1
|
Dong S, Alahari SK. Small molecule Mcl-1 inhibitor for triple negative breast cancer therapy. Front Cell Dev Biol 2024; 12:1408107. [PMID: 39372954 PMCID: PMC11449857 DOI: 10.3389/fcell.2024.1408107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Apoptosis is an evolutionarily conserved cell death pathway that plays a crucial role in maintaining tissue homeostasis, orchestrating organismal development, and eliminating damaged cells. Dysregulation of apoptosis can contribute to the pathogenesis of malignant tumors and neurodegenerative diseases. Anticancer drugs typically possess the capacity to induce apoptosis in tumor cells. The Bcl-2 protein family, consisting of 27 members in humans, serves as the key regulator of mitochondrial function. This family can be divided into two functional groups: anti-apoptotic proteins (e.g., Bcl-2, Bcl-xl, Mcl-1) and pro-apoptotic proteins (e.g., Bad, Bax). Mcl-1 exerts its function by binding pro-apoptotic Bcl-2 proteins thereby preventing apoptosis induction. Overexpression of Mcl-1 not only correlates closely with tumorigenesis but also associates significantly with resistance towards targeted therapy and conventional chemotherapy. Effective induction of apoptosis can be achieved through inhibition or interference with Mcl-1. Thus, this mini review discusses existing Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, LSHSC School of Medicine, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, United States
| |
Collapse
|
2
|
Nocquet L, Roul J, Lefebvre CC, Duarte L, Campone M, Juin PP, Souazé F. Low BCL-xL expression in triple-negative breast cancer cells favors chemotherapy efficacy, and this effect is limited by cancer-associated fibroblasts. Sci Rep 2024; 14:14177. [PMID: 38898061 PMCID: PMC11187150 DOI: 10.1038/s41598-024-64696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Triple negative breast cancers (TNBC) present a poor prognosis primarily due to their resistance to chemotherapy. This resistance is known to be associated with elevated expression of certain anti-apoptotic members within the proteins of the BCL-2 family (namely BCL-xL, MCL-1 and BCL-2). These regulate cell death by inhibiting pro-apoptotic protein activation through binding and sequestration and they can be selectively antagonized by BH3 mimetics. Yet the individual influences of BCL-xL, MCL-1, and BCL-2 on the sensitivity of TNBC cells to chemotherapy, and their regulation by cancer-associated fibroblasts (CAFs), major components of the tumor stroma and key contributors to therapy resistance remain to be delineated. Using gene editing or BH3 mimetics to inhibit anti-apoptotic BCL-2 family proteins in TNBC line MDA-MB-231, we show that BCL-xL and MCL-1 promote cancer cell survival through compensatory mechanisms. This cell line shows limited sensitivity to chemotherapy, in line with the clinical resistance observed in TNBC patients. We elucidate that BCL-xL plays a pivotal role in therapy response, as its depletion or pharmacological inhibition heightened chemotherapy effectiveness. Moreover, BCL-xL expression is associated with chemotherapy resistance in patient-derived tumoroids where its pharmacological inhibition enhances ex vivo response to chemotherapy. In a co-culture model of cancer cells and CAFs, we observe that even in a context where BCL-xL reduced expression renders cancer cells more susceptible to chemotherapy, those in contact with CAFs display reduced sensitivity to chemotherapy. Thus CAFs exert a profound pro-survival effect in breast cancer cells, even in a setting highly favoring cell death through combined chemotherapy and absence of the main actor of chemoresistance, BCL-xL.
Collapse
Affiliation(s)
- Lisa Nocquet
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Julie Roul
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Chloé C Lefebvre
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Laurine Duarte
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Mario Campone
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Philippe P Juin
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
- ICO René Gauducheau, Saint Herblain, France.
| | - Frédérique Souazé
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
| |
Collapse
|
3
|
Issa H, Loubaki L, Al Amri A, Zibara K, Almutairi MH, Rouabhia M, Semlali A. Eugenol as a potential adjuvant therapy for gingival squamous cell carcinoma. Sci Rep 2024; 14:10958. [PMID: 38740853 DOI: 10.1038/s41598-024-60754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.
Collapse
Affiliation(s)
- Hawraa Issa
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Lionel Loubaki
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| | - Abdullah Al Amri
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Abdelhabib Semlali
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada.
| |
Collapse
|
4
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Chiou JT, Lee YC, Chang LS. Hydroquinone-selected chronic myelogenous leukemia cells are sensitive to chloroquine-induced cytotoxicity via MCL1 suppression and glycolysis inhibition. Biochem Pharmacol 2023; 218:115934. [PMID: 37989415 DOI: 10.1016/j.bcp.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Previous studies have provided evidence that repeated exposure to the benzene metabolite hydroquinone (HQ) induces malignant transformation and increases basal autophagy in the chronic myeloid leukemia (CML) cell line K562. This study explored the cytotoxicity of the autophagy inhibitor chloroquine (CQ) on parental and HQ-selected K562 (K562/HQ) cells. CQ triggered apoptosis in these cells independently of inhibiting autophagic flux; however, in K562/HQ cells, CQ-induced cytotoxicity was higher than in K562 cells. Mechanistically, CQ-induced NOXA upregulation led to MCL1 downregulation and mitochondrial depolarization in K562/HQ cells. MCL1 overexpression or NOXA silencing attenuated CQ-mediated cytotoxicity in K562/HQ cells. CQ triggered ERK inactivation to increase Sp1, NFκB, and p300 expression, and co-assembly of Sp1, NFκB, and p300 in the miR-29a promoter region coordinately upregulated miR-29a transcription. CQ-induced miR-29a expression destabilized tristetraprolin (TTP) mRNA, which in turn reduced TTP-mediated NOXA mRNA decay, thereby increasing NOXA protein expression. A similar mechanism explained the CQ-induced downregulation of MCL1 in K562 cells. K562/HQ cells relied more on glycolysis for ATP production than K562 cells, whereas inhibition of glycolysis by CQ was greater in K562/HQ cells than in K562 cells. Likewise, CQ-induced MCL1 suppression and glycolysis inhibition resulted in higher cytotoxicity in CML KU812/HQ cells than in KU812 cells. Taken together, our data confirm that CQ inhibits MCL1 expression through the ERK/miR-29a/TTP/NOXA pathway, and that inhibition of glycolysis is positively correlated to higher cytotoxicity of CQ on HQ-selected CML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Hartman ML, Koziej P, Kluszczyńska K, Czyz M. Pro-Apoptotic Activity of MCL-1 Inhibitor in Trametinib-Resistant Melanoma Cells Depends on Their Phenotypes and Is Modulated by Reversible Alterations Induced by Trametinib Withdrawal. Cancers (Basel) 2023; 15:4799. [PMID: 37835493 PMCID: PMC10571954 DOI: 10.3390/cancers15194799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Although BRAFV600/MEK inhibitors improved the treatment of melanoma patients, resistance is acquired almost inevitably. METHODS Trametinib withdrawal/rechallenge and MCL-1 inhibition in trametinib-resistance models displaying distinct p-ERK1/2 levels were investigated. RESULTS Trametinib withdrawal/rechallenge caused reversible changes in ERK1/2 activity impacting the balance between pro-survival and pro-apoptotic proteins. Reversible alterations were found in MCL-1 levels and MCL-1 inhibitors, BIM and NOXA. Taking advantage of melanoma cell dependency on MCL-1 for survival, we used S63845. While it was designed to inhibit MCL-1 activity, we showed that it also significantly reduced NOXA levels. S63845-induced apoptosis was detected as the enhancement of Annexin V-positivity, caspase-3/7 activation and histone H2AX phosphorylation. Percentages of Annexin V-positive cells were increased most efficiently in trametinib-resistant melanoma cells displaying the p-ERK1/2low/MCL-1low/BIMhigh/NOXAlow phenotype with EC50 values at concentrations as low as 0.1 μM. Higher ERK1/2 activity associated with increased MCL-1 level and reduced BIM level limited pro-apoptotic activity of S63845 further influenced by a NOXA level. CONCLUSIONS Our study supports the notion that the efficiency of an agent designed to target a single protein can largely depend on the phenotype of cancer cells. Thus, it is important to define appropriate phenotype determinants to stratify the patients for the novel therapy.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.H.); (P.K.); (K.K.)
| |
Collapse
|
7
|
Gao X, Qian J, Zhang Y, Wang H, Cui J, Yang Y. Analysis of differential membrane proteins related to matrix stiffness-mediated metformin resistance in hepatocellular carcinoma cells. Proteome Sci 2023; 21:14. [PMID: 37740172 PMCID: PMC10517517 DOI: 10.1186/s12953-023-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Our previous work shows that increased matrix stiffness not only alters malignant characteristics of hepatocellular carcinoma (HCC) cells, but also attenuates metformin efficacy in treating HCC cells. Here, we identified differential membrane proteins related to matrix stiffness-mediated metformin resistance for better understand therapeutic resistance of metformin in HCC. METHODS Differential membrane proteins in HCC cells grown on different stiffness substrates before and after metformin intervention were screened and identified using isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with the liquid chromatography-tandem mass spectrometry (LC-MS/MS), then bioinformatic analysis were applied to determine candidate membrane protein and their possible signaling pathway. RESULTS A total of 5159 proteins were identified and 354 differential membrane proteins and membrane associated proteins, which might be associated with matrix stiffness-mediated metformin resistance were discovered. Then 94 candidate membrane proteins including 21 up-regulated protein molecules and 73 down-regulated protein molecules were further obtained. Some of them such as Annexin A2 (ANXA2), Filamin-A (FLNA), Moesin (MSN), Myosin-9 (MYH9), Elongation factor 2 (eEF2), and Tax1 binding Protein 3 (TAX1BP3) were selected for further validation. Their expressions were all downregulated in HCC cells grown on different stiffness substrates after metformin intervention. More importantly, the degree of decrease was obviously weakened on the higher stiffness substrate compared with that on the lower stiffness substrate, indicating that these candidate membrane proteins might contribute to matrix stiffness-mediated metformin resistance in HCC. CONCLUSIONS There was an obvious change in membrane proteins in matrix stiffness-mediated metformin resistance in HCC cells. Six candidate membrane proteins may reflect the response of HCC cells under high stiffness stimulation to metformin intervention, which deserve to be investigated in the future.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Endocrinology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China
| | - Yang Zhang
- Institute of Biomedical Science, Fudan University, 131 Dong' an Road, Shanghai, 200032, PR China
| | - Heming Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China.
| |
Collapse
|
8
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
9
|
Pervaiz A, Naseem N, Saleem T, Raza SM, Shaukat I, Kanwal K, Sajjad O, Iqbal S, Shams F, Ijaz B, Berger MR. Anticancer genes (NOXA, PAR-4, TRAIL) are de-regulated in breast cancer patients and can be targeted by using a ribosomal inactivating plant protein (riproximin). Mol Biol Rep 2023; 50:5209-5221. [PMID: 37127809 DOI: 10.1007/s11033-023-08477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Anticancer genes are an endogenous defense against transformed cells as they impose antineoplastic effects upon ectopic expression. Profiling the expression of these genes is fundamental for exploring their prognostic and therapeutic relevance in cancers. Natural compounds can upregulate anticancer genes in malignant cells and thus be useful for therapeutic purposes. In this study, we identified the expression levels of anticancer genes in breast cancer clinical isolates. In addition, the purified and sequenced plant protein (riproximin) was evaluated for its potential to induce anticancer genes in two breast cancer cell lines. METHODOLOGY Expression profiles of three anticancer genes (NOXA, PAR-4, TRAIL) were identified by immunohistochemistry in 45 breast cancer clinical isolates. Breast cancer cells were exposed to riproximin and expression of the anticancer genes was determined by microarray, real-time PCR and western blot methodologies. Lastly, a bioinformatic approach was adopted to highlight the molecular/functional significance of the anticancer genes. RESULTS NOXA expression was evenly de-regulated among the clinical isolates, while PAR-4 was significantly down-regulated in majority of the breast cancer tissues. In contrast, TRAIL expression was increased in most of the clinical samples. Expression levels of the anticancer genes followed a distinct trend in accordance with the disease severity. Riproximin showed a substantial potential of inducing expression of the anticancer genes in breast cancer cells at transcriptomic and protein levels. The bioinformatic approach revealed involvement of anticancer genes in multiple cellular functions and signaling cascades. CONCLUSION Anticancer genes were de-regulated and showed discrete expression patterns in breast cancer patient samples. Riproximin effectively induced the expression of selected anticancer genes in breast cancer cells.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Nadia Naseem
- Morbid Anatomy and Histopathology Department, University of Health Sciences, Lahore, Pakistan
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Iqra Shaukat
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Osheen Sajjad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Faiza Shams
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Immundiagnostik Comp, Bensheim, Germany
| |
Collapse
|
10
|
Peng Z, Gillissen B, Richter A, Sinnberg T, Schlaak MS, Eberle J. Enhanced Apoptosis and Loss of Cell Viability in Melanoma Cells by Combined Inhibition of ERK and Mcl-1 Is Related to Loss of Mitochondrial Membrane Potential, Caspase Activation and Upregulation of Proapoptotic Bcl-2 Proteins. Int J Mol Sci 2023; 24:ijms24054961. [PMID: 36902392 PMCID: PMC10002974 DOI: 10.3390/ijms24054961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Targeting of MAP kinase pathways by BRAF inhibitors has evolved as a key therapy for BRAF-mutated melanoma. However, it cannot be applied for BRAF-WT melanoma, and also, in BRAF-mutated melanoma, tumor relapse often follows after an initial phase of tumor regression. Inhibition of MAP kinase pathways downstream at ERK1/2, or inhibitors of antiapoptotic Bcl-2 proteins, such as Mcl-1, may serve as alternative strategies. As shown here, the BRAF inhibitor vemurafenib and the ERK inhibitor SCH772984 showed only limited efficacy in melanoma cell lines, when applied alone. However, in combination with the Mcl-1 inhibitor S63845, the effects of vemurafenib were strongly enhanced in BRAF-mutated cell lines, and the effects of SCH772984 were enhanced in both BRAF-mutated and BRAF-WT cells. This resulted in up to 90% loss of cell viability and cell proliferation, as well as in induction of apoptosis in up to 60% of cells. The combination of SCH772984/S63845 resulted in caspase activation, processing of poly (ADP-ribose) polymerase (PARP), phosphorylation of histone H2AX, loss of mitochondrial membrane potential, and cytochrome c release. Proving the critical role of caspases, a pan-caspase inhibitor suppressed apoptosis induction, as well as loss of cell viability. As concerning Bcl-2 family proteins, SCH772984 enhanced expression of the proapoptotic Bim and Puma, as well as decreased phosphorylation of Bad. The combination finally resulted in downregulation of antiapoptotic Bcl-2 and enhanced expression of the proapoptotic Noxa. In conclusion, combined inhibition of ERK and Mcl-1 revealed an impressive efficacy both in BRAF-mutated and WT melanoma cells, and may thus represent a new strategy for overcoming drug resistance.
Collapse
Affiliation(s)
- Zhe Peng
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Clinical Medicine, University of South China, Hengyang 421001, China
| | - Bernhard Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Antje Richter
- Department of Hematology, Oncology, and Tumor Immunology, Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Tobias Sinnberg
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Division of Dermatooncology, Department of Dermatology, University Tübingen, 72076 Tübingen, Germany
| | - Max S. Schlaak
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
11
|
Shi K, Lu H, Zhang Z, Fu Y, Wu J, Zhou S, Ma P, Ye K, Zhang S, Shi H, Shi W, Cai MC, Zhao X, Yu Z, Tang J, Zhuang G. Transient targeting of BIM-dependent adaptive MCL1 preservation enhances tumor response to molecular therapeutics in non-small cell lung cancer. Cell Death Differ 2023; 30:195-207. [PMID: 36171331 PMCID: PMC9883455 DOI: 10.1038/s41418-022-01064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.
Collapse
Affiliation(s)
- Kaixuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijiao Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiping Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jian Tang
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Manzano-Muñoz A, Yeste J, Ortega MA, Martín F, López A, Rosell J, Castro S, Serrano C, Samitier J, Ramón-Azcón J, Montero J. Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy. NPJ Precis Oncol 2022; 6:90. [PMID: 36456699 PMCID: PMC9715649 DOI: 10.1038/s41698-022-00333-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022] Open
Abstract
Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.
Collapse
Grants
- Ramon y Cajal Programme, Ministerio de Economia y Competitividad grant RYC-2015-18357. (JM) Ministerio de Ciencia, Innovación y Universidades grant RTI2018-094533-A-I00 (JM) CELLEX foundation (JM, AM). Beca Trienal Fundación Mari Paz Jiménez Casado (JM)
- Fundación Cellex (Cellex Foundation)
- Networking Biomedical Research Center (CIBER). CIBER is an initiative funded by the VI National R & D &i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund (JS). Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS)
- European Research Council, grant ERC-StG-DAMOC 714317 (JR-A) European Research Council, H2020 EU framework FET-open BLOC 863037 (JR-A) Spanish Ministry of Economy and Competitiveness, "Severo Ochoa" Program for Centers of Excellence in R&D SEV-2020-2023 (JR-A) Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS) Fundación Bancaria "la Caixa"- Obra Social "la Caixa" (project IBEC-La Caixa Health Ageing) (JR-A)
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Yeste
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María A Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vitala Technologies, Barcelona, Spain
| | - Fernando Martín
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Anna López
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Castro
- Surgical Oncology Division, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010, Barcelona, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain.
| |
Collapse
|
13
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
14
|
Koessinger AL, Cloix C, Koessinger D, Heiland DH, Bock FJ, Strathdee K, Kinch K, Martínez-Escardó L, Paul NR, Nixon C, Malviya G, Jackson MR, Campbell KJ, Stevenson K, Davis S, Elmasry Y, Ahmed A, O'Prey J, Ichim G, Schnell O, Stewart W, Blyth K, Ryan KM, Chalmers AJ, Norman JC, Tait SWG. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ 2022; 29:2089-2104. [PMID: 35473984 PMCID: PMC9525582 DOI: 10.1038/s41418-022-01001-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in adults. GBM typically has a poor prognosis, mainly due to a lack of effective treatment options leading to tumour persistence or recurrence. We investigated the therapeutic potential of targeting anti-apoptotic BCL-2 proteins in GBM. Levels of anti-apoptotic BCL-xL and MCL-1 were consistently increased in GBM compared with non-malignant cells and tissue. Moreover, we found that relative to their differentiated counterparts, patient-derived GBM stem-like cells also displayed higher expression of anti-apoptotic BCL-2 family members. High anti-apoptotic BCL-xL and MCL-1 expression correlated with heightened susceptibility of GBM to BCL-2 family protein-targeting BH3-mimetics. This is indicative of increased apoptotic priming. Indeed, GBM displayed an obligate requirement for MCL-1 expression in both tumour development and maintenance. Investigating this apoptotic sensitivity, we found that sequential inhibition of BCL-xL and MCL-1 led to robust anti-tumour responses in vivo, in the absence of overt toxicity. These data demonstrate that BCL-xL and MCL-1 pro-survival function is a fundamental prerequisite for GBM survival that can be therapeutically exploited by BH3-mimetics.
Collapse
Affiliation(s)
- Anna L Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Florian J Bock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Karen Strathdee
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin Kinch
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Laura Martínez-Escardó
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mark R Jackson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Katrina Stevenson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Sandeep Davis
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Yassmin Elmasry
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Asma Ahmed
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
| | - Oliver Schnell
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
15
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
17
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
18
|
MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment. Cell Death Dis 2022; 8:172. [PMID: 35393436 PMCID: PMC8989976 DOI: 10.1038/s41420-022-00959-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Targeted agents have emerged as promising molecules for cancer treatment, but most of them fail to achieve complete tumor regression or attain durable remissions due to tumor adaptations. We used dynamic BH3 profiling to identify targeted agents effectiveness and anti-apoptotic adaptations upon targeted treatment in rhabdomyosarcoma. We focused on studying the use of BH3 mimetics to specifically inhibit pro-survival BCL-2 family proteins, overwhelm resistance to therapy and prevent relapse. We observed that the MEK1/2 inhibitor trametinib rapidly depleted the pro-apoptotic protein NOXA, thus increasing MCL-1 availability. Indeed, we found that the MCL-1 inhibitor S63845 synergistically enhanced trametinib cytotoxicity in rhabdomyosarcoma cells in vitro and in vivo. In conclusion, our findings indicate that the combination of a BH3 mimetic targeting MCL-1 with trametinib improves efficiency on rhabdomyosarcoma by blocking tumor adaptation to treatment.
Collapse
|
19
|
Identification of NOXA as a pivotal regulator of resistance to CAR T-cell therapy in B-cell malignancies. Signal Transduct Target Ther 2022; 7:98. [PMID: 35370290 PMCID: PMC8977349 DOI: 10.1038/s41392-022-00915-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/01/2023] Open
Abstract
AbstractDespite the remarkable success of chimeric antigen receptor (CAR) T-cell therapy for treating hematologic malignancies, resistance and recurrence still occur, while the markers or mechanisms underlying this resistance remain poorly understood. Here, via an unbiased genome-wide CRISPR/Cas9 screening, we identified loss of NOXA, a B-cell lymphoma 2 (BCL2) family protein in B-cell malignancies, as a pivotal regulator of resistance to CAR T-cell therapy by impairing apoptosis of tumor cells both in vitro and in vivo. Notably, low NOXA expression in tumor samples was correlated with worse survival in a tandem CD19/20 CAR T clinical trial in relapsed/refractory B-cell lymphoma. In contrast, pharmacological augmentation of NOXA expression by histone deacetylase (HDAC) inhibitors dramatically sensitized cancer cells to CAR T cell-mediated clearance in vitro and in vivo. Our work revealed the essentiality of NOXA in resistance to CAR T-cell therapy and suggested NOXA as a predictive marker for response and survival in patients receiving CAR T-cell transfusions. Pharmacological targeting of NOXA might provide an innovative therapeutic strategy to enhance CAR T-cell therapy.
Collapse
|
20
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Nie W, Wang B, Mi X, Chen J, Yu T, Miao J, Lin Y, Yang T, Ran M, Hong Z, Liu X, Liang X, Qian Z, Gao X. Co-Delivery of Paclitaxel and shMCL-1 by Folic Acid-Modified Nonviral Vector to Overcome Cancer Chemotherapy Resistance. SMALL METHODS 2021; 5:e2001132. [PMID: 34928100 DOI: 10.1002/smtd.202001132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Acquired chemoresistance presents a major clinical impediment, which is an urgent problem to be solved. Interestingly, myeloma cell leukemia-1 (MCL-1) and folate receptor expression levels are higher in chemotherapy-resistant patients than in pretreatment patients. In this study, a multifunctional folic acid (FA)-targeting core-shell structure is presented for simultaneous delivery of shMCL-1 and paclitaxel (PTX). The transfection efficiency of shMCL-1 with the FA-targeting delivery system is higher than with a nontargeting delivery system in Skov3 and A2780T cells. The FA-targeting system significantly inhibits cell growth, blocks cell cycles, and promotes apoptosis of cancer cells in vitro. The mechanisms involved in inhibiting growth are related to Bcl-2/Bax and cdc2/Cyclin B1 pathways. An analysis of RNA sequencing suggests that shMCL-1 reverses chemoresistance through regulating genes such as regulator of chromosome condensation 2 (RCC2). The synergetic effect of shMCL-1 and PTX effectively inhibits tumor growth in both PTX-resistant and normal cancer models by inducing tumor apoptosis, inhibiting proliferation, and limiting tumor angiogenesis. The study results indicate that a FA-targeting delivery system combining shMCL-1 with PTX can simultaneously target tumor sites and restore the sensitivity of chemotherapy-resistant cancer to PTX. These findings have important implications for patients with normal or PTX-resistant cancer.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Xue Mi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Junming Miao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Tingting Yang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Mengni Ran
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Zehuo Hong
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, P. R. China
| | - Xiao Liang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
22
|
Karbon G, Haschka MD, Hackl H, Soratroi C, Rocamora-Reverte L, Parson W, Fiegl H, Villunger A. The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis 2021; 12:1151. [PMID: 34903710 PMCID: PMC8668920 DOI: 10.1038/s41419-021-04415-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) treatment frequently involves microtubule-targeting agents (MTAs), such as paclitaxel, that arrest cells in mitosis. Sensitivity to MTAs is defined by a subset of pro- and anti-apoptotic BCL2 family proteins controlling mitochondrial apoptosis. Here, we aimed to determine their prognostic value in primary tumour samples from 92 BC patients. Our analysis identified high NOXA/PMAIP mRNA expression levels as an independent prognostic marker for improved relapse-free survival (RFS) and overall survival (OS) in multivariate analysis in BC patients, independent of their molecular subtype. Analysis of available TCGA datasets of 1060 BC patients confirmed our results and added a clear predictive value of NOXA mRNA levels for patients who received MTA-based therapy. In this TCGA cohort, 122 patients received MTA-treatment and high NOXA mRNA levels correlated with their progression-free interval (PFI) and OS. Our follow-up analyses in a panel of BC cell lines of different molecular subtypes identified NOXA protein expression as a key determinant of paclitaxel sensitivity in triple-negative breast cancer (TNBC) cells. Moreover, we noted highest additive effects between paclitaxel and chemical inhibition of BCLX, but not BCL2 or MCL1, documenting dependence of TNBC cells on BCLX for survival and paclitaxel sensitivity defined by NOXA expression levels.
Collapse
Affiliation(s)
- Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel D Haschka
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Insitute for Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Soratroi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Lourdes Rocamora-Reverte
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department for Obstetrics & Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Müller D, Mazzeo P, Koch R, Bösherz MS, Welter S, von Hammerstein-Equord A, Hinterthaner M, Cordes L, Belharazem D, Marx A, Ströbel P, Küffer S. Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas. BMC Med 2021; 19:300. [PMID: 34781947 PMCID: PMC8594228 DOI: 10.1186/s12916-021-02158-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multi-omics studies have shown a high and lack of common driver mutations in most thymomas (TH) and thymic carcinomas (TC) that hamper the development of novel treatment approaches. However, deregulation of apoptosis has been proposed as a common hallmark of TH and TC. BH3 profiling can be utilized to study the readiness of living cancer cells to undergo apoptosis and their dependency on pro-survival BCL-2 family proteins. METHODS We screened a cohort of 62 TH and TC patient samples for expression of BCL-2 family proteins and used the TC cell line 1889c and native TH for dynamic BH3 profiling and treatment with BH3 mimetics. RESULTS Immunohistochemical overexpression of MCL-1 and BCL-xL was a strong prognostic marker of TH and TC, and BH3 profiling indicated a strong dependency on MCL-1 and BCL-xL in TH. Single inhibition of MCL-1 resulted in increased binding of BIM to BCL-xL as an escape mechanism that the combined inhibition of both factors could overcome. Indeed, the inhibition of MCL-1 and BCL-xL in combination induced apoptosis in a caspase-dependent manner in untreated and MCL-1-resistant 1889c cells. CONCLUSION TH and TC are exquisitely dependent on the pro-survival factors MCL-1 and BCL-xL, making them ideal candidates for co-inhibition by BH3 mimetics. Since TH show a heterogeneous dependency on BCL-2 family proteins, upfront BH3 profiling could select patients and tailor the optimal therapy with the least possible toxicity.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Paolo Mazzeo
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Raphael Koch
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Mark-Sebastian Bösherz
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stefan Welter
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | | | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Lucia Cordes
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
24
|
Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin KM, Meyer LH, Samitier J, Montero J. MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:695225. [PMID: 34568318 PMCID: PMC8458912 DOI: 10.3389/fcell.2021.695225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 - a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy, Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Niño Jesús University Children’s Hospital, Madrid, Spain
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H. Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
25
|
Gómez Tejeda Zañudo J, Mao P, Alcon C, Kowalski K, Johnson GN, Xu G, Baselga J, Scaltriti M, Letai A, Montero J, Albert R, Wagle N. Cell Line-Specific Network Models of ER + Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Res 2021; 81:4603-4617. [PMID: 34257082 PMCID: PMC8744502 DOI: 10.1158/0008-5472.can-21-1208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Durable control of invasive solid tumors necessitates identifying therapeutic resistance mechanisms and effective drug combinations. In this work, we used a network-based mathematical model to identify sensitivity regulators and drug combinations for the PI3Kα inhibitor alpelisib in estrogen receptor positive (ER+) PIK3CA-mutant breast cancer. The model-predicted efficacious combination of alpelisib and BH3 mimetics, for example, MCL1 inhibitors, was experimentally validated in ER+ breast cancer cell lines. Consistent with the model, FOXO3 downregulation reduced sensitivity to alpelisib, revealing a novel potential resistance mechanism. Cell line-specific sensitivity to combinations of alpelisib and BH3 mimetics depended on which BCL2 family members were highly expressed. On the basis of these results, newly developed cell line-specific network models were able to recapitulate the observed differential response to alpelisib and BH3 mimetics. This approach illustrates how network-based mathematical models can contribute to overcoming the challenge of cancer drug resistance. SIGNIFICANCE: Network-based mathematical models of oncogenic signaling and experimental validation of its predictions can identify resistance mechanisms for targeted therapies, as this study demonstrates for PI3Kα-specific inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pingping Mao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kailey Kowalski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gabriela N Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Guotai Xu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jose Baselga
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joan Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, Pennsylvania. .,Department of Biology, The Pennsylvania State University, Pennsylvania
| | - Nikhil Wagle
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Alcon C, Zañudo JGT, Albert R, Wagle N, Scaltriti M, Letai A, Samitier J, Montero J. ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells 2021; 10:1659. [PMID: 34359829 PMCID: PMC8304651 DOI: 10.3390/cells10071659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.
Collapse
Affiliation(s)
- Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| | | | - Reka Albert
- Department of Biology, The Pennsylvania State University, University Park, PA 16802-6300, USA;
| | - Nikhil Wagle
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (J.G.T.Z.); (N.W.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| |
Collapse
|
27
|
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, Maity D, Ali L, Kalmouni M, Hunashal Y, Ahmed J, Houhou T, Karapetyan S, Falls Z, Samudrala R, Pasricha R, Esposito G, Afzal AJ, Hamilton AD, Kumar S, Magzoub M. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun 2021; 12:3962. [PMID: 34172723 PMCID: PMC8233319 DOI: 10.1038/s41467-021-23985-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maheen Alam
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sarah Hassan
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Debabrata Maity
- Department of Chemistry, New York University, New York, NY, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Yamanappa Hunashal
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,DAME, Università di Udine, Udine, Italy
| | - Jemil Ahmed
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Shake Karapetyan
- Physics Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Zackary Falls
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Gennaro Esposito
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,INBB, Rome, Italy
| | - Ahmed J Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | | | - Sunil Kumar
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA.
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov 2021; 7:122. [PMID: 34050131 PMCID: PMC8163735 DOI: 10.1038/s41420-021-00505-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with treatment limited to Cisplatin and Pemetrexed chemotherapy. Recently, we showed that drugs targeting the BCL-2-regulated apoptosis pathway could kill MPM cell lines in vitro, and control tumor growth in vivo. These studies showed BCL-XL was the dominant pro-survival BCL-2 family member correlating with its high-level expression in cells and patient tumor samples. In this study we show another inhibitor, AZD4320 that targets BCL-XL (and BCL-2), can also potently kill MPM tumor cells in vitro (EC50 values in the 200 nM range) and this effect is enhanced by co-inhibition of MCL-1 using AZD5991. Moreover, we show that a novel nanoparticle, AZD0466, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer, was as effective as standard-of-care chemotherapy, Cisplatin, at inhibiting tumor growth in mouse xenograft studies, and this effect was enhanced when both drugs were combined. Critically, the degree of thrombocytopenia, an on-target toxicity associated with BCL-XL inhibition, was significantly reduced throughout the treatment period compared to other BCL-XL-targeting BH3-mimetics. These pre-clinical findings provide a rationale for the future clinical evaluation for novel BH3-mimetic formulations in MPM, and indeed, other solid tumor types dependent on BCL-XL.
Collapse
|
29
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
30
|
Trisciuoglio D, Del Bufalo D. New insights into the roles of antiapoptotic members of the Bcl-2 family in melanoma progression and therapy. Drug Discov Today 2021; 26:1126-1135. [PMID: 33545382 DOI: 10.1016/j.drudis.2021.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Prosurvival and antiapoptotic B cell lymphoma-2 (Bcl-2) family proteins are often overexpressed in cutaneous melanoma, one of the most aggressive types of human cancer. They are also implicated in resistance to therapy and participate in melanoma progression by regulating various processes, including cell proliferation, migration, invasion, and crosstalk with the tumor microenvironment. In this review, we summarize recent findings related to prosurvival members of the Bcl-2 family beyond their canonical functions in the apoptotic pathway, mainly focusing on their potential roles as diagnostic and prognostic biomarkers in cutaneous melanoma. We also provide an overview of different approaches used to inhibit Bcl-2 proteins in preclinical and clinical studies, which are mainly based on the inhibition of protein expression or the disruption of their antiapoptotic functions.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, via degli Apuli 4, 00185, Rome, Italy.
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy.
| |
Collapse
|
31
|
|
32
|
Kosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A. Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 2021; 51:e13353. [PMID: 32682341 DOI: 10.1111/eci.13353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND NOXA and MCL1 are involved in the intrinsic pathway of apoptosis, where Noxa selectively binds to MCL1 and prevents it from inhibiting apoptosis. Both factors are considered as potential tumour biomarkers, while MCL1 has attracted interest as target in cancer. The purpose of this study was to investigate the expression of NOXA and MCL1 in 160 CRC tumour samples, to investigate their significance, also in combination with IAPs, DR5 expression and KRAS gene mutations in CRC. MATERIALS AND METHODS Fresh frozen colorectal tissue was obtained from patients undergoing surgery for CRC. Real-time quantitative PCR was performed for the determination of mRNA expression levels. Protein expression was determined immunohistochemically. Differences in the mRNA expression profile were evaluated with the nonparametric Wilcoxon signed ranks test. Statistical analysis was performed with the use of Mann-Whitney U test and receiver-operating characteristic (ROC) curve. RESULTS NOXA was found to be overexpressed in CRC tumours (P < .0001), even from early stage. Moreover, NOXA/MCL1 mRNA expression was significantly elevated in tumour samples compared to normal pairs (P < .0001). ROC curve analysis showed that both NOXA expression and its combination with Mcl1 expression have fair discriminatory value between CRC and normal colorectal tissue. Combinatorial ROC analysis revealed the most significant discriminatory value of NOXA, MCL1 with cIAP1 and cIAP2 (AUC = 0.834, P < .0001) as a 5-gene panel of markers. CONCLUSION Noxa, Mcl1, DR5, cIAP1 and cIAP2 mRNA expressions are significantly deregulated in CRC and could provide a panel of markers with significant discriminatory value between CRC and normal colorectal tissue.
Collapse
Affiliation(s)
- Vivian Kosmidou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Vlassi
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Kyriakos Anagiotos
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sofia Raftopoulou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Eirini Kalogerakou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Salomi Skarmalioraki
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Chrysanthi Aggeli
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Zografos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
33
|
Arulananda S, Lee EF, Fairlie WD, John T. The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Rev Anticancer Ther 2020; 21:413-424. [PMID: 33238762 DOI: 10.1080/14737140.2021.1856660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: With limited recent therapeutic changes, malignant pleural mesothelioma (MPM) is associated with poor survival and death within 12 months, making it one of the most lethal malignancies. Due to unregulated asbestos use in developing countries and home renovation exposures, cases of MPM are likely to present for decades. As MPM is largely driven by dysregulation of tumor suppressor genes, researchers have examined other mechanisms of subverting tumor proliferation and spread. Over-expression of pro-survival BCL-2 family proteins impairs cells from undergoing apoptosis, and BH3-mimetics targeting them are a novel treatment option across various cancers, though have not been widely investigated in MPM.Areas covered: This review provides an overview of MPM and its current treatment landscape. It summarizes the role of BCL-2 family proteins in tumorigenesis and the therapeutic potential of BH3-mimetics . Finally, it discusses the role of BCL-2 proteins in MPM and the pre-clinical rationale for investigating BH3-mimetics as a therapeutic strategy.Expert opinion: As a disease without readily actionable oncogene driver mutations and with modest benefit from immune checkpoint inhibition, novel therapeutic options are urgently needed for MPM. Hence, BH3-mimetics provide a promising treatment option, with evidence supporting dependence on pro-survival BCL-2 proteins for MPM cell survival.
Collapse
Affiliation(s)
- Surein Arulananda
- Department of Medical Oncology, Austin Health, Heidelberg, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
34
|
Hartman ML, Gajos-Michniewicz A, Talaj JA, Mielczarek-Lewandowska A, Czyz M. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAF V600E melanoma cells. Cancer Lett 2020; 499:122-136. [PMID: 33259900 DOI: 10.1016/j.canlet.2020.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022]
Abstract
BRAFV600- and MEK1/2-targeting therapies rarely produce durable response in melanoma patients. We investigated five BRAFV600E melanoma cell lines derived from drug-naïve tumor specimens to assess cell death response to encorafenib (Braftovi), a recently FDA-approved BRAFV600 inhibitor. Drug-naïve cell lines (i) did not harbor damaging alterations in genes encoding core apoptotic machinery, but they differed in (ii) mitochondrial priming as demonstrated by whole-cell BH3 profiling, and (iii) levels of selected anti-apoptotic proteins. Encorafenib modulated the balance between apoptosis-regulating proteins as it upregulated BIM and BMF, and attenuated NOXA, but did not affect the levels of pro-survival proteins except for MCL-1 and BCL-XL in selected cell lines. Induction of apoptosis could be predicted using Dynamic BH3 profiling. The extent of apoptosis was dependent on both (i) cell-intrinsic proximity to the apoptotic threshold (initial mitochondrial priming) and (ii) the abundance of encorafenib-induced BIM (iBIM; drug-induced change in priming). While co-inhibition of MCL-1 and BCL-XL/BCL-2 was indispensable for apoptosis in drug-naïve cells, encorafenib altered cell dependence to MCL-1, and reliance on BCL-XL/BCL-2 was additionally found in cell lines that were highly primed to apoptosis by encorafenib. This translated into robust apoptosis when encorafenib was combined with selective BH3 mimetics. Our study provides a mechanistic insight into the role of proteins from the BCL-2 family in melanoma cell response to targeted therapy, and presents preclinical evidence that (i) MCL-1 is a druggable target to potentiate encorafenib activity, whereas (ii) pharmacological inhibition of BCL-XL/BCL-2 might be relevant but only for a narrow group of encorafenib-treated patients.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Julita A Talaj
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
35
|
Gstalder C, Liu D, Miao D, Lutterbach B, DeVine AL, Lin C, Shettigar M, Pancholi P, Buchbinder EI, Carter SL, Manos MP, Rojas-Rudilla V, Brennick R, Gjini E, Chen PH, Lako A, Rodig S, Yoon CH, Freeman GJ, Barbie DA, Hodi FS, Miles W, Van Allen EM, Haq R. Inactivation of Fbxw7 Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade. Cancer Discov 2020; 10:1296-1311. [PMID: 32371478 PMCID: PMC8802534 DOI: 10.1158/2159-8290.cd-19-1416] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/04/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti-PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti-PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was sufficient to sensitize them to anti-PD-1. Our results thus establish a new role for the commonly inactivated tumor suppressor FBXW7 in viral sensing and sensitivity to immunotherapy. SIGNIFICANCE: Our findings establish a role of the commonly inactivated tumor suppressor FBXW7 as a genomic driver of response to anti-PD-1 therapy. Fbxw7 loss promotes resistance to anti-PD-1 through the downregulation of viral sensing pathways, suggesting that therapeutic reactivation of these pathways could improve clinical responses to checkpoint inhibitors in genomically defined cancer patient populations.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
MESH Headings
- Aged
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Line, Tumor/transplantation
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- F-Box-WD Repeat-Containing Protein 7/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- Gene Expression Regulation, Neoplastic/immunology
- HeLa Cells
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Loss of Function Mutation
- Male
- Mice
- Mutagenesis, Site-Directed
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Cécile Gstalder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Bart Lutterbach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alexander L DeVine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chenyu Lin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Megha Shettigar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Priya Pancholi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott L Carter
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Division of Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael P Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Vanesa Rojas-Rudilla
- Department of CAMD Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryan Brennick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Evisa Gjini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pei-Hsuan Chen
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ana Lako
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Gao X, Qiao X, Xing X, Huang J, Qian J, Wang Y, Zhang Y, Zhang X, Li M, Cui J, Yang Y. Matrix Stiffness-Upregulated MicroRNA-17-5p Attenuates the Intervention Effects of Metformin on HCC Invasion and Metastasis by Targeting the PTEN/PI3K/Akt Pathway. Front Oncol 2020; 10:1563. [PMID: 32974191 PMCID: PMC7466473 DOI: 10.3389/fonc.2020.01563] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Metformin, a traditional first-line anti-hyperglycemic agent for diabetes, recently exhibits better antitumor effect in hepatocellular carcinoma (HCC). However, its resistance and tolerance mechanism in HCC remains largely unknown. Here, we investigated whether increased matrix stiffness attenuated the intervention effects of metformin on HCC invasion and metastasis, and explored its underlying molecular mechanism. Methods FN-coated gel substrates with 6, 10, and 16 kPa, which simulated the stiffness of normal, fibrotic, and cirrhotic liver tissues respectively, were established to evaluate matrix stiffness-mediated effects on HCC cells. Alterations in morphology, proliferation, motility, and invasive/metastatic-associated genes (PTEN, MMP2, MMP9) of HCC cells grown on different-stiffness substrates were comparatively analyzed before and after metformin intervention. Subsequently, the underlying molecular mechanism by which higher matrix stiffness attenuates antitumor effects of metformin in HCC was further elucidated. Results Metformin significantly inhibited proliferation, migration, and invasion of HCC cells. Compared with the controls on lower-stiffness substrate, HCC cells grown on higher-stiffness substrate exhibited an obvious resistance to intervention effects of metformin on proliferation, migration, invasion and metastasis. High stiffness stimulation significantly activated the miR-17-5p/PTEN/PI3K/Akt signaling pathway in HCC cells via integrin β1 and in turn resulted in MMP2 and MMP9 upregulation. Meanwhile, integrin β1 knockdown or PI3K inhibitor partially reversed the activation of the above signaling molecules. For HCC cells grown on the same-stiffness substrate, metformin remarkably upregulated PTEN expression and suppressed the activation of the PI3K/Akt/MMP pathway, but no effect on integrin β1 expression. Importantly, the increase in fold of PTEN expression and decrease in folds of Akt phosphorylation level and MMP2 and MMP9 expressions in the treated HCC cells with metformin on 16-kPa stiffness substrate were evidently weakened compared with those in the controls on the 6-kPa stiffness substrate. Conclusions: Increased matrix stiffness significantly attenuates the inhibitory effect of metformin on HCC invasion and metastasis, and a common pathway of PTEN/PI3K/Akt/MMPs activated by mechanical stiffness signal and inactivated by metformin contributes to matrix stiffness-caused metformin resistance. To the best of our knowledge, this is the first report to clarify the mechanism of metformin intervention resistance from the perspective of tumor biophysical microenvironment.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaona Qiao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jinya Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yawen Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Alcon C, Manzano-Muñoz A, Prada E, Mora J, Soriano A, Guillén G, Gallego S, Roma J, Samitier J, Villanueva A, Montero J. Sequential combinations of chemotherapeutic agents with BH3 mimetics to treat rhabdomyosarcoma and avoid resistance. Cell Death Dis 2020; 11:634. [PMID: 32801295 PMCID: PMC7429859 DOI: 10.1038/s41419-020-02887-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/30/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence. Refractory/relapsed RMS patients present a bad prognosis that combined with the lack of specific biomarkers impairs the development of new therapies. Here, we utilize dynamic BH3 profiling (DBP), a functional predictive biomarker that measures net changes in mitochondrial apoptotic signaling, to identify anti-apoptotic adaptations upon treatment. We employ this information to guide the use of BH3 mimetics to specifically inhibit BCL-2 pro-survival proteins, defeat resistance and avoid relapse. Indeed, we found that BH3 mimetics that selectively target anti-apoptotic BCL-xL and MCL-1, synergistically enhance the effect of clinically used chemotherapeutic agents vincristine and doxorubicin in RMS cells. We validated this strategy in vivo using a RMS patient-derived xenograft model and observed a reduction in tumor growth with a tendency to stabilization with the sequential combination of vincristine and the MCL-1 inhibitor S63845. We identified the molecular mechanism by which RMS cells acquire resistance to vincristine: an enhanced binding of BID and BAK to MCL-1 after drug exposure, which is suppressed by subsequently adding S63845. Our findings validate the use of DBP as a functional assay to predict treatment effectiveness in RMS and provide a rationale for combining BH3 mimetics with chemotherapeutic agents to avoid tumor resistance, improve treatment efficiency, and decrease undesired secondary effects.
Collapse
Affiliation(s)
- Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Estela Prada
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
- Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, 08950, Esplugues de Llobregat, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
- Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, 08950, Esplugues de Llobregat, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Gabriela Guillén
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, l'Hospitalet del Llobregat, 08907, Barcelona, Spain
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, l'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
38
|
Barillé-Nion S, Lohard S, Juin PP. Targeting of BCL-2 Family Members during Anticancer Treatment: A Necessary Compromise between Individual Cell and Ecosystemic Responses? Biomolecules 2020; 10:E1109. [PMID: 32722518 PMCID: PMC7464802 DOI: 10.3390/biom10081109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023] Open
Abstract
The imbalance between BCL-2 homologues and pro-death counterparts frequently noted in cancer cells endows them with a cell autonomous survival advantage. To eradicate ectopic cells, inhibitors of these homologues (BH3 mimetics) were developed to trigger, during anticancer treatment, full activation of the canonical mitochondrial apoptotic pathway and related caspases. Despite efficiency in some clinical settings, these compounds do not completely fulfill their initial promise. We herein put forth that a growing body of evidence indicates that mitochondrial integrity, controlled by BCL-2 family proteins, and downstream caspases regulate other cell death modes and influence extracellular signaling by committed cells. Moreover, intercellular communications play a key role in spreading therapeutic response across cancer cell populations and in engaging an immune response. We thus advocate that BH3 mimetics administration would be more efficient in the long term if it did not induce apoptosis in all sensitive cells at the same time, but if it could instead allow (or trigger) death signal production by non-terminally committed dying cell populations. The development of such a trade-off strategy requires to unravel the effects of BH3 mimetics not only on each individual cancer cell but also on homotypic and heterotypic cell interactions in dynamic tumor ecosystems.
Collapse
Affiliation(s)
- Sophie Barillé-Nion
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- SIRIC ILIAD, 44000 Nantes, France
| | - Steven Lohard
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Philippe P. Juin
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), INSERMU1232, Université de Nantes, F-44000 Nantes, France; (S.B.-N.); (S.L.)
- SIRIC ILIAD, 44000 Nantes, France
- Institut de Cancérologie de l’Ouest, 15 Rue André Boquel, 49055 Angers, France
| |
Collapse
|
39
|
Inde Z, Forcina GC, Denton K, Dixon SJ. Kinetic Heterogeneity of Cancer Cell Fractional Killing. Cell Rep 2020; 32:107845. [PMID: 32640215 PMCID: PMC7409774 DOI: 10.1016/j.celrep.2020.107845] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
Lethal drugs can induce incomplete cell death in a population of cancer cells, a phenomenon referred to as fractional killing. Here, we show that high-throughput population-level time-lapse imaging can be used to quantify fractional killing in response to hundreds of different drug treatments in parallel. We find that stable intermediate levels of fractional killing are uncommon, with many drug treatments resulting in complete or near-complete eradication of all cells, if given enough time. The kinetics of fractional killing over time vary substantially as a function of drug, drug dose, and genetic background. At the molecular level, the antiapoptotic protein MCL1 is an important determinant of the kinetics of fractional killing in response to MAPK pathway inhibitors but not other lethal stimuli. These studies suggest that fractional killing is governed by diverse lethal stimulus-specific mechanisms.
Collapse
Affiliation(s)
- Zintis Inde
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyle Denton
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Mukherjee N, Skees J, Todd KJ, West DA, Lambert KA, Robinson WA, Amato CM, Couts KL, Van Gulick R, MacBeth M, Nassar K, Tan AC, Zhai Z, Fujita M, Bagby SM, Dart CR, Lambert JR, Norris DA, Shellman YG. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Cell Death Dis 2020; 11:443. [PMID: 32513939 PMCID: PMC7280535 DOI: 10.1038/s41419-020-2646-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Current treatment for patients with metastatic melanoma include molecular-targeted therapies and immune checkpoint inhibitors. However, a subset of melanomas are difficult-to-treat. These melanomas include those without the genetic markers for targeted therapy, non-responsive to immunotherapy, and those who have relapsed or exhausted their therapeutic options. Therefore, it is necessary to understand and explore other biological processes that may provide new therapeutic approaches. One of most appealing is targeting the apoptotic/anti-apoptotic system that is effective against leukemia. We used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma. We then examined the effects of combining BH3 mimetics to target MCL1 and BCLXL in vitro and in vivo. These include clinical-trial-ready compounds such as ABT-263 (Navitoclax) and S63845/S64315 (MIK655). We used cell lines derived from patients with difficult-to-treat melanomas. In vitro, the combined inhibition of MCL1 and BCLXL resulted in significantly effective cell killing compared to single-agent treatment (p < 0.05) in multiple assays, including sphere assays. The combination-induced cell death was independent of BIM, and NOXA. Recapitulated in our mouse xenograft model, the combination inhibited tumor growth, reduced sphere-forming capacity (p < 0.01 and 0.05, respectively), and had tolerable toxicity (p > 0.40). Taken together, this study suggests that dual targeting of MCL1 and BCLXL should be considered as a treatment option for difficult-to-treat melanoma patients.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Jenette Skees
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Kaleb J Todd
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Drake A West
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - William A Robinson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Carol M Amato
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kasey L Couts
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Robert Van Gulick
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Morgan MacBeth
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kelsey Nassar
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Aik-Choon Tan
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, US
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Stacey M Bagby
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Chiara R Dart
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8104, Aurora, CO, 80045, US
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
- Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, 80220, US
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US.
- University of Colorado Anschutz Medical Campus, Gates Center for Regenerative Medicine, Aurora, CO, 80045, US.
| |
Collapse
|