
- grid.240145.60000 0001 2291 4776Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Guillermo Garcia-Manero
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael R. Green
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Padmanee Sharma
- grid.240145.60000 0001 2291 4776Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - James P. Allison
- grid.240145.60000 0001 2291 4776Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Steven M. Kornblau
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kunal Rai
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA
| | - Linghua Wang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Naval Daver
- grid.240145.60000 0001 2291 4776Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Andrew Futreal
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, University of Texas M D Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
25
|
Kiekens L, Van Loocke W, Taveirne S, Wahlen S, Persyn E, Van Ammel E, De Vos Z, Matthys P, Van Nieuwerburgh F, Taghon T, Van Vlierberghe P, Vandekerckhove B, Leclercq G. T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Front Immunol 2021; 12:732511. [PMID: 34630413 PMCID: PMC8497824 DOI: 10.3389/fimmu.2021.732511] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.
Collapse
Affiliation(s)
- Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
26
|
George TB, Strawn NK, Leviyang S. Tree-Based Co-Clustering Identifies Chromatin Accessibility Patterns Associated With Hematopoietic Lineage Structure. Front Genet 2021; 12:707117. [PMID: 34659332 PMCID: PMC8517275 DOI: 10.3389/fgene.2021.707117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
Chromatin accessibility, as measured by ATACseq, varies between hematopoietic cell types in different lineages of the hematopoietic differentiation tree, e.g. T cells vs. B cells, but methods that associate variation in chromatin accessibility to the lineage structure of the differentiation tree are lacking. Using an ATACseq dataset recently published by the ImmGen consortium, we construct associations between chromatin accessibility and hematopoietic cell types using a novel co-clustering approach that accounts for the structure of the hematopoietic, differentiation tree. Under a model in which all loci and cell types within a co-cluster have a shared accessibility state, we show that roughly 80% of cell type associated accessibility variation can be captured through 12 cell type clusters and 20 genomic locus clusters, with the cell type clusters reflecting coherent components of the differentiation tree. Using publicly available ChIPseq datasets, we show that our clustering reflects transcription factor binding patterns with implications for regulation across cell types. We show that traditional methods such as hierarchical and kmeans clusterings lead to cell type clusters that are more dispersed on the tree than our tree-based algorithm. We provide a python package, chromcocluster, that implements the algorithms presented.
Collapse
Affiliation(s)
| | | | - Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| |
Collapse
|
27
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Basu J, Reis BS, Peri S, Zha J, Hua X, Ge L, Ferchen K, Nicolas E, Czyzewicz P, Cai KQ, Tan Y, Fuxman Bass JI, Walhout AJM, Grimes HL, Grivennikov SI, Mucida D, Kappes DJ. Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4 + T cell identity and function. Nat Immunol 2021; 22:969-982. [PMID: 34312548 DOI: 10.1038/s41590-021-00980-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.
Collapse
Affiliation(s)
- Jayati Basu
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jikun Zha
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiang Hua
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lu Ge
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Emmanuelle Nicolas
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Philip Czyzewicz
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Epigenetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yinfei Tan
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Juan I Fuxman Bass
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA.,Cedars-Sinai Medical Center, Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Vecellio M, Chen L, Cohen CJ, Cortes A, Li Y, Bonham S, Selmi C, Brown MA, Fischer R, Knight JC, Wordsworth BP. Functional Genomic Analysis of a RUNX3 Polymorphism Associated With Ankylosing Spondylitis. Arthritis Rheumatol 2021; 73:980-990. [PMID: 33369221 PMCID: PMC8251554 DOI: 10.1002/art.41628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS). METHODS Using nuclear extracts from Jurkat cells and primary human CD8+ T cells, the effects of rs4648889 on allele-specific transcription factor (TF) binding were investigated by DNA pull-down assay and quantitative mass spectrometry (qMS), with validation by electrophoretic mobility shift assay (EMSA), Western blotting of the pulled-down eluates, and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis. Further functional effects were tested by small interfering RNA knockdown of the gene for interferon regulatory factor 5 (IRF5), followed by reverse transcription-qPCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) to measure the levels of IFNγ messenger RNA (mRNA) and protein, respectively. RESULTS In nuclear extracts from CD8+ T cells, results of qMS showed that relative TF binding to the AS-risk A allele of rs4648889 was increased 3.7-fold (P < 0.03) for Ikaros family zinc-finger protein 3 (IKZF3; Aiolos) and components of the NuRD complex, including chromodomain helicase DNA binding protein 4 (CHD4) (3.6-fold increase; P < 0.05) and retinoblastoma binding protein 4 (RBBP4) (4.1-fold increase; P < 0.03). In contrast, IRF5 bound significantly more to the AS-protective G allele compared to the AS-risk A allele (fold change 8.2; P = 0.003). Validation with Western blotting, EMSA, and ChIP-qPCR confirmed the differential allelic binding of IKZF3, CHD4, RBBP4, and IRF5. Silencing of IRF5 in CD8+ T cells increased the levels of IFNγ mRNA as measured by RT-qPCR (P = 0.03) and IFNγ protein as measured by ELISA (P = 0.02). CONCLUSION These findings suggest that the association of rs4648889 with AS reflects allele-specific binding of this enhancer-like region to certain TFs, including IRF5, IKZF3, and members of the NuRD complex. IRF5 may have crucial influences on the functions of CD8+ lymphocytes, a finding that could reveal new therapeutic targets for the management of AS.
Collapse
Affiliation(s)
- Matteo Vecellio
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Liye Chen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Carla J Cohen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Adrian Cortes
- John Radcliffe Hospital, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yan Li
- The First Affiliated Hospital of Xiamen University and Xiamen University School of Medicine, Xiamen, China
| | - Sarah Bonham
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Carlo Selmi
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matthew A Brown
- NIHR Guy's and St. Thomas' Biomedical Research Centre, London, UK, and University of Queensland, Brisbane, Queensland, Australia
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Paul Wordsworth
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Peters FS, Strefford JC, Eldering E, Kater AP. T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica 2021; 106:1234-1243. [PMID: 33691381 PMCID: PMC8586819 DOI: 10.3324/haematol.2020.267914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular immunotherapeutic approaches such as chimeric antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) thus far have not met the high expectations. Therefore it is essential to better understand the molecular mechanisms of CLLinduced T-cell dysfunction. Even though a significant number of studies are available on T-cell function and dysfunction in CLL patients, none examine dysfunction at the epigenomic level. In non-malignant T-cell research, epigenomics is widely employed to define the differentiation pathway into T-cell exhaustion. Additionally, metabolic restrictions in the tumor microenvironment that cause T-cell dysfunction are often mediated by epigenetic changes. With this review paper we argue that understanding the epigenetic (dys)regulation in T cells of CLL patients should be leveled to the knowledge we currently have of the neoplastic B cells themselves. This will permit a complete understanding of how these immune cell interactions regulate T- and B-cell function. Here we relate the cellular and phenotypic characteristics of CLL-induced T-cell dysfunction to epigenetic studies of T-cell regulation emerging from chronic viral infection and tumor models. This paper proposes a framework for future studies into the epigenetic regulation of CLL-induced Tcell dysfunction, knowledge that will help to guide improvements in the utility of autologous T-cell based therapies in CLL.
Collapse
Affiliation(s)
- Fleur S Peters
- Experimental Immunology; Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and.
| | - Jonathan C Strefford
- Departments of Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Eldering
- Experimental Immunology; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands
| | - Arnon P Kater
- Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and
| |
Collapse
|
31
|
Weulersse M, Asrir A, Pichler AC, Lemaitre L, Braun M, Carrié N, Joubert MV, Le Moine M, Do Souto L, Gaud G, Das I, Brauns E, Scarlata CM, Morandi E, Sundarrajan A, Cuisinier M, Buisson L, Maheo S, Kassem S, Agesta A, Pérès M, Verhoeyen E, Martinez A, Mazieres J, Dupré L, Gossye T, Pancaldi V, Guillerey C, Ayyoub M, Dejean AS, Saoudi A, Goriely S, Avet-Loiseau H, Bald T, Smyth MJ, Martinet L. Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8 + T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity 2021; 53:824-839.e10. [PMID: 33053331 DOI: 10.1016/j.immuni.2020.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Marianne Weulersse
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Assia Asrir
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Marie Le Moine
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Laura Do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Guillaume Gaud
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Elisa Brauns
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Clara M Scarlata
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Elena Morandi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | | | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Laure Buisson
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sahar Kassem
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Arantxa Agesta
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Michaël Pérès
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Loïc Dupré
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Thomas Gossye
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Vera Pancaldi
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Barcelona Supercomputing Center, Barcelona, Spain
| | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Anne S Dejean
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Stanislas Goriely
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France.
| |
Collapse
|
32
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
33
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
34
|
Ribeiro MM, Okawa S, Del Sol A. TransSynW: A single-cell RNA-sequencing based web application to guide cell conversion experiments. Stem Cells Transl Med 2020; 10:230-238. [PMID: 33125830 PMCID: PMC7848352 DOI: 10.1002/sctm.20-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single‐cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single‐cell RNA‐sequencing (scRNA‐seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA‐seq data for predicting cell conversion transcription factors (TFs) for user‐specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
35
|
Eomesodermin promotes interaction of RelA and NFATc2 with the Ifng promoter and multiple conserved noncoding sequences across the Ifng locus in mouse lymphoma BW5147 cells. Immunol Lett 2020; 225:33-43. [DOI: 10.1016/j.imlet.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
|
36
|
Wehn AK, Farkas DR, Sedlock CE, Subedi D, Chapman DL. Functionally distinct roles for T and Tbx6 during mouse development. Biol Open 2020; 9:9/8/bio054692. [PMID: 32855167 PMCID: PMC7473639 DOI: 10.1242/bio.054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mouse T-box transcription factors T and Tbx6 are co-expressed in the primitive streak and have unique domains of expression; T is expressed in the notochord, while Tbx6 is expressed in the presomitic mesoderm. T-box factors are related through a shared DNA binding domain, the T-domain, and can therefore bind to similar DNA sequences at least in vitro. We investigated the functional similarities and differences of T and Tbx6 DNA binding and transcriptional activity in vitro and their interaction genetically in vivo. We show that at one target, Dll1, the T-domains of T and Tbx6 have different affinities for the binding sites present in the mesoderm enhancer. We further show using in vitro assays that T and Tbx6 differentially affect transcription with Tbx6 activating expression tenfold higher than T, that T and Tbx6 can compete at target gene enhancers, and that this competition requires a functional DNA binding domain. Next, we addressed whether T and Tbx6 can compete in vivo. First, we generated embryos that express Tbx6 at greater than wild-type levels embryos and show that these embryos have short tails, resembling the T heterozygous phenotype. Next, using the dominant-negative TWis allele, we show that Tbx6+/− TWis/+ embryos share similarities with embryos homozygous for the Tbx6 hypomorphic allele rib-vertebrae, specifically fusions of several ribs and malformation of some vertebrae. Finally, we tested whether Tbx6 can functionally replace T using a knockin approach, which resulted in severe T null-like phenotypes in chimeric embryos generated with ES cells heterozygous for a Tbx6 knockin at the T locus. Altogether, our results of differences in affinity for DNA binding sites and transcriptional activity for T and Tbx6 provide a potential mechanism for the failure of Tbx6 to functionally replace T and possible competition phenotypes in vivo. Summary: Mouse Tbx6 fails to compensate for heterozygous loss of T; instead ectopic Tbx6 in the T expression-domain in knockin embryos generates T null-like phenotypes suggestive of competition.
Collapse
Affiliation(s)
- Amy K Wehn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah R Farkas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carly E Sedlock
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dibya Subedi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah L Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
37
|
Boland BS, He Z, Tsai MS, Olvera JG, Omilusik KD, Duong HG, Kim ES, Limary AE, Jin W, Milner JJ, Yu B, Patel SA, Louis TL, Tysl T, Kurd NS, Bortnick A, Quezada LK, Kanbar JN, Miralles A, Huylebroeck D, Valasek MA, Dulai PS, Singh S, Lu LF, Bui JD, Murre C, Sandborn WJ, Goldrath AW, Yeo GW, Chang JT. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci Immunol 2020; 5:5/50/eabb4432. [PMID: 32826341 PMCID: PMC7733868 DOI: 10.1126/sciimmunol.abb4432] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.
Collapse
Affiliation(s)
- Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew S Tsai
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jocelyn G Olvera
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kyla D Omilusik
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Han G Duong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eleanor S Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abigail E Limary
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Justin Milner
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bingfei Yu
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tiani L Louis
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tiffani Tysl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nadia S Kurd
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra Bortnick
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lauren K Quezada
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jad N Kanbar
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ara Miralles
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Danny Huylebroeck
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium.,Department of Cell Biology, Erasmus University Medical Center Rotterdam, 3015 CN Rotterdam, Netherlands
| | - Mark A Valasek
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Parambir S Dulai
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Siddharth Singh
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Li-Fan Lu
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biologic Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA. .,Division of Gastroenterology, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
38
|
Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res 2020; 30:1024-1042. [PMID: 32686767 PMCID: PMC7784929 DOI: 10.1038/s41422-020-0374-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with extremely skewed ethnic and geographic distributions. Increasing evidence indicates that targeting the tumor microenvironment (TME) represents a promising therapeutic approach in NPC, highlighting an urgent need to deepen the understanding of the complex NPC TME. Here, we generated single-cell transcriptome profiles for 7581 malignant cells and 40,285 immune cells from fifteen primary NPC tumors and one normal sample. We revealed malignant signatures capturing intratumoral transcriptional heterogeneity and predicting aggressiveness of malignant cells. Diverse immune cell subtypes were identified, including novel subtypes such as CLEC9A+ dendritic cells (DCs). We further revealed transcriptional regulators underlying immune cell diversity, and cell–cell interaction analyses highlighted promising immunotherapeutic targets in NPC. Moreover, we established the immune subtype-specific signatures, and demonstrated that the signatures of macrophages, plasmacytoid dendritic cells (pDCs), CLEC9A+ DCs, natural killer (NK) cells, and plasma cells were significantly associated with improved survival outcomes in NPC. Taken together, our findings represent a unique resource providing in-depth insights into the cellular heterogeneity of NPC TME and highlight potential biomarkers for anticancer treatment and risk stratification, laying a new foundation for precision therapies in NPC.
Collapse
|