1
|
Sekine H, Akaike T, Motohashi H. Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence. EMBO J 2025:10.1038/s44318-025-00464-7. [PMID: 40394395 DOI: 10.1038/s44318-025-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Oxygen and sulfur, both members of the chalcogen group (group 16 elements), play fundamental roles in life. Ancient organisms primarily utilized sulfur for energy metabolism, while the rise in atmospheric oxygen facilitated the evolution of aerobic organisms, enabling highly efficient energy production. Nevertheless, all modern organisms, both aerobes and anaerobes, must protect themselves from oxygen toxicity. Interestingly, aerobes still rely on sulfur for survival. This dependence has been illuminated by the recent discovery of supersulfides, a novel class of biomolecules, made possible through advancements in technology and analytical methods. These breakthroughs are reshaping our understanding of biological processes and emphasizing the intricate interplay between oxygen and sulfur in regulating essential redox reactions. This review summarizes the latest insights into the biological roles of sulfur and oxygen, their interdependence in key processes, and their contributions to adaptive responses to environmental stressors. By exploring these interactions, we aim to provide a comprehensive perspective on how these elements drive survival strategies across diverse life forms, highlighting their indispensable roles in both human health and the sustenance of life.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Redox Molecular Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
2
|
Gervason S, Dutkiewicz R, Want K, Benazza R, Mor-Gautier R, Grabinska-Rogala A, Sizun C, Hernandez-Alba O, Cianferani S, Guigliarelli B, Burlat B, D'Autréaux B. The ISC machinery assembles [2Fe-2S] clusters by formation and fusion of [1Fe-1S] precursors. Nat Chem Biol 2025; 21:767-778. [PMID: 39870763 DOI: 10.1038/s41589-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU. Then, the persulfide is cleaved into sulfide by the ferredoxin Fdx, leading to a [1Fe-1S] precursor. IscU dissociates from IscS, dimerizes and generates a bridging [2Fe-2S] cluster by fusion of two [1Fe-1S] precursors. The IscU dimer ultimately dissociates into a monomer, ready to transfer its [2Fe-2S] cluster to acceptors. These data provide a comprehensive description of the [2Fe-2S] cluster assembly process by the ISC assembly machinery, highlighting the formation of key intermediates through a tightly concerted process.
Collapse
Affiliation(s)
- Sylvain Gervason
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Rémi Mor-Gautier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Aneta Grabinska-Rogala
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Bruno Guigliarelli
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Bénédicte Burlat
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Querci L, Fiorucci L, Grifagni D, Costantini P, Ravera E, Ciofi-Baffoni S, Piccioli M. Shedding Light on the Electron Delocalization Pathway at the [Fe 2S 2] 2+ Cluster of FDX2. Inorg Chem 2025; 64:6698-6712. [PMID: 40121555 PMCID: PMC11979892 DOI: 10.1021/acs.inorgchem.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
In this paper, we investigate the electronic structure of the [Fe2S2]2+ cluster of human ferredoxin 2 by designing NMR experiments tailored to observe hyperfine-shifted and fast relaxing resonances in the immediate proximity of the cluster and adding a quantitative layer of interpretation through quantum chemical calculations. The combination of paramagnetic NMR and density functional theory data provides evidence of the way unpaired electron density map is at the origin of the inequivalence of the two iron(III) ferredoxin centers. An electron spin density transfer is observed between cluster inorganic sulfide ions and aliphatic carbon atoms, occurring via a C-H---S-Fe3+ interaction, suggesting that inorganic cluster sulfide ions have a significant role in the distribution of electron spin density around the prosthetic group. The extended assignment of 1H, 13C, and 15N nuclei allows the identification of all residues of the binding loop and provides an estimate of the magnetic exchange coupling constant between the two Fe3+ ions of the [Fe2S2]2+ cluster of 386 cm-1. The approach developed here can be extended to other iron-sulfur proteins, providing a crucial tool to uncover subtle differences in electronic structures that modulate the functions of this protein family.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Letizia Fiorucci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Deborah Grifagni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Paola Costantini
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Florence
Data Science, University of Florence, Florence 50134, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| |
Collapse
|
4
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025; 21:204-215. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Pandey AK, Pain J, Singh P, Dancis A, Pain D. Mitochondrial glutaredoxin Grx5 functions as a central hub for cellular iron-sulfur cluster assembly. J Biol Chem 2025; 301:108391. [PMID: 40074084 PMCID: PMC12004709 DOI: 10.1016/j.jbc.2025.108391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Iron-sulfur (Fe-S) protein biogenesis in eukaryotes is mediated by two different machineries-one in the mitochondria and another in the cytoplasm. Glutaredoxin 5 (Grx5) is a component of the mitochondrial iron-sulfur cluster machinery. Here, we define the roles of Grx5 in maintaining overall mitochondrial/cellular Fe-S protein biogenesis, utilizing mitochondria and cytoplasm isolated from Saccharomyces cerevisiae cells. We previously demonstrated that isolated wild-type (WT) mitochondria themselves can synthesize new Fe-S clusters, but isolated WT cytoplasm alone cannot do so unless it is mixed with WT mitochondria. WT mitochondria generate an intermediate, called (Fe-S)int, that is exported to the cytoplasm and utilized for cytoplasmic Fe-S cluster assembly. We here show that mitochondria lacking endogenous Grx5 (Grx5↓) failed to synthesize Fe-S clusters for proteins within the organelle. Similarly, Grx5↓ mitochondria were unable to synthesize (Fe-S)int, as judged by their inability to promote Fe-S cluster biosynthesis in WT cytoplasm. Most importantly, purified Grx5 precursor protein, imported into isolated Grx5↓ mitochondria, rescued these Fe-S cluster synthesis/trafficking defects. Notably, mitochondria lacking immediate downstream components of the mitochondrial iron-sulfur cluster machinery (Isa1 or Isa2) could synthesize [2Fe-2S] but not [4Fe-4S] clusters within the organelle. Isa1↓ (or Isa2↓) mitochondria could still support Fe-S cluster biosynthesis in WT cytoplasm. These results provide evidence for Grx5 serving as a central hub for Fe-S cluster intermediate trafficking within mitochondria and export to the cytoplasm. Grx5 is conserved from yeast to humans, and deficiency or mutation causes fatal human diseases. Data as presented here will be informative for human physiology.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pratibha Singh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
6
|
Zhu Z, Gan H, Wang Y, Jia G, Li H, Ma Z, Wang J, Shang X, Niu W. Identification of a Selective Inhibitor of Human NFS1, a Cysteine Desulfurase Involved in Fe-S Cluster Assembly, via Structure-Based Virtual Screening. Int J Mol Sci 2025; 26:2782. [PMID: 40141425 PMCID: PMC11942905 DOI: 10.3390/ijms26062782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Human cysteine desulfurase (NFS1) participates in numerous critical cellular processes, including iron-sulfur (Fe-S) cluster biosynthesis and tRNA thiolation. NFS1 overexpression has been observed in a variety of cancers, and thus it has been considered a promising anti-tumor therapeutic target. To date, however, no inhibitors targeting NFS1 have been identified. Here, we report the identification of the first potent small-molecule inhibitor (Compound 53, PubChem CID 136847320) of NFS1 through a combination of virtual screening and biological validation. Compound 53 exhibited good selectivity against two other pyridoxal phosphate (PLP)-dependent enzymes. Treatment with Compound 53 inhibited the proliferation of lung cancer (A549) cells (IC50 = 16.3 ± 1.92 μM) and caused an increase in cellular iron levels due to the disruption of Fe-S cluster biogenesis. Furthermore, Compound 53, in combination with 2-AAPA, an inhibitor of glutathione reductase (GR) that elevates cellular reactive oxygen species (ROS) levels, further suppressed the proliferation of A549 cells by triggering ferroptotic cell death. Additionally, the key residues involved in the binding of the inhibitor to the active center of NFS1 were identified through a combination of molecular docking and site-directed mutagenesis. Taken together, we describe the identification of the first selective small-molecule inhibitor of human NFS1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weining Niu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (H.G.); (Y.W.); (G.J.); (H.L.); (Z.M.); (J.W.); (X.S.)
| |
Collapse
|
7
|
Ercanbrack WS, Ramirez M, Dungan A, Gaul E, Ercanbrack SJ, Wingert RA. Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues. Tissue Barriers 2025:2462357. [PMID: 39981684 DOI: 10.1080/21688370.2025.2462357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the Frataxin gene (FXN), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.
Collapse
Affiliation(s)
- Wesley S Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mateo Ramirez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austin Dungan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ella Gaul
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah J Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
8
|
Cory SA, Lin CW, Patra S, Havens SM, Putnam CD, Shirzadeh M, Russell DH, Barondeau DP. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis. Biochemistry 2025; 64:903-916. [PMID: 39909887 PMCID: PMC11840927 DOI: 10.1021/acs.biochem.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Iron-sulfur clusters are essential protein cofactors synthesized in human mitochondria by an NFS1-ISD11-ACP-ISCU2-FXN assembly complex. Surprisingly, researchers have discovered three distinct quaternary structures for cysteine desulfurase subcomplexes, which display similar interactions between NFS1-ISD11-ACP protomeric units but dramatically different dimeric interfaces between the protomers. Although the role of these different architectures is unclear, possible functions include regulating activity and promoting the biosynthesis of distinct sulfur-containing biomolecules. Here, crystallography, native ion-mobility mass spectrometry, and chromatography methods reveal the Fe-S assembly subcomplex exists as an equilibrium mixture of these different quaternary structures. Isotope labeling and native mass spectrometry experiments show that the NFS1-ISD11-ACP complexes disassemble into protomers, which can then undergo exchange reactions and dimerize to reform native complexes. Single crystals isolated in distinct architectures have the same activity profile and activation by the Friedreich's ataxia (FRDA) protein frataxin (FXN) when rinsed and dissolved in assay buffer. These results suggest FXN functions as a "molecular lock" and shifts the equilibrium toward one of the architectures to stimulate the cysteine desulfurase activity and promote iron-sulfur cluster biosynthesis. An NFS1-designed variant similarly shifts the equilibrium and partially replaces FXN in activating the complex. We propose that eukaryotic cysteine desulfurases are unusual members of the morpheein class of enzymes that control their activity through their oligomeric state. Overall, the findings support architectural switching as a regulatory mechanism linked to FXN activation of the human Fe-S cluster biosynthetic complex and provide new opportunities for therapeutic interventions of the fatal neurodegenerative disease FRDA.
Collapse
Affiliation(s)
- Seth A. Cory
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Cheng-Wei Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Shachin Patra
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven M. Havens
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Christopher D. Putnam
- Department
of Medicine, University of California School
of Medicine, La Jolla, California 92093-0660, United States
| | - Mehdi Shirzadeh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P. Barondeau
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
9
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Wei SM, Henze EK, Schindler S, Mehravar S, Wood DM, Petrocelli JJ, Sun Y, Sprenger HG, Latorre-Muro P, Smythers AL, Bozi LHM, Darabedian N, Zhu Y, Seo HS, Dhe-Paganon S, Che J, Chouchani ET. The human zinc-binding cysteine proteome. Cell 2025; 188:832-850.e27. [PMID: 39742810 PMCID: PMC12120685 DOI: 10.1016/j.cell.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome. We define 6,173 zinc-binding cysteines, uncovering protein families across major domains of biology that are subject to constitutive or inducible zinc binding. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc binding and nominate malignancies sensitive to zinc-induced cytotoxicity. We discover a mechanism of zinc regulation over glutathione reductase (GSR), which drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation of protein function.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanghee Shin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shelley M Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Erik K Henze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schindler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Wood
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan J Petrocelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Georg Sprenger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yingde Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
10
|
Zhou P, Jin F, Yao S, Sun B, Sun N, Guan H, Liu X. Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117728. [PMID: 39823666 DOI: 10.1016/j.ecoenv.2025.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking. Studies using HTR-8/Sneo cells demonstrated that cigarette smoke extract (CSE) inhibits trophoblast proliferation, activates autophagy, and induces apoptosis by impairing the CIA pathway and ISC proteins. Molecular docking analysis revealed that nicotine and nicotyrine bind to and promote the autophagic-dependent degradation of MMS19, a key component of the CIA complex. MMS19 KD led to the autophagic degradation of several ISC proteins involved in DNA damage repair and mitochondrial respiratory function, thereby inhibiting cell proliferation. Additionally, MMS19 deficiency resulted in mitochondrial fragmentation, ROS accumulation, and the induction of autosis and apoptosis. Transcriptome analysis indicated that dysregulation of the SMAD pathway mediates mitochondrial damage induced by MMS19 KD. Analysis of placental tissues from maternal smokers further confirmed the disruption of ISC proteins and the SMAD pathway. This study suggests that disruption of the CIA pathway and ISC proteins contributes to placental maldevelopment induced by CS. Targeting the MMS19-SMAD pathway may offer a potential strategy to mitigate adverse pregnancy outcomes caused by CS.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Feng Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Shenshen Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Ben Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Ni Sun
- Department of Medical Education, Dandong Central Hospital, Dandong 118002, PR China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
11
|
Wang M, Zhang S, Tian J, Yang F, Chen H, Bai S, Kang J, Pang K, Huang J, Dong M, Dong S, Tian Z, Fang S, Fan H, Lu F, Yu B, Li S, Zhang W. Impaired Iron-Sulfur Cluster Synthesis Induces Mitochondrial PARthanatos in Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406695. [PMID: 39495652 PMCID: PMC11714204 DOI: 10.1002/advs.202406695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Indexed: 11/06/2024]
Abstract
Diabetic cardiomyopathy (DCM), a severe complication of diabetes, is characterized by mitochondrial dysfunction, oxidative stress, and DNA damage. Despite its severity, the intrinsic factors governing cardiomyocyte damage in DCM remain unclear. It is hypothesized that impaired iron-sulfur (Fe-S) cluster synthesis plays a crucial role in the pathogenesis of DCM. Reduced S-sulfhydration of cysteine desulfurase (NFS1) is a novel mechanism that contributes to mitochondrial dysfunction and PARthanatos in DCM. Mechanistically, hydrogen sulfide (H2S) supplementation restores NFS1 S-sulfhydration at cysteine 383 residue, thereby enhancing Fe-S cluster synthesis, improving mitochondrial function, increasing cardiomyocyte viability, and alleviating cardiac damage. This study provides novel insights into the interplay between Fe-S clusters, mitochondrial dysfunction, and PARthanatos, highlighting a promising therapeutic target for DCM and paving the way for potential clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Mengyi Wang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Shiwu Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jinwei Tian
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - Fan Yang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - He Chen
- Department of Forensic MedicineHarbin Medical UniversityHarbin150000China
| | - Shuzhi Bai
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jiaxin Kang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Kemiao Pang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jiayi Huang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Mingjie Dong
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150000China
| | - Shiyun Dong
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Zhen Tian
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Shaohong Fang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - Huitao Fan
- Department of Critical Care MedicineThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- Department of HematologyThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- NHC Key Laboratory of Cell TransplantationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- Key Laboratory of Hepatosplenic Surgery of Ministry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Fanghao Lu
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Bo Yu
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin150000China
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbin150000China
- Heilongjiang Province Key Laboratory of Research on Molecular Targeted Anti‐Tumor DrugsHarbin150000China
| | - Weihua Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| |
Collapse
|
12
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
13
|
Xia S, Wu L, Chen J, Li K, Bian D. Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model. Biochem Biophys Res Commun 2025; 744:151228. [PMID: 39721363 DOI: 10.1016/j.bbrc.2024.151228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function. Iron-sulfur clusters (Fe-S) are essential cofactors for numerous essential enzymes crucial for mitochondrial function. Our previous study showed that expression of Frataxin, encoded by the Fxn gene, is downregulated in leptin receptor knockout (so-called db/db) mice, a commonly used DPN mouse model. Fxn is one of the core components of Fe-S biogenesis machinery. Here, we found that the mitochondria-targeted antioxidant SS-31 markedly improved the behavioral indices and significantly mitigated the damage to the sciatic nerve. SS-31 treatment effectively elevated Fxn expression, meliorated mitochondrial function, and inflammation in the sciatic nerve (SCN). We also found that SS-31 effectively mitigated high glucose-induced disruption of iron and redox homeostasis in RSC96 cells, a typical cell model of DPN, thereby improving mitochondrial function. These findings suggest enhancing Fe-S biogenesis could be an effective therapeutic strategy for treating DPN.
Collapse
Affiliation(s)
- Siyu Xia
- Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China
| | - Lin Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jing Chen
- Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Dezhi Bian
- Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China.
| |
Collapse
|
14
|
Steinhilper R, Boß L, Freibert SA, Schulz V, Krapoth N, Kaltwasser S, Lill R, Murphy BJ. Two-stage binding of mitochondrial ferredoxin-2 to the core iron-sulfur cluster assembly complex. Nat Commun 2024; 15:10559. [PMID: 39632806 PMCID: PMC11618653 DOI: 10.1038/s41467-024-54585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear. Here, we present cryo-EM structures of the human FDX2-bound core ISC complex showing that FDX2 and FXN compete for overlapping binding sites. FDX2 binds in either a 'distal' conformation, where its helix F interacts electrostatically with an arginine patch of NFS1, or a 'proximal' conformation, where this interaction tightens and the FDX2-specific C terminus binds to NFS1, facilitating the movement of the [2Fe-2S] cluster of FDX2 closer to the ISCU2 FeS cluster assembly site for rapid electron transfer. Structure-based mutational studies verify the contact areas of FDX2 within the core ISC complex.
Collapse
Affiliation(s)
- Ralf Steinhilper
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Linda Boß
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Terahata T, Shimada Y, Maki C, Muroga S, Sakurai R, Kunichika K, Fujishiro T. Cysteine-Persulfide Sulfane Sulfur-Ligated Zn Complex of Sulfur-Carrying SufU in the SufCDSUB System for Fe-S Cluster Biosynthesis. Inorg Chem 2024; 63:19607-19618. [PMID: 39384553 DOI: 10.1021/acs.inorgchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
SufU, a component of the SufCDSUB Fe-S cluster biosynthetic system, serves as a Zn-dependent sulfur-carrying protein that delivers inorganic sulfur in the form of cysteine persulfide from SufS to SufBCD. To understand this sulfur delivery mechanism, we studied the X-ray crystal structure of SufU and its sulfur-carrying state (persulfurated SufU) and performed functional analysis of the conserved amino acid residues around the Zn sites. Interestingly, sulfur-carrying SufU with Cys41-persulfide (Cys41-Sγ-Sδ-) exhibited a unique Zn coordination structure, in which electrophilic Sγ is ligated to Zn and nucleophilic/anionic Sδ is bound to distally conserved Arg125. This structure is distinct from those of other Cys-persulfide-Sδ-ligated metals of metalloproteins, such as hybrid cluster proteins and SoxAX. Functional analysis of SufU variants with Zn-ligand and Arg125 substitutions revealed that both Zn and Arg125 are critical for the function of SufU with SufS. The Zn-persulfide structure of SufU provides insight into the sulfur-transfer process, suggesting that persulfide-Sδ- is stabilized via bridging by Zn and Arg125 of SufU.
Collapse
Affiliation(s)
- Takuya Terahata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yukino Shimada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Chisato Maki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Suguru Muroga
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rina Sakurai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kouhei Kunichika
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
17
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
18
|
Kairis A, Neves BD, Couturier J, Remacle C, Rouhier N. Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119797. [PMID: 39033932 DOI: 10.1016/j.bbamcr.2024.119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
Collapse
Affiliation(s)
- Antoine Kairis
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Institut Universitaire de France, F-75000 Paris, France
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
19
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
20
|
Bargagna B, Staderini T, Lang SH, Banci L, Camponeschi F. Defects in the Maturation of Mitochondrial Iron-Sulfur Proteins: Biophysical Investigation of the MMDS3 Causing Gly104Cys Variant of IBA57. Int J Mol Sci 2024; 25:10466. [PMID: 39408793 PMCID: PMC11476781 DOI: 10.3390/ijms251910466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron-sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]-ISCA22 complex into the hetero-dimeric IBA57-[2Fe-2S]-ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Tommaso Staderini
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Steven H. Lang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
21
|
Jullian E, Russi M, Turki E, Bouvelot M, Tixier L, Middendorp S, Martin E, Monnier V. Glial overexpression of Tspo extends lifespan and protects against frataxin deficiency in Drosophila. Biochimie 2024; 224:71-79. [PMID: 38750879 DOI: 10.1016/j.biochi.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.
Collapse
Affiliation(s)
- Estelle Jullian
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Maria Russi
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Ema Turki
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Margaux Bouvelot
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Laura Tixier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Sandrine Middendorp
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Elodie Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Véronique Monnier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
22
|
Yang J, Chen N, Zhao P, Yang X, Li Y, Fu Z, Yan Y, Dong N, Li S, Yao R, Du X, Yao Y. DIMINISHED EXPRESSION OF GLS IN CD4 + T CELLS SERVES AS A PROGNOSTIC INDICATOR ASSOCIATED WITH CUPROPTOSIS IN SEPTIC PATIENTS. Shock 2024; 62:51-62. [PMID: 38662604 DOI: 10.1097/shk.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Objectives: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. Methods: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the Weighted Gene Coexpression Network Analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. scRNA-seq data were also analyzed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. Results: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by tetrathiomolybdate could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability, and cell proliferation, as well as the immune status of the host. Conclusion: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, whereas the correlation between copper and the observed changes in GLS requires further investigation.
Collapse
Affiliation(s)
| | - Ning Chen
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | - Yang Yan
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ning Dong
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | | | - Yongming Yao
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
24
|
Marszalek J, Craig EA, Pitek M, Dutkiewicz R. Chaperone function in Fe-S protein biogenesis: Three possible scenarios. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119717. [PMID: 38574821 DOI: 10.1016/j.bbamcr.2024.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Among the six known iron‑sulfur (FeS) cluster biogenesis machineries that function across all domains of life only one involves a molecular chaperone system. This machinery, called ISC for 'iron sulfur cluster', functions in bacteria and in mitochondria of eukaryotes including humans. The chaperone system - a dedicated J-domain protein co-chaperone termed Hsc20 and its Hsp70 partner - is essential for proper ISC machinery function, interacting with the scaffold protein IscU which serves as a platform for cluster assembly and subsequent transfer onto recipient apo-proteins. Despite many years of research, surprisingly little is known about the specific role(s) that the chaperones play in the ISC machinery. Here we review three non-exclusive scenarios that range from involvement of the chaperones in the cluster transfer to regulation of the cellular levels of IscU itself.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States of America.
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
25
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
26
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
27
|
Schulz V, Steinhilper R, Oltmanns J, Freibert SA, Krapoth N, Linne U, Welsch S, Hoock MH, Schünemann V, Murphy BJ, Lill R. Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2. Nat Commun 2024; 15:3269. [PMID: 38627381 PMCID: PMC11021402 DOI: 10.1038/s41467-024-47310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Ralf Steinhilper
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jonathan Oltmanns
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Steinmühle-Schule & Internat, Steinmühlenweg 21, 35043, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Maren H Hoock
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Volker Schünemann
- Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 46, 67663, Kaiserslautern, Germany
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| |
Collapse
|
28
|
Chen K, Zhou A, Zhou X, He J, Xu Y, Ning X. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies. SCIENCE ADVANCES 2024; 10:eadk3201. [PMID: 38598629 PMCID: PMC11006215 DOI: 10.1126/sciadv.adk3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Disruptions in metal balance can trigger a synergistic interplay of cuproptosis and ferroptosis, offering promising solutions to enduring challenges in oncology. Here, we have engineered a Cellular Trojan Horse, named MetaCell, which uses live neutrophils to stably internalize thermosensitive liposomal bimetallic Fe-Cu MOFs (Lip@Fe-Cu-MOFs). MetaCell can instigate cuproptosis and ferroptosis, thereby enhancing treatment efficacy. Mirroring the characteristics of neutrophils, MetaCell can evade the immune system and not only infiltrate tumors but also respond to inflammation by releasing therapeutic components, thereby surmounting traditional treatment barriers. Notably, Lip@Fe-Cu-MOFs demonstrate notable photothermal effects, inciting a targeted release of Fe-Cu-MOFs within cancer cells and amplifying the synergistic action of cuproptosis and ferroptosis. MetaCell has demonstrated promising treatment outcomes in tumor-bearing mice, effectively eliminating solid tumors and forestalling recurrence, leading to extended survival. This research provides great insights into the complex interplay between copper and iron homeostasis in malignancies, potentially paving the way for innovative approaches in cancer treatment.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Jielei He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
29
|
Doni D, Cavallari E, Noguera ME, Gentili HG, Cavion F, Parisi G, Fornasari MS, Sartori G, Santos J, Bellanda M, Carbonera D, Costantini P, Bortolus M. Searching for Frataxin Function: Exploring the Analogy with Nqo15, the Frataxin-like Protein of Respiratory Complex I from Thermus thermophilus. Int J Mol Sci 2024; 25:1912. [PMID: 38339189 PMCID: PMC10855754 DOI: 10.3390/ijms25031912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Eva Cavallari
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
- Grenoble Alpes University, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France
| | - Martin Ezequiel Noguera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
- Institute of Biological Chemistry and Physical Chemistry, Dr Alejandro Paladini (UBA-CONICET), University of Buenos Aires, Junín 956, Buenos Aires 1113AAD, Argentina
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Hernan Gustavo Gentili
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
| | - Federica Cavion
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Gustavo Parisi
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Maria Silvina Fornasari
- Department of Science and Technology, National University of Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Argentina; (G.P.); (M.S.F.)
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy;
| | - Javier Santos
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EG, Argentina; (M.E.N.); (H.G.G.); (J.S.)
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
- Consiglio Nazionale delle Ricerche Institute of Biomolecular Chemistry, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
| | - Paola Costantini
- Department of Biology, University of Padova, 35121 Padova, Italy; (D.D.); (F.C.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.B.); (D.C.)
| |
Collapse
|
30
|
Zhao H, Lu Y, Zhang J, Sun Z, Cheng C, Liu Y, Wu L, Zhang M, He W, Hao S, Li K. NCOA4 requires a [3Fe-4S] to sense and maintain the iron homeostasis. J Biol Chem 2024; 300:105612. [PMID: 38159858 PMCID: PMC10831263 DOI: 10.1016/j.jbc.2023.105612] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
NCOA4 is a selective cargo receptor for ferritinophagy, the autophagic turnover of ferritin (FTH), a process critical for regulating intracellular iron bioavailability. However, how ferritinophagy flux is controlled through NCOA4 in iron-dependent processes needs to be better understood. Here, we show that the C-terminal FTH-binding domain of NCOA4 harbors a [3Fe-4S]-binding site with a stoichiometry of approximately one labile [3Fe-4S] cluster per NCOA4 monomer. By analyzing the interaction between NCOA4 and HERC2 ubiquitin ligase or NCOA4 and FTH, we demonstrate that NCOA4 regulates ferritinophagy by sensing the intracellular iron-sulfur cluster levels. Under iron-repletion conditions, HERC2 recognizes and recruits holo-NCOA4 as a substrate for polyubiquitination and degradation, favoring ferritin iron storage. Under iron-depletion conditions, NCOA4 exists in the form of apo-protein and binds ferritin to promote the occurrence of ferritinophagy and release iron. Thus, we identify an iron-sulfur cluster [3Fe-4S] as a critical cofactor in determining the fate of NCOA4 in favoring iron storage in ferritin or iron release via ferritinophagy and provide a dual mechanism for selective interaction between HERC2 and [3Fe-4S]-NCOA4 for proteasomal degradation or between ferritin and apo-NCOA4 for ferritinophagy in the control of iron homeostasis.
Collapse
Affiliation(s)
- Hongting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yao Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jinghua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zichen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chen Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yutong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Meng Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weijiang He
- School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China.
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Bozi LHM, Wei S, Sprenger HG, Sun Y, Zhu Y, Darabedian N, Petrocelli JJ, Muro PL, Che J, Chouchani ET. A comprehensive landscape of the zinc-regulated human proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574225. [PMID: 38260676 PMCID: PMC10802333 DOI: 10.1101/2024.01.04.574225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
Collapse
|
32
|
Sanz-Alcázar A, Britti E, Delaspre F, Medina-Carbonero M, Pazos-Gil M, Tamarit J, Ros J, Cabiscol E. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models. Cell Mol Life Sci 2023; 81:12. [PMID: 38129330 PMCID: PMC10739563 DOI: 10.1007/s00018-023-05064-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXNI151F mouse model, frataxin deficiency resulted in lower activity and levels of the electron transport complexes, mainly complexes I and II. In addition, altered mitochondrial morphology, indicative of degeneration was observed in DRGs from FXNI151F mice. Moreover, the NAD+/NADH ratio was reduced and sirtuin activity was impaired. We identified alpha tubulin as the major acetylated protein from DRG homogenates whose levels were increased in FXNI151F mice compared to WT mice. In the mitochondria, superoxide dismutase (SOD2), a SirT3 substrate, displayed increased acetylation in frataxin-deficient DRG neurons. Since SOD2 acetylation inactivates the enzyme, and higher levels of mitochondrial superoxide anion were detected, oxidative stress markers were analyzed. Elevated levels of hydroxynonenal bound to proteins and mitochondrial Fe2+ accumulation was detected when frataxin decreased. Honokiol, a SirT3 activator, restores mitochondrial respiration, decreases SOD2 acetylation and reduces mitochondrial superoxide levels. Altogether, these results provide data at the molecular level of the consequences of electron transport chain dysfunction, which starts negative feedback, contributing to neuron lethality. This is especially important in sensory neurons which have greater susceptibility to frataxin deficiency compared to other tissues.
Collapse
Affiliation(s)
- Arabela Sanz-Alcázar
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elena Britti
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Marta Medina-Carbonero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Maria Pazos-Gil
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
33
|
Doni D, Cavion F, Bortolus M, Baschiera E, Muccioli S, Tombesi G, d'Ettorre F, Ottaviani D, Marchesan E, Leanza L, Greggio E, Ziviani E, Russo A, Bellin M, Sartori G, Carbonera D, Salviati L, Costantini P. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis 2023; 14:805. [PMID: 38062036 PMCID: PMC10703789 DOI: 10.1038/s41419-023-06320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Federica Cavion
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy
| | - Silvia Muccioli
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Elena Marchesan
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, 35121, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Milena Bellin
- Department of Biology, University of Padova, 35121, Padova, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, ZA, Leiden, The Netherlands
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children Health, University of Padova, 35128, Padova, Italy.
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, 35127, Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
34
|
Querci L, Grifagni D, Trindade IB, Silva JM, Louro RO, Cantini F, Piccioli M. Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center. JOURNAL OF BIOMOLECULAR NMR 2023; 77:247-259. [PMID: 37853207 PMCID: PMC10687126 DOI: 10.1007/s10858-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
- Division of Biology and Biological Engineering, California Institute of Technology, CA 91125, Pasadena, USA
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
35
|
Rojsajjakul T, Hordeaux JJ, Choudhury GR, Hinderer CJ, Mesaros C, Wilson JM, Blair IA. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. Commun Biol 2023; 6:1093. [PMID: 37891254 PMCID: PMC10611776 DOI: 10.1038/s42003-023-05472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette J Hordeaux
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian J Hinderer
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ian A Blair
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Gentili HG, Pignataro MF, Olmos J, Pavan MF, Ibañez LI, Santos J, Velazquez Duarte F. CRISPR/Cas9-based edition of frataxin gene in Dictyostelium discoideum. Biochem J 2023; 480:1533-1551. [PMID: 37721041 DOI: 10.1042/bcj20230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In this paper, we describe the development of a Dictyostelium discoideum strain deficient in frataxin protein (FXN). We investigated the conservation of function between humans and D. discoideum and showed that DdFXN can substitute the human version in the interaction and activation of the Fe-S assembly supercomplex. We edited the D. discoideum fxn locus and isolated a defective mutant, clone 8, which presents landmarks of frataxin deficiency, such as a decrease in Fe-S cluster-dependent enzymatic functions, growth rate reduction, and increased sensitivity to oxidative stress. In addition, the multicellular development is affected as well as growing on bacterial lawn. We also assessed the rescuing capacity of DdFXN-G122V, a version that mimics a human variant present in some FA patients. While the expression of DdFXN-G122V rescues growth and enzymatic activity defects, as DdFXN does, multicellular development defects were only partially rescued. The results of the study suggest that this new D. discoideum strain offers a wide range of possibilities to easily explore diverse FA FXN variants. This can facilitate the development of straightforward drug screenings to look for new therapeutic strategies.
Collapse
Affiliation(s)
- Hernan G Gentili
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Justo Olmos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Lorena Itatí Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Francisco Velazquez Duarte
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
37
|
Zhu J, Wang Y, Rivett A, Yang G. H 2S regulation of iron homeostasis by IRP1 improves vascular smooth muscle cell functions. Cell Signal 2023; 110:110826. [PMID: 37487913 DOI: 10.1016/j.cellsig.2023.110826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Either H2S or iron is essential for cellular processes. Abnormal metabolism of H2S and iron has increased risk for cardiovascular diseases. The aim of the present study is to examine the mutual interplay of iron and H2S signals in regulation of vascular smooth muscle cell (SMC) functions. Here we found that deficiency of cystathionine gamma-lyase (CSE, a major H2S-producing enzyme in vascular system) induced but NaHS (a H2S donor) administration attenuated iron accumulation in aortic tissues from angiotensin II-infused mice. In vitro, iron overload induced labile iron levels, promoted cell proliferation, disrupted F-actin filaments, and inhibited protein expressions of SMC-specific markers (αSMA and calponin) more significantly in SMCs from CSE knockout mice (KO-SMCs) than the cells from wild-type mice (WT-SMCs), which could be reversed by exogenously applied NaHS. In contrast, KO-SMCs were more vulnerable to iron starvation-induced cell death. Either iron overload or NaHS did not affect elastin level and gelatinolytic activity. We further found that H2S induced more aconitase activity of iron regulatory protein 1 (IRP1) but inhibited its RNA binding activity accompanied with increased protein levels of ferritin and ferriportin, which would contribute to the lower level of labile iron level inside the cells. In addition, iron was able to suppress CSE-derived H2S generation, while iron also non-enzymatically induced H2S release from cysteine. This study reveals the mutual interaction between iron and H2S signals in regulating SMC phenotypes and functions; CSE/H2S system would be a target for preventing iron metabolic disorder-related vascular diseases.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Alexis Rivett
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
38
|
Tsutsumi E, Niwa S, Takeda R, Sakamoto N, Okatsu K, Fukai S, Ago H, Nagao S, Sekiguchi H, Takeda K. Structure of a putative immature form of a Rieske-type iron-sulfur protein in complex with zinc chloride. Commun Chem 2023; 6:190. [PMID: 37689761 PMCID: PMC10492824 DOI: 10.1038/s42004-023-01000-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Iron-sulfur clusters are prosthetic groups of proteins involved in various biological processes. However, details of the immature state of the iron-sulfur cluster into proteins have not yet been elucidated. We report here the first structural analysis of the Zn-containing form of a Rieske-type iron-sulfur protein, PetA, from Thermochromatium tepidum (TtPetA) by X-ray crystallography and small-angle X-ray scattering analysis. The Zn-containing form of TtPetA was indicated to be a dimer in solution. The zinc ion adopts a regular tetra-coordination with two chloride ions and two cysteine residues. Only a histidine residue in the cluster-binding site exhibited a conformational difference from the [2Fe-2S] containing form. The Zn-containing structure indicates that the conformation of the cluster binding site is already constructed and stabilized before insertion of [2Fe-2S]. The binding mode of ZnCl2, similar to the [2Fe-2S] cluster, suggests that the zinc ions might be involved in the insertion of the [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Erika Tsutsumi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satomi Niwa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryota Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Natsuki Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoshi Nagao
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
39
|
Chen J, Calderone LA, Pan L, Quist T, Pandelia ME. The Fe and Zn cofactor dilemma. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140931. [PMID: 37353133 DOI: 10.1016/j.bbapap.2023.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Fe and Zn ions are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox enzymes, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.
Collapse
Affiliation(s)
- Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Logan A Calderone
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Luying Pan
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Trent Quist
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
40
|
Sewell KE, Gola GF, Pignataro MF, Herrera MG, Noguera ME, Olmos J, Ramírez JA, Capece L, Aran M, Santos J. Direct Cysteine Desulfurase Activity Determination by NMR and the Study of the Functional Role of Key Structural Elements of Human NFS1. ACS Chem Biol 2023; 18:1534-1547. [PMID: 37410592 DOI: 10.1021/acschembio.3c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The mitochondrial cysteine desulfurase NFS1 is an essential PLP-dependent enzyme involved in iron-sulfur cluster assembly. The enzyme catalyzes the desulfurization of the l-Cys substrate, producing a persulfide and l-Ala as products. In this study, we set the measurement of the product l-Ala by NMR in vitro by means of 1H NMR spectra acquisition. This methodology provided us with the possibility of monitoring the reaction in both fixed-time and real-time experiments, with high sensitivity and accuracy. By studying I452A, W454A, Q456A, and H457A NFS1 variants, we found that the C-terminal stretch (CTS) of the enzyme is critical for function. Specifically, mutation of the extremely conserved position W454 resulted in highly decreased activity. Additionally, we worked on two singular variants: "GGG" and C158A. In the former, the catalytic Cys-loop was altered by including two Gly residues to increase the flexibility of this loop. This variant had significantly impaired activity, indicating that the Cys-loop motions are fine-tuned in the wild-type enzyme. In turn, for C158A, we found an unanticipated increase in l-Cys desulfurase activity. Furthermore, we carried out molecular dynamics simulations of the supercomplex dedicated to iron-sulfur cluster biosynthesis, which includes NFS1, ACP, ISD11, ISCU2, and FXN subunits. We identified CTS as a key element that established interactions with ISCU2 and FXN concurrently; we found specific interactions that are established when FXN is present, reinforcing the idea that FXN not only forms part of the iron-sulfur cluster assembly site but also modulates the internal motions of ISCU2.
Collapse
Affiliation(s)
- Karl E Sewell
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Gabriel F Gola
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET─Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - María Florencia Pignataro
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - María Georgina Herrera
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Martín E Noguera
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113AAD, Argentina
| | - Justo Olmos
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Javier A Ramírez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET─Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Universidad de Buenos Aires. Buenos Aires C1428EGA, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Santos
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
41
|
Blair I, Rojsajjakul T, Hordeaux J, Chaudhary G, Hinderer C, Mesaros C, Wilson J. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. RESEARCH SQUARE 2023:rs.3.rs-3121549. [PMID: 37461697 PMCID: PMC10350221 DOI: 10.21203/rs.3.rs-3121549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily by epigenetic silencing the FXN gene due to up to 1400 GAA triplet repeats in intron 1 of both alleles of the gene; a subset of approximately 3% of FRDA patients have a mutation on one allele. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This was overcome by development of a species-specific quantitative mass spectrometry-based method, which revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response was non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
|
42
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
43
|
Da Vela S, Saudino G, Lucarelli F, Banci L, Svergun DI, Ciofi-Baffoni S. Structural plasticity of NFU1 upon interaction with binding partners: insights into the mitochondrial [4Fe-4S] cluster pathway. J Mol Biol 2023:168154. [PMID: 37211204 PMCID: PMC10388178 DOI: 10.1016/j.jmb.2023.168154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In humans, the biosynthesis and trafficking of mitochondrial [4Fe-4S]2+ clusters is a highly coordinated process that requires a complex protein machinery. In a mitochondrial pathway among various proposed to biosynthesize nascent [4Fe-4S]2+ clusters, two [2Fe-2S]2+ clusters are converted into a [4Fe-4S]2+ cluster on a ISCA1-ISCA2 complex. Along this pathway, this cluster is then mobilized from this complex to mitochondrial apo recipient proteins with the assistance of accessory proteins. NFU1 is the accessory protein that first receives the [4Fe-4S]2+ cluster from ISCA1-ISCA2 complex. A structural view of the protein-protein recognition events occurring along the [4Fe-4S]2+ cluster trafficking as well as how the globular N-terminal and C-terminal domains of NFU1 act in such process is, however, still elusive. Here, we applied small-angle X-ray scattering coupled with on-line size-exclusion chromatography and paramagnetic NMR to disclose structural snapshots of ISCA1-, ISCA2- and NFU1-containing apo complexes as well as the coordination of [4Fe-4S]2+ cluster bound to the ISCA1-NFU1 complex, which is the terminal stable species of the [4Fe-4S]2+ cluster transfer pathway involving ISCA1-, ISCA2- and NFU1 proteins. The structural modelling of ISCA1-ISCA2, ISCA1-ISCA2-NFU1 and ISCA1-NFU1 apo complexes, here reported, reveals that the structural plasticity of NFU1 domains is crucial to drive protein partner recognition and modulate [4Fe-4S]2+ cluster transfer from the cluster-assembly site in ISCA1-ISCA2 complex to the cluster-binding site in ISCA1-NFU1 complex. These structures allowed us to provide a first rational for the molecular function of the N-domain of NFU1, which can act as a modulator in the [4Fe-4S]2+ cluster transfer.
Collapse
Affiliation(s)
- Stefano Da Vela
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Lucarelli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Dmitri I Svergun
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy.
| |
Collapse
|
44
|
Cotticelli MG, Xia S, Truitt R, Doliba NM, Rozo AV, Tobias JW, Lee T, Chen J, Napierala JS, Napierala M, Yang W, Wilson RB. Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. Dis Model Mech 2023; 16:dmm049497. [PMID: 36107856 PMCID: PMC9637271 DOI: 10.1242/dmm.049497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes. To study the changes associated with decreased frataxin in human cardiomyocytes, we developed a novel isogenic model by acutely knocking down frataxin, post-differentiation, in cardiomyocytes derived from induced pluripotent stem cells (iPSCs). Transcriptome analysis of four biological replicates identified severe mitochondrial dysfunction and a type I interferon response as the pathways most affected by frataxin knockdown. We confirmed that, in iPSC-derived cardiomyocytes, loss of frataxin leads to mitochondrial dysfunction. The type I interferon response was activated in multiple cell types following acute frataxin knockdown and was caused, at least in part, by release of mitochondrial DNA into the cytosol, activating the cGAS-STING sensor pathway.
Collapse
Affiliation(s)
- M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rachel Truitt
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea V. Rozo
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Department of Genetics, Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taehee Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill S. Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenli Yang
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Duan Y, Sun J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics (Basel) 2023; 8:biomimetics8020177. [PMID: 37218763 DOI: 10.3390/biomimetics8020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Recently, iron-based sulfides, including iron sulfide minerals and biological iron sulfide clusters, have attracted widespread interest, owing to their excellent biocompatibility and multi-functionality in biomedical applications. As such, controlled synthesized iron sulfide nanomaterials with elaborate designs, enhanced functionality and unique electronic structures show numerous advantages. Furthermore, iron sulfide clusters produced through biological metabolism are thought to possess magnetic properties and play a crucial role in balancing the concentration of iron in cells, thereby affecting ferroptosis processes. The electrons in the Fenton reaction constantly transfer between Fe2+ and Fe3+, participating in the production and reaction process of reactive oxygen species (ROS). This mechanism is considered to confer advantages in various biomedical fields such as the antibacterial field, tumor treatment, biosensing and the treatment of neurodegenerative diseases. Thus, we aim to systematically introduce recent advances in common iron-based sulfides.
Collapse
Affiliation(s)
- Yefan Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
46
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
47
|
Ferredoxins at the crossroads. Nat Chem Biol 2023; 19:129-130. [PMID: 36280792 DOI: 10.1038/s41589-022-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Pignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, Santos J. Selection of synthetic proteins to modulate the human frataxin function. Biotechnol Bioeng 2023; 120:409-425. [PMID: 36225115 DOI: 10.1002/bit.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Aran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Hernán Gustavo Gentili
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
49
|
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, Stehling O, Lill R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023; 19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Somsuvro Basu
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
- Freelance Medical Communications Consultant, Brno, Czech Republic
| | - Sven-A Freibert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Holger Webert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Linda Boss
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Fabien Pierrel
- Univ. of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Lars-O Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Douglas M Warui
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, USA
| | - Oliver Stehling
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| | - Roland Lill
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| |
Collapse
|
50
|
Domán A, Dóka É, Garai D, Bogdándi V, Balla G, Balla J, Nagy P. Interactions of reactive sulfur species with metalloproteins. Redox Biol 2023; 60:102617. [PMID: 36738685 PMCID: PMC9926313 DOI: 10.1016/j.redox.2023.102617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive sulfur species (RSS) entail a diverse family of sulfur derivatives that have emerged as important effector molecules in H2S-mediated biological events. RSS (including H2S) can exert their biological roles via widespread interactions with metalloproteins. Metalloproteins are essential components along the metabolic route of oxygen in the body, from the transport and storage of O2, through cellular respiration, to the maintenance of redox homeostasis by elimination of reactive oxygen species (ROS). Moreover, heme peroxidases contribute to immune defense by killing pathogens using oxygen-derived H2O2 as a precursor for stronger oxidants. Coordination and redox reactions with metal centers are primary means of RSS to alter fundamental cellular functions. In addition to RSS-mediated metalloprotein functions, the reduction of high-valent metal centers by RSS results in radical formation and opens the way for subsequent per- and polysulfide formation, which may have implications in cellular protection against oxidative stress and in redox signaling. Furthermore, recent findings pointed out the potential role of RSS as substrates for mitochondrial energy production and their cytoprotective capacity, with the involvement of metalloproteins. The current review summarizes the interactions of RSS with protein metal centers and their biological implications with special emphasis on mechanistic aspects, sulfide-mediated signaling, and pathophysiological consequences. A deeper understanding of the biological actions of reactive sulfur species on a molecular level is primordial in H2S-related drug development and the advancement of redox medicine.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary,Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - György Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary
| | - József Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary,Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|