1
|
Xia J, Xu J, Yu B, Liang X, Qiu Z, Li H, Feng H, Li Y, Cai Y, Wei H, Li H, Xiang H, Zhuang Z, Wang D. A Metal-Sulfur-Carbon Catalyst Mimicking the Two-Component Architecture of Nitrogenase. Angew Chem Int Ed Engl 2024; 63:e202412740. [PMID: 39107257 DOI: 10.1002/anie.202412740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3 -) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97 % for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. Such process results in a more energetically accessible pathway for NO3 - reduction on Ru NPs co-existing with SAs. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.
Collapse
Affiliation(s)
- Junkai Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Jiawei Xu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhen Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 980-8577, Sendai, Japan
| | - Huajun Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, 311300, Hangzhou, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Department of Chemical Engineering, Columbia University, 10027, New York, NY, USA
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
2
|
Wu H, Zhang Q, Chu S, Du H, Wang Y, Liu P. Single-Atom Underpotential Deposition at Specific Sites of N-Doped Graphene for Hydrogen Evolution Reaction Electrocatalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5082. [PMID: 39459787 PMCID: PMC11509329 DOI: 10.3390/ma17205082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Single-atom catalysts (SACs) have the advantages of good active site uniformity, high atom utilization, and high catalytic activity. However, the study of its controllable synthesis still needs to be thoroughly investigated. In this paper, we deposited Cu SAs on nanoporous N-doped graphene by underpotential deposition and further obtained a Pt SAC by a galvanic process. Electrochemical and spectroscopic analyses showed that the pyridine-like N defect sites are the specific sites for the underpotential-deposited SAs. The obtained Pt SAC exhibits a good activity in a hydrogen evolution reaction with a turnover frequency of 25.1 s-1. This work reveals the specific sites of UPD of SAs on N-doped graphene and their potential applications in HERs, which provides a new idea for the design and synthesis of SACs.
Collapse
Affiliation(s)
- Haofei Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Qiwen Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Shufen Chu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Du
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Yanyue Wang
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| |
Collapse
|
3
|
Wang X, Li Z, Li X, Gao C, Pu Y, Zhong X, Qian J, Zeng M, Chu X, Chen Z, Redshaw C, Zhou H, Sun C, Regier T, King G, Dynes JJ, Zhang B, Zhu Y, Li G, Peng Y, Wang N, Wu YA. Embedding Reverse Electron Transfer Between Stably Bare Cu Nanoparticles and Cation-Vacancy CuWO 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412570. [PMID: 39400389 DOI: 10.1002/adma.202412570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cu nanoparticles (NPs) have attracted widespread attention in electronics, energy, and catalysis. However, conventionally synthesized Cu NPs face some challenges such as surface passivation and agglomeration in applications, which impairs their functionalities in the physicochemical properties. Here, the issues above by engineering an embedded interface of stably bare Cu NPs on the cation-vacancy CuWO4 support is addressed, which induces the strong metal-support interactions and reverse electron transfer. Various atomic-scale analyses directly demonstrate the unique electronic structure of the embedded Cu NPs with negative charge and anion oxygen protective layer, which mitigates the typical degradation pathways such as oxidation in ambient air, high-temperature agglomeration, and CO poisoning adsorption. Kinetics and in situ spectroscopic studies unveil that the embedded electron-enriched Cu NPs follow the typical Eley-Rideal mechanism in CO oxidation, contrasting the Langmuir-Hinshelwood mechanism on the traditional Cu NPs. This mechanistic shift is driven by the Coulombic repulsion in anion oxygen layer, enabling its direct reaction with gaseous CO to form the easily desorbed monodentate carbonate.
Collapse
Affiliation(s)
- Xiyang Wang
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhen Li
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xinbo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuan Gao
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Xia Zhong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jingyu Qian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Minli Zeng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xuefeng Chu
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chengjun Sun
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tom Regier
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Graham King
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - James J Dynes
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Yanqiu Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Nannan Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Zhang H, Chi K, Qiao L, Gao P, Li Z, Guo X, Li Z, Cao D, Cheng D. Boosting Acidic Hydrogen Evolution Kinetics Induced by Weak Strain Effect in PdPt Alloy for Proton Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406935. [PMID: 39377311 DOI: 10.1002/smll.202406935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Strain engineering is an effective strategy for manipulating the electronic structure of active sites and altering the binding strength toward adsorbates during the hydrogen evolution reaction (HER). However, the effects of weak and strong strain engineering on the HER catalytic activity have not been fully explored. Herein, the core-shell PdPt alloys with two-layer Pt shells (PdPt2L) and multi-layer Pt shells (PdPtML) is constructed, which exhibit distinct lattice strains. Notably, PdPt2L with weak strain effect just requires a low overpotential of 18 mV to reach 10 mA cm-2 for the HER and shows the superior long-term stability for 510 h with negligible activity degradation in 0.5 M H2SO4. The intrinsic activity of PdPt2L is 6.2 and 24.5 times higher than that of PdPtML and commercial Pt/C, respectively. Furthermore, PdPt2L||IrO2 exhibits superior activity over Pt/C||IrO2 in proton exchange membrane water electrolyzers and maintains stable operation for 100 h at large current density of 500 mA cm-2. In situ/operando measurements verify that PdPt2L exhibits lower apparent activation energy and accelerated ad-/desorption kinetics, benefiting from the weak strain effect. Density functional theory calculations also reveal that PdPt2L displays weaker H* adsorption energy compared to PdPtML, favoring for H* desorption and promoting H2 generation.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kebin Chi
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Liang Qiao
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Peng Gao
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhenhao Li
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daojian Cheng
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Luo Q, Wang H, Xiang Q, Lv Y, Yang J, Song L, Cao X, Wang L, Xiao FS. Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation. J Am Chem Soc 2024; 146:26379-26386. [PMID: 39267584 DOI: 10.1021/jacs.4c09241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Breaking the trade-off between activity and stability of supported metal catalysts has been a long-standing challenge in catalysis, especially for metal nanoparticles (NPs) with high hydrogenation activity but poor stability. Herein, we report a porous poly(divinylbenzene) polymer-supported Pd NP catalyst (Pd/PDVB) with both high activity and excellent stability for the solvent-free hydrogenation of nitrobenzene, even at ambient temperature (25 °C) and H2 pressure (0.1 MPa). Pd/PDVB gave a turnover frequency as high as 22,632 h-1 at 70 °C and 0.4 MPa, exceeding 5556 h-1 of the classical Pd/C catalyst under equivalent conditions. Mechanistic studies reveal that the polymer support benefits the desorption of the aniline product from the Pd surface, which is crucial for rapid hydrogenation under solvent-free conditions. In addition, the polymer support in Pd/PDVB efficiently hindered Pd leaching, resulting in good stability.
Collapse
Affiliation(s)
- Qingsong Luo
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yating Lv
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiabao Yang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
7
|
Chen Z, Li X, Xu G, Xiao T, Wang D, Wang C, Zhang K, Li J, Pan Y, Qiao Y, Zhang Y. Synergize Strong and Reactive Metal-Support Interactions to Construct Sub-2 nm Metal Phosphide Cluster for Enhanced Selective Hydrogenation Activities. Angew Chem Int Ed Engl 2024:e202413788. [PMID: 39313750 DOI: 10.1002/anie.202413788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
Strong metal-support interactions (SMSI) are crucial for stabilizing sub-2 nm metal sites, e.g. single atom (M1) or cluster (Mn). However, further optimizing sub-2 nm sites to break the activity-stability trade-off due to excessive interactions remains significant challenges. Accordingly, for the first time, we propose synergizing SMSI with reactive metal-support interactions (RMSI). Comprehensive characterization confirms that the SMSI stabilizes the metal and regulates the aggregation of Ni1 into Nin site within sub-2 nm. Meanwhile, RMSI modulates Nin through sufficiently activating P in the support and eventually generates sub-2 nm metal phosphide Ni2P cluster (Ni2Pn). The synergetic metal-support interactions triggered the adaptive coordination and electronic structure optimization of Ni2Pn, leading to the desired substrate adsorption-desorption kinetics. Consequently, the activity of Ni2Pn site greatly enhanced towards the selective hydrogenations of p-chloronitrobenzene and alkynyl alcohol. The formation rates of target products are up to 20.2 and 3.0 times greater than that of Ni1 and Nin site, respectively. This work may open a new direction for metal-support interactions and promote innovation and application of active sites below 2 nm.
Collapse
Affiliation(s)
- Zemin Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Xinyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Guangyue Xu
- Beijing Nation Power Group Co., Ltd, 100871, Beijing, China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Dechen Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Chufei Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | - Kaihang Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Yan Qiao
- Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Ying Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
8
|
Zhou L, Wan T, Zhong Y, Liu W, Yu L, Li T, Sun K, Waterhouse GIN, Xu H, Kuang Y, Zhou D, Sun X. Ampere-Level Hydrogen Generation via 1000 H Stable Seawater Electrolysis Catalyzed by Pt-Cluster-Loaded NiFeCo Phosphide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406076. [PMID: 39289826 DOI: 10.1002/smll.202406076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Seawater electrolysis can generate carbon-neutral hydrogen but its efficiency is hindered by the low mass activity and poor stability of commercial catalysts at industrial current densities. Herein, Pt nanoclusters are loaded on nickel-iron-cobalt phosphide nanosheets, with the obtained Pt@NiFeCo-P electrocatalyst exhibiting excellent hydrogen evolution reaction (HER) activity and stability in alkaline seawater at ampere-level current densities. The catalyst delivers an ultralow HER overpotential of 19.7 mV at -10 mA cm-2 in seawater-simulating alkaline solutions, along with a Pt-mass activity 20.8 times higher than Pt/C under the same conditions, while dropping to 8.3 mV upon a five-fold NaCl concentrated natural seawater. Remarkably, Pt@NiFeCo-P offers stable operation for over 1000 h at 1 A cm-2 in an alkaline brine electrolyte, demonstrating its potential for efficient and long-term seawater electrolysis. X-ray photoelectron spectroscopy (XPS), in situ electrochemical impedance spectroscopy (EIS), and in situ Raman studies revealed fast electron and charge transfer from the NiFeCo-P substrate to Pt nanoclusters enabled by a strong metal-support interaction, which increased the coverage of H* and accelerated water dissociation on high valent Co sites. This study represents a significant advancement in the development of efficient and stable electrocatalysts with high mass activity for sustainable hydrogen generation from seawater.
Collapse
Affiliation(s)
- Linlin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tong Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhong
- Weichai Power Co., Ltd., Weifang, 261061, China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linfeng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianshui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Sun
- School of Chemical Sciences, the University of Auckland, Auckland, 1010, New Zealand
| | | | - Haijun Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
10
|
He J, Chen S, Ma Z, Wang M, He Q. Spatial Identification of Mott-Schottky Effect at Electrocatalytic Pd/Metal Oxide Interfaces for the Oxygen Reduction Reaction. ACS NANO 2024; 18:24283-24294. [PMID: 39163576 DOI: 10.1021/acsnano.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
To elucidate the microstructure and charge transfer behavior at the interface of Pd/metal oxide semiconductor (MOS) catalysts and systematically explore the crucial role of the Mott-Schottky effect in the oxygen reduction reaction (ORR) electrocatalysis process, this study established a testing system for spatially identifying Mott-Schottky effects and electronic properties at Pd/MOS interfaces, leveraging highly sensitive Kelvin probe force microscopy (KPFM). This system enabled visualization and quantification of the surface potential difference and Mott-Schottky barrier height (ΦSBH) at the Pd/MOS heterojunction interfaces. Furthermore, a series of Pd/MOS Mott-Schottky catalysts were constructed based on differences in work functions between Pd and n-type MOS. The abundant oxygen vacancies in these catalysts facilitated the adsorption and activation of oxygen molecules. Notably, the intensity of the built-in electric field in the Pd/MOS Mott-Schottky catalysts was calculated through surface potential and zeta potential analysis, systematically correlating the Mott-Schottky effect at the heterojunction interface of Pd/MOS with ORR activity and kinetics. By comprehensively exploring the correlation between the Mott-Schottky effect and ORR performance in Pd/MOS catalysts using the KPFM testing system, this study provides necessary tools and approaches for a deep understanding of heterogeneous interface charge transfer mechanisms, as well as for optimizing catalyst design and enhancing ORR performance.
Collapse
Affiliation(s)
- Jing He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiyuan Chen
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhuang Ma
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
11
|
Yue H, Guo Z, Zhou Z, Zhang X, Guo W, Zhen S, Wang P, Wang K, Yuan W. S-S Bond Strategy at Sulfide Heterointerface: Reversing Charge Transfer and Constructing Hydrogen Spillover for Boosted Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202409465. [PMID: 39196822 DOI: 10.1002/anie.202409465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Developing efficient electrocatalyst in sulfides for hydrogen evolution reaction (HER) still poses challenges due to the lack of understanding the role of sulfide heterointerface. Here, we report a sulfide heterostructure RuSx/NbS2, which is composed of 3R-type NbS2 loaded by amorphous RuSx nanoparticles with S-S bonds formed at the interface. As HER electrocatalyst, the RuSx/NbS2 shows remarkable low overpotential of 38 mV to drive a current density of 10 mA cm-2 in acid, and also low Tafel slope of 51.05 mV dec-1. The intrinsic activity of RuSx/NbS2 is much higher than that of Ru/NbS2 reference as well as the commercial Pt/C. Both experiments and theoretical calculations unveil a reversed charge transfer at the interface from NbS2 to RuSx that driven by the formation of S-S bonds, resulting in electron-rich Ru configuration for strong hydrogen adsorption. Meanwhile, electronic redistribution induced by the sulfide heterostructure facilitates hydrogen spillover (HSo) effect in this system, leading to accelerated hydrogen desorption at the basal plane of NbS2. This study provides an effective S-S bond strategy in sulfide heterostructure to synergistically modulate the charge transfer and adsorption thermodynamics, which is very valuable for the development of efficient electrocatalysts in practical applications.
Collapse
Affiliation(s)
- Haoyu Yue
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongnan Guo
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ziwen Zhou
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuemeng Zhang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjing Guo
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuang Zhen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pu Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxia Yuan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
He M, Zhou Y, Luo Q, Yang J. Platinum monolayer dispersed on MXenes for electrocatalyzed hydrogen evolution: a first-principles study. NANOSCALE 2024; 16:15670-15676. [PMID: 39072435 DOI: 10.1039/d4nr01864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Maximizing platinum's atomic utilization and understanding the anchoring mechanism between platinum moieties and their supports are crucial for the hydrogen evolution reaction (HER). Using density functional theory, we investigate the catalyst of a Pt monolayer on the two-dimensional Mo2TiC2 substrate (PtML/Mo2TiC2) for the reaction. This Pt monolayer shows a Pt(111)-like pattern, with its Pt-Pt bond elongated by about 0.1 Å compared to Pt(111); charge transfer from Mo2TiC2 to the Pt monolayer leads to significant charge accumulation on Pt. This substantial monolayer metal-support interaction optimizes hydrogen adsorption toward optimal HER activity under both constant charge and potential conditions, making PtML/Mo2TiC2 a promising HER catalyst. Detailed studies reveal that the dominant Volmer-Tafel mechanism in the HER occurs on the 1 monolayer hydrogen-covered PtML/Mo2TiC2 surface. The surface Pourbaix diagram identifies this as the stable surface termination under the electrochemical reaction conditions. These findings provide insights into designing stable, efficient, and low platinum-loaded HER catalysts.
Collapse
Affiliation(s)
- Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Fenghua Road 818, Ningbo 315211, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Zhou CA, Ma K, Zhuang Z, Ran M, Shu G, Wang C, Song L, Zheng L, Yue H, Wang D. Tuning the Local Environment of Pt Species at CNT@MO 2-x (M = Sn and Ce) Heterointerfaces for Boosted Alkaline Hydrogen Evolution. J Am Chem Soc 2024; 146:21453-21465. [PMID: 39052434 DOI: 10.1021/jacs.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA μg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
Collapse
Affiliation(s)
- Chang-An Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meiling Ran
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Cui W, Wang F, Wang X, Li Y, Wang X, Shi Y, Song S, Zhang H. Designing Dual-Site Catalysts for Selectively Converting CO 2 into Methanol. Angew Chem Int Ed Engl 2024; 63:e202407733. [PMID: 38735859 DOI: 10.1002/anie.202407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27 mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11 mmol gcat. -1 h-1 for ethanol and 0.034 mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.
Collapse
Affiliation(s)
- Wenjie Cui
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Chen Z, Chen Y, Shi L, Li X, Xu G, Zeng X, Zheng X, Qi Z, Zhang K, Li J, Zhang S, Zhao Z, Zhang Y. Directional Construction of the Highly Stable Active-Site Ensembles at Sub-2 nm to Enhance Catalytic Activity and Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405733. [PMID: 39003615 DOI: 10.1002/adma.202405733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Indexed: 07/15/2024]
Abstract
Precise control over the size, species, and breakthrough of the activity-selectivity trade-off are great challenges for sub-nano non-noble metal catalysts. Here, for the first time, a "multiheteroatom induced SMSI + in situ P activation" strategy that enables high stability and effective construction of sub-2 nm metal sites for optimizing selective hydrogenation performance is developed. It is synthesized the smallest metal phosphide clusters (<2 nm) including from unary to ternary non-noble metal systems, accompanied by unprecedented thermal stability. In the proof-of-concept demonstration, further modulation of size and species results in the creation of a sub-2 nm site platform, directionally achieving single atom (Ni1), Ni1+metal cluster (Ni1+Nin), or novel Ni1+metal phosphide cluster synergistic sites (Ni1+Ni2Pn), respectively. Based on thorough structure and mechanism investigation, it is found the Ni1+Ni2Pn site is motivated to achieve electronic structure self-optimizing through synergistic SMSI and site coupling effect. Therefore, it speeds up the substrate adsorption-desorption kinetics in semihydrogenation of alkyne and achieves superior catalytic activity that is 56 times higher than the Ni1 site under mild conditions. Compared to traditional active sites, this may represent the highly effective integration of atom utilization, thermal stability, and favorable site requirements for chemisorption properties and reactivities of substrates.
Collapse
Affiliation(s)
- Zemin Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Lei Shi
- The Instruments Center for Physical Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guangyue Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Zeng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Kaihang Zhang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Shuo Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Zhijian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
17
|
Li X, Su Z, Jiang H, Liu J, Zheng L, Zheng H, Wu S, Shi X. Band Structure Tuning via Pt Single Atom Induced Rapid Hydroxyl Radical Generation toward Efficient Photocatalytic Reforming of Lignocellulose into H 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400617. [PMID: 38441279 DOI: 10.1002/smll.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Indexed: 08/02/2024]
Abstract
Photocatalytic lignocellulose reforming for H2 production presents a compelling solution to solve environmental and energy issues. However, achieving scalable conversion under benign conditions faces consistent challenges including insufficient active sites for H2 evolution reaction (HER) and inefficient lignocellulose oxidation directly by photogenerated holes. Herein, it is found that Pt single atom-loaded CdS nanosheet (PtSA-CdS) would be an active photocatalyst for lignocellulose-to-H2 conversion. Theoretical and experimental analyses confirm that the valence band of CdS shifts downward after depositing isolated Pt atoms, and the slope of valence band potential on pH for PtSA-CdS is more positive than Nernstian equation. These characteristics allow PtSA-CdS to generate large amounts of •OH radicals even at pH 14, while the capacity is lacking with CdS alone. The employment of •OH/OH- redox shuttle succeeds in relaying photoexcited holes from the surface of photocatalyst, and the •OH radicals can diffuse away to decompose lignocellulose efficiently. Simultaneously, surface Pt atoms, featured with a thermoneutralΔ G H ∗ $\Delta G_{\mathrm{H}}^{\mathrm{*}}$ , would collect electrons to expedite HER. Consequently, PtSA-CdS performs a H2 evolution rate of 10.14 µmol h-1 in 1 m KOH aqueous solution, showcasing a remarkable 37.1-fold enhancement compared to CdS. This work provides a feasible approach to transform waste biomass into valuable sources.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zhiqi Su
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huiqian Jiang
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
18
|
Li Q, Zhang B, Sun C, Sun X, Li Z, Du Y, Liu JC, Luo F. Enhanced Alkaline Hydrogen Evolution Reaction via Electronic Structure Regulation: Activating PtRh with Rare Earth Tm Alloying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400662. [PMID: 38534137 DOI: 10.1002/smll.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER) is crucial for producing green hydrogen, yet it remains challenging due to the sluggish kinetics in alkaline environments. Pt is located near the peak of HER volcano plot, owing to its exceptional performance in hydrogen adsorption and desorption, and Rh plays an important role in H2O dissociation. Lanthanides (Ln) are commonly used to modulate the electronic structure of materials and further influence the adsorption/desorption of reactants, intermediates, and products, and noble metal-Ln alloys are recognized as effective platforms where Ln elements regulate the catalytic properties of noble metals. Here Pt1.5Rh1.5Tm alloy is synthesized using the sodium vapor reduction method. This alloy demonstrates superior catalytic activity, being 4.4 and 6.6 times more effective than Pt/C and Rh/C, respectively. Density Functional Theory (DFT) calculations reveal that the upshift of d-band center and the charge transfer induced by alloying promote adsorption and dissociation of H2O, making Pt1.5Rh1.5Tm alloy more favorable for the alkaline HER reaction, both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Qingqing Li
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| | - Botao Zhang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Chang Sun
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| | - Xiaolei Sun
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Yaping Du
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| | - Jin-Cheng Liu
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| | - Feng Luo
- Nankai University, Tianjin Key Laboratory of Rare-earth Materials and Applications, School of Materials Science and Engineering, Centre of Rare Earth and Inorganic Functional Materials, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Li C, Kim B, Li Z, Thapa R, Zhang Y, Seo JM, Guan R, Tang F, Baek JH, Kim YH, Jeon JP, Park N, Baek JB. Direct Electroplating Ruthenium Precursor on the Surface Oxidized Nickel Foam for Efficient and Stable Bifunctional Alkaline Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403151. [PMID: 38842511 DOI: 10.1002/adma.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Water electrolysis to produce hydrogen (H2) using renewable energy is one of the most promising candidates for realizing carbon neutrality, but its reaction kinetics is hindered by sluggish anodic oxygen evolution reaction (OER). Ruthenium (Ru) in its high-valence state (oxide) provides one of the most active OER sites and is less costly, but thermodynamically unstable. The strong interaction between Ru nanoparticles (NPs) and nickel hydroxide (Ni(OH)2) is leveraged to directly form Ru-Ni(OH)2 on the surface of a porous nickel foam (NF) electrode via spontaneous galvanic replacement reaction. The formation of Ru─O─Ni bonds at the interface of the Ru NPs and Ni(OH)2 (Ru-Ni(OH)2) on the surface oxidized NF significantly enhance stability of the Ru-Ni(OH)2/NF electrode. In addition to OER, the catalyst is active enough for the hydrogen evolution reaction (HER). As a result, it is able to deliver overpotentials of 228 and 15 mV to reach 10 mA cm-2 for OER and HER, respectively. An industry-scale evaluation using Ru-Ni(OH)2/NF as both OER and HER electrodes demonstrates a high current density of 1500 mA cm-2 (OER: 410 mV; HER: 240 mV), surpassing commercial RuO2 (OER: 600 mV) and Pt/C based performance (HER: 265 mV).
Collapse
Affiliation(s)
- Changqing Li
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Bumseop Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Zhongping Li
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ranjit Thapa
- Department of Physics, SRM University - AP, Amaravati, Andhra Pradesh, 522 502, India
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Runnan Guan
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Feng Tang
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jae-Hoon Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Noejung Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Wang Z, Wu J, Liu L, Wu W, Wang Y, Huang H, Deng F, Liu X. Platinum Cluster Decoration on Hollow Carbon Spheres for High-Efficiency Hydrogen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15031-15037. [PMID: 38988010 DOI: 10.1021/acs.langmuir.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Currently, platinum (Pt)/carbon support composite materials have tremendous application prospects in the hydrogen evolution reaction (HER). However, one of the primary challenges for boosting their performance is designing a substrate with the desired microstructure. Herein, the intact hollow carbon spheres (HCSs) were prepared via template method. Based on the morphology variation of the as-prepared HCSs-x, we conjectured that the polydopamine (PDA) core was generated first and then slowly grew into a complete overburden (SiO2@PDA). Afterward, Pt atomic clusters were anchored on the outer shells of HCSs-4 to construct composite electrocatalysts (Pty/HCSs-4) by a chemical reduction method. Due to the low charge-transfer resistance, the HCSs have a large electrochemical surface area and provide a continuous electron transport pathway, boosting the atom utilization efficiency during hydrogen production and release. The synthesized Pt2.5/HCSs-4 electrocatalysts exhibit excellent HER activity in acidic media, which can be ascribed to the compositional modulation and delicate structural design. Specifically, when the overpotential is 10 A g-1, the overpotential can achieve 92 mV. This work opens a new route to fabricate Pt-based electrocatalysts and brings a new understanding of the formation mechanism of HCSs.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Jingjing Wu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Limin Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Wenchi Wu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Yinfeng Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Haigen Huang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Fei Deng
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Xuexia Liu
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
21
|
Liu X, Hoang DK, Nguyen QAT, Dinh Phuc D, Kim SG, Nam PC, Kumar A, Zhang F, Zhi C, Bui VQ. Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting. NANOSCALE 2024; 16:13148-13160. [PMID: 38912906 DOI: 10.1039/d4nr01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising ΔGH* values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (ΔGmax) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies (Ea) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the Ea of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor (φ), derived from d electron count (Nd) and electronegativity (ETM), provides a quantifiable relationship with catalytic activity, where a lower φ corresponds to enhanced reaction kinetics. Specifically, φ values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized φ values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.
Collapse
Affiliation(s)
- Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace, Chemotechnology, Xiangyang 441003, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Dang Kim Hoang
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Quynh Anh T Nguyen
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Do Dinh Phuc
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Gon Kim
- Department of Physics & Astronomy and Center for Computational Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Pham Cam Nam
- Faculty of Chemical Engineering, The University of Danang-University of Science and Technology, Danang City 550000, Vietnam
| | - Ashwani Kumar
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Viet Q Bui
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| |
Collapse
|
22
|
Zhou JF, Peng B, Ding M, Shan BQ, Zhu YS, Bonneviot L, Wu P, Zhang K. The nature of crystal facet effect of TiO 2-supported Pd/Pt catalysts on selective hydrogenation of cinnamaldehyde: electron transfer process promoted by interfacial oxygen species. Phys Chem Chem Phys 2024; 26:18854-18864. [PMID: 38946575 DOI: 10.1039/d4cp01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO2 with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO2 nanocatalysts (TiO2-Pd and TiO2-Pt) were prepared by chemical reduction with NaBH4 as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO2 are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes. On the contrary, Pt species on all three crystal planes of TiO2 show zero-valence state, with relatively low conversion, but much better selectivity for hydrogenation of a CO bond than Pd-based catalysts. Well-designed experiments manipulating the stability and type of surface oxygen species confirmed that the essence of the crystal facet effect of the catalyst support actually creates a unique nanoconfined interface at the molecular level to construct a surface p-band intermediate state (PBIS), which provides a new alternative channel for surface electron transfer and consequently accelerates the reaction kinetics.
Collapse
Affiliation(s)
- Jia-Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bing-Qian Shan
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yi-Song Zhu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364 CEDEX 07, France
| | - Peng Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
23
|
Chen YJ, Wen J, Luo ZR, Sun FL, Chen WX, Zhuang GL. Metal-support spin orders: Crucial effect on electrocatalytic oxygen reduction. J Chem Phys 2024; 160:224702. [PMID: 38856683 DOI: 10.1063/5.0207891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.
Collapse
Affiliation(s)
- Yi-Jie Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jun Wen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Zhi-Rui Luo
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Fu-Li Sun
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, People's Republic of China
| |
Collapse
|
24
|
Wang L, Mao Z, Mao X, Sun H, Guo P, Huang R, Han C, Hu X, Du A, Wang X. Engineering Interfacial Pt─O─Ti Site at Atomic Step Defect for Efficient Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309791. [PMID: 38095488 DOI: 10.1002/smll.202309791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
The hydrogen evolution reaction (HER) activity of defect-stabilized low-Pt-loading catalysts is closely related with defect type in support materials, while the knowledge about the effect of higher-dimensional defects on the property and activity of trapped Pt atomic species is scarce. Herein, small size (5-10 nm) TiO2 nanoparticles with abundant surface step defects (one kind of line defect) are used to direct the uniform anchoring of Pt atomic clusters (Pt-ACs) via Pt─O─Ti linkage. The as-made low-Pt catalysts (Pt-ACs/S-TiO2-NP) exhibit exceptional HER intrinsic activity due to the unique step-site Pi-O-Ti species, in which the mass activity and turnover frequency are as high as 21.46 A mg Pt -1 and 21.69 s-1 at the overpotential of 50 mV, both far beyond those of benchmark Pt/C catalysts and other Pt-ACs/TiO2 samples with less step sites. Spectroscopic measurements and theoretical calculations reveal that the step-defect-located Pt─O─Ti sites can simultaneously induce the charge transfer from TiO2 substrate to the trapped Pt-ACs and the downshift of d-band center, which helps the proton reduction to H* intermediates and the following hydrogen desorption process, thus improving the HER. The work provides a deep insight on the interactions between high-dimensional defect and well-dispersed atomic metal motifs for superior HER catalysis.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zhelin Mao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Xin Mao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Panjie Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Run Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Ximiao Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Xin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| |
Collapse
|
25
|
Wu S, Li X, Liu J, Wu H, Xu H, Bai W, Mao L, Shi X. Effective Photocatalytic Ethanol Reforming into High-Value-Added Multicarbon Compound Coupled with H 2 Production Over Pt-S 3 Sites at Pt SA-ZnIn 2S 4 Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307386. [PMID: 38084447 DOI: 10.1002/smll.202307386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2S4 nanosheets (PtSA-ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in *CH3CHOH and promote the desorption of *CH3CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA-ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.
Collapse
Affiliation(s)
- Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanfeng Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanshuai Xu
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wangfeng Bai
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
26
|
Cheng X, Mao C, Tian J, Xia M, Yang L, Wang X, Wu Q, Hu Z. Correlation between Heteroatom Coordination and Hydrogen Evolution for Single-site Pt on Carbon-based Nanocages. Angew Chem Int Ed Engl 2024; 63:e202401304. [PMID: 38465477 DOI: 10.1002/anie.202401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
The electrocatalytic performance of single-site catalysts (SSCs) is closely correlated with the electronic structure of metal atoms. Herein we construct a series of Pt SSCs on heteroatom-doped hierarchical carbon nanocages, which exhibit increasing hydrogen evolution reaction (HER) activities along S-doped, P-doped, undoped and N-doped supports. Theoretical simulation indicates a multi-H-atom adsorption process on Pt SSCs due to the low coordination, and a reasonable descriptor is figured out to evaluate the HER activities. Relative to C-coordinated Pt, N-coordinated Pt has higher reactivity due to the electron transfer of N-to-Pt, which enriches the density of states of Pt 5d orbital near the Fermi level and facilitates the capturing of protons, just the opposite to the situations for P- and S-coordinated ones. The stable N-coordinated Pt originates from the kinetic stability throughout the multi-H-atom adsorption process. This finding provides a significant guidance for rational design of advanced Pt SSCs on carbon-based supports.
Collapse
Affiliation(s)
- Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
27
|
Chen W, Che Y, Xia J, Zheng L, Lv H, Zhang J, Liang HW, Meng X, Ma D, Song W, Wu X, Cao C. Metal-Sulfur Interfaces as the Primary Active Sites for Catalytic Hydrogenations. J Am Chem Soc 2024. [PMID: 38592685 DOI: 10.1021/jacs.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.
Collapse
Affiliation(s)
- Weiming Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yixuan Che
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haifeng Lv
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
28
|
Xiong P, Niu H, Zhu Z, Zhao L, Zuo J, Gong S, Niu X, Chen JS, Wu R, Xia BY. Engineering a High-Loading Sub-4 nm Intermetallic Platinum-Cobalt Alloy on Atomically Dispersed Cobalt-Nitrogen-Carbon for Efficient Oxygen Reduction in Fuel Cells. NANO LETTERS 2024; 24:3961-3970. [PMID: 38526195 DOI: 10.1021/acs.nanolett.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Developing a high-performance membrane electrode assembly (MEA) poses a formidable challenge for fuel cells, which lies in achieving both high metal loading and efficient catalytic activity concurrently for MEA catalysts. Here, we introduce a porous Co@NC carrier to synthesize sub-4 nm PtCo intermetallic nanocrystals, achieving an impressive Pt loading of 27 wt %. The PtCo-CoNC catalyst demonstrates exceptional catalytic activity and remarkable stability for the oxygen reduction reaction. Advanced characterization techniques and theoretical calculations emphasize the synergistic effect between PtCo alloys and single Co atoms, which enhances the desorption of the OH* intermediate. Furthermore, the PtCo-CoNC-based cathode delivers a high power density of 1.22 W cm-2 in the MEA test owing to the enhanced mass transport, which is verified by the simulation results of the O2 distributions and current density inside the catalyst layer. This study lays the groundwork for the design of efficient catalysts with practical applications in fuel cells.
Collapse
Affiliation(s)
- Pei Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huiting Niu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Zhaozhao Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lei Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiayu Zuo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shuning Gong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Rui Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
29
|
Jiao L, Mao C, Xu F, Cheng X, Cui P, Wang X, Yang L, Wu Q, Hu Z. Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305513. [PMID: 38032150 DOI: 10.1002/smll.202305513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1 Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity.
Collapse
Affiliation(s)
- Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Pazos Urrea M, Meilinger S, Herold F, Gopakumar J, Tusini E, De Giacinto A, Zimina A, Grunwaldt JD, Chen D, Rønning M. Aqueous Phase Reforming over Platinum Catalysts on Doped Carbon Supports: Exploring Platinum-Heteroatom Interactions. ACS Catal 2024; 14:4139-4154. [PMID: 38510663 PMCID: PMC10949196 DOI: 10.1021/acscatal.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
A series of platinum catalysts supported on carbon nanofibers with various heteroatom dopings were synthesized to investigate the effect of the local platinum environment on the catalytic activity and selectivity in aqueous phase reforming (APR) of ethylene glycol (EG). Typical carbon dopants such as oxygen, nitrogen, sulfur, phosphorus, and boron were chosen based on their ability to bring acidic or basic functional groups to the carbon surface. In situ X-ray absorption spectroscopy (XAS) was used to identify the platinum oxidation state and platinum species formed during APR of EG through multivariate curve resolution alternating least-squares analysis, observing differences in activity, selectivity, and platinum local environment among the catalysts. The platinum-based catalyst on the nitrogen-doped carbon support demonstrated the most favorable properties for H2 production due to high Pt dispersion and basicity (H2 site time yield 22.7 h-1). Direct Pt-N-O coordination was identified by XAS in this catalyst. The sulfur-doped catalyst presented Pt-S contributions with the lowest EG conversion rate and minimal production of the gas phase components. Boron and phosphorus-doped catalysts showed moderate activity, which was affected by low platinum dispersion on the carbon support. The phosphorus-doped catalyst showed preferential selectivity to alcohols in the liquid phase, associated with the presence of acid sites and Pt-P contributions observed under APR conditions.
Collapse
Affiliation(s)
- Monica Pazos Urrea
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Simon Meilinger
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Felix Herold
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Jithin Gopakumar
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Tusini
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Andrea De Giacinto
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Anna Zimina
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - De Chen
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Magnus Rønning
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
31
|
Lee J, Lee J, Jin X, Kim H, Hwang SJ. Atomically-Thin Holey 2D Nanosheets of Defect-Engineered MoN-Mo 5 N 6 Composites as Effective Hybridization Matrices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306781. [PMID: 37806758 DOI: 10.1002/smll.202306781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The defect engineering of inorganic solids has received significant attention because of its high efficacy in optimizing energy-related functionalities. Consequently, this approach is effectively leveraged in the present study to synthesize atomically-thin holey 2D nanosheets of a MoN-Mo5 N6 composite. This is achieved by controlled nitridation of assembled MoS2 monolayers, which induced sequential cation/anion migration and a gradual decrease in the Mo valency. Precise control of the interlayer distance of the MoS2 monolayers via assembly with various tetraalkylammonium ions is found to be crucial for synthesizing sub-nanometer-thick holey MoN-Mo5 N6 nanosheets with a tunable anion/cation vacancy content. The holey MoN-Mo5 N6 nanosheets are employed as efficient immobilization matrices for Pt single atoms to achieve high electrocatalytic mass activity, decent durability, and low overpotential for the hydrogen evolution reaction (HER). In situ/ex situ spectroscopy and density functional theory (DFT) calculations reveal that the presence of cation-deficient Mo5 N6 domain is crucial for enhancing the interfacial interactions between the conductive molybdenum nitride substrate and Pt single atoms, leading to enhanced electron injection efficiency and electrochemical stability. The beneficial effects of the Pt-immobilizing holey MoN-Mo5 N6 nanosheets are associated with enhanced electronic coupling, resulting in improvements in HER kinetics and interfacial charge transfer.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junsoo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
32
|
Zhai J, Xia Z, Zhou B, Wu H, Xue T, Chen X, Jiao J, Jia S, He M, Han B. Photo-thermal coupling to enhance CO 2 hydrogenation toward CH 4 over Ru/MnO/Mn 3O 4. Nat Commun 2024; 15:1109. [PMID: 38321049 PMCID: PMC10847166 DOI: 10.1038/s41467-024-45389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Upcycling of CO2 into fuels by virtually unlimited solar energy provides an ultimate solution for addressing the substantial challenges of energy crisis and climate change. In this work, we report an efficient nanostructured Ru/MnOx catalyst composed of well-defined Ru/MnO/Mn3O4 for photo-thermal catalytic CO2 hydrogenation to CH4, which is the result of a combination of external heating and irradiation. Remarkably, under relatively mild conditions of 200 °C, a considerable CH4 production rate of 166.7 mmol g-1 h-1 was achieved with a superior selectivity of 99.5% at CO2 conversion of 66.8%. The correlative spectroscopic and theoretical investigations suggest that the yield of CH4 is enhanced by coordinating photon energy with thermal energy to reduce the activation energy of reaction and promote formation of key intermediate COOH* species over the catalyst. This work opens up a new strategy for CO2 hydrogenation toward CH4.
Collapse
Affiliation(s)
- Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Zhanghui Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Teng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
33
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
34
|
Chen G, Ma J, Gong W, Li J, Li Z, Long R, Xiong Y. Recent progress of heterogeneous catalysts for transfer hydrogenation under the background of carbon neutrality. NANOSCALE 2024; 16:1038-1057. [PMID: 38126462 DOI: 10.1039/d3nr05207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Under the background of carbon neutrality, the direct conversion of greenhouse CO2 to high value added fuels and chemicals is becoming an important and promising technology. Among them, the generation of liquid C1 products (formic acid and methanol) has made great progress; nevertheless, it encounters the problem of how to use it efficiently to solve the overcapacity issue. In this review, we suggest that the catalytic transfer hydrogenation using formic acid and methanol as the hydrogen sources is a critical and potential route for the substitution for the fossil fuel-derived H2 to generate essential bulk and fine chemicals. We mainly focus on summarizing the recent progress of heterogeneous catalysts in such reactions, including thermal- and photo-catalytic processes. Finally, we also propose some challenges and opportunities for this development.
Collapse
Affiliation(s)
- Guangyu Chen
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jun Ma
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Wanbing Gong
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jiayi Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zheyue Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Ran Long
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yujie Xiong
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
35
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Feng G, Pan Y, Su D, Xia D. Constructing Fully-Active and Ultra-Active Sites in High-Entropy Alloy Nanoclusters for Hydrazine Oxidation-Assisted Electrolytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309715. [PMID: 38118066 DOI: 10.1002/adma.202309715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Indexed: 12/22/2023]
Abstract
The development of sufficiently high-efficiency systems and effective catalysts for electrocatalytic hydrogen production is of great significance but challenging. Here, high-entropy alloy nanoclusters (HEANCs) with full-active sites and super-active sites are innovatively constructed for hydrazine oxidation-assisted electrolytic hydrogen production. The HEANCs show an average size of only seven atomic layers (1.48 nm). As the catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction, the HEANC/C exhibits the best-level performance among reported electrocatalysts. Especially, the HEANC/C achieves an ultrahigh mass activity of 12.85 A mg-1 noble metals at -0.07 V and overpotential of only 9.5 mV for 10 mA cm-2 for alkaline HER. Further, with HEANC/C as both anode and cathode catalysts, an overall hydrazine oxidation-assisted splitting (OHzS) electrolyzer shows a record mass activity of 250.2 mA mg-1 catalysts at 0.1 V and only requires working voltages of 0.025 and 0.181 V to reach 10 and 100 mA cm-2 , respectively, outperforming those of overall water-splitting system and other reported chemicals-assisted hydrogen production systems. Active site libraries including 72 sites on HEANC surface are originally constructed by theoretical calculations, revealing that all sites on HEANC surface are effective active sites for OHzS; especially some are super-active sites, endowing the best-level performance of HEANC/C.
Collapse
Affiliation(s)
- Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
37
|
Chen XH, Ren JY, Li NB, Luo HQ. Constructing of CoP-Nb 2O 5 p-n heterojunction with built-in electric field to accelerate the charge migration in electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 651:760-768. [PMID: 37572613 DOI: 10.1016/j.jcis.2023.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Studying interfacial charge transfer is of great significance for the preparation of electrocatalysts with high activity for the hydrogen evolution reaction (HER). Particularly, exploring the in-depth catalytic mechanisms and facile fabrication methods of narrow bandgap metal phosphides remains worthwhile. This work successfully combined catalytically inert n-type Nb2O5 with p-type CoP to prepare a p-n heterojunction (CoP-Nb2O5). The self-supporting heterojunction was fabricated by gas-phase phosphorization of the Co(OH)2-Nb2O5 precursor obtained through hydrothermal-electrodeposition strategy. By analyzing the electronic and band structures of CoP and Nb2O5, it was found that there exists a built-in electric field (BEF) in the heterojunction. This BEF can modulate the electronic structure of CoP at the interface, enhance its intrinsic activity and accelerate charge migration. The subsequent experimental results also demonstrate that Nb2O5 can significantly enhance the activity and stability of CoP. Our findings can serve as a novel perspective on the application of p-n heterojunction in the field of energy storage and conversion.
Collapse
Affiliation(s)
- Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Jun Yao Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
38
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
39
|
Zou J, Wu S, Lin Y, He S, Niu Q, Li X, Yang C. Electronic Phosphide-Support Interactions in Carbon-Supported Molybdenum Phosphide Catalysts Derived from Metal-Organic Frameworks. NANO LETTERS 2023. [PMID: 37971262 DOI: 10.1021/acs.nanolett.3c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Interfacial interaction in carbon-supported catalysts can offer geometric, electronic, and compositional effects that can be utilized to regulate catalytically active sites, while this is far from being systematically investigated in carbon-supported phosphide catalysts. Here, we proposed a novel concept of electronic phosphide-support interaction (EPSI), which was confirmed by using molybdenum phosphide (MoP) supported on nitrogen-phosphorus codoped carbon (NPC) as a model catalyst (MoP@NPC). Such a strong EPSI could not only stabilize MoP in a low-oxidation state under environmental conditions but also regulate its electronic structure, leading to reduced dissociation energy of the oxygen-containing intermediates and enhancing the catalytic activity for oxidative desulfurization. The removal of dibenzothiophene over the MoP@NPC was as high as 100% with a turnover frequency (TOF) value of 0.0027 s-1, which was 33 times higher than that of MoP without EPSI. This work will open new avenues for the development of high-performance supported phosphide catalysts.
Collapse
Affiliation(s)
- Juncong Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| |
Collapse
|
40
|
Yu Y, Zeng Y, Ouyang Q, Liu X, Zheng Y, Wu S, Tan L. Ultrasound-Induced Abiotic and Biotic Interfacial Electron Transfer for Efficient Treatment of Bacterial Infection. ACS NANO 2023; 17:21018-21029. [PMID: 37899553 DOI: 10.1021/acsnano.3c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Electron transfer plays an important role in various catalytic reactions and physiological activities, whose altered processes may change catalytic efficiency and interfere in physiological metabolic processes. In this study, we design an ultrasound (US)-activated piezoelectric responsive heterojunction (PCN-222-BTO, PCN: porous coordination network), which can change the electron transfer path at the abiotic and abiotic-biotic interfaces under US, thus achieving a rapid (15 min) and efficient bactericidal effect of 99.96%. US-induced polarization of BTO generates a built-in electric field, which promotes the electron transfer excited from PCN-222 to BTO at the PCN-222-BTO interface, thereby increasing the level of reactive oxygen species (ROS) production. Especially, we find that the biological electron transfer from the bacterial membrane to BTO is also activated at the MRSA-BTO interface. This antibacterial mode results in the down-regulated ribosomal, DNA and ATP synthesis related genes in MRSA, while the cell membrane and ion transport related genes are up-regulated due to the synergistic damage effect of ROS and disturbance of the bacterial electron transport chain. This US responsive dual-interface system shows an excellent therapeutic effect for the treatment of the MRSA-infected osteomyelitis model, which is superior to clinical vancomycin therapy.
Collapse
Affiliation(s)
- Yi Yu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Qunle Ouyang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
41
|
Gao D, Zhong W, Zhang X, Wang P, Yu H. Free-Electron Inversive Modulation to Charge Antibonding Orbital of ReS 2 Cocatalyst for Efficient Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309123. [PMID: 37948440 DOI: 10.1002/smll.202309123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The free electron transfer between cocatalyst and photocatalyst has a great effect on the bonding strength between the active site and adsorbed hydrogen atom (Hads ), but there is still a lack of effective means to purposely manipulate the electron transfer in a beneficial direction of H adsorption/desorption activity. Herein, when ReSx cocatalyst is loaded on TiO2 surface, a spontaneous free-electron transfer from ReSx to TiO2 happens due to the smaller work function of ReSx , causing an over-strong S-Hads bond. To prevent the over-strong S-Hads bonds of ReSx in the ReSx /TiO2 , a free-electron reversal transfer strategy is developed to weaken the strong S-Hads bonds via increasing the work function of ReSx by incorporating O to produce ReOSx cocatalyst. Research results attest that a larger work function of ReOSx than that of TiO2 can induce reversal transfer of electrons from TiO2 to ReOSx to produce electron-rich S(2+δ)- , causing the increased antibonding-orbital occupancy of S-Hads in ReOSx /TiO2 . Accordingly, the stability of adsorbed H on S sites is availably decreased, thus weakening the S-Hads of ReOSx . In this case, an electron-rich S(2+δ)- -mediated "capture-hybridization-conversion" mechanism is raised . Benefiting from such property, the resultant ReOSx /TiO2 photocatalyst exhibits a superior H2 -evolution rate of 7168 µmol h-1 g-1 .
Collapse
Affiliation(s)
- Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ping Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
42
|
Zhang Y, Chen X, Gan S, Hu Y, Tian Y, Wang S, Chen L, Xiao J, Wang N. Construction of highly active FeN 4@Fe x(OH) y cluster composite sites for the oxygen reduction reaction and the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:29173-29181. [PMID: 37870382 DOI: 10.1039/d3cp02758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Seeking cost-effective and earth-abundant electrocatalysts with excellent activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc-air batteries (ZABs) is critically important. In this work, the ORR and OER performance of the Fex cluster supported on FeN4 composite sites (FeN4@Fex) is investigated based on density functional theory. Based on the charge density difference between the Fex cluster and the FeN4 substrate, the conclusion that the decreased charge density of the chemical bond between the metal and the adsorbate can weaken the adsorption of the adsorbate can be drawn. The results of the d-band center also confirm this. Furthermore, the ORR and OER free energy change profiles show that FeN4@Fe8 exhibits the best ORR and OER activity. This is because the electronic environment regulated by the Fex cluster can improve the adsorption of intermediates, which is conducive to enhancing catalytic activity. Further considering the solution environment, the activity of FeN4@Fex with preadsorbed OH (FeN4@Fex(OH)y) was studied. It is found that FeN4@Fe8(OH)6 is still the best catalyst. This work introduces new highly active composite sites for catalyzing the ORR in an acid medium.
Collapse
Affiliation(s)
- Yulin Zhang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Siyu Gan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China.
| | - Yu Hu
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong, Sichuan 643000, China
| | - Yi Tian
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Shiyu Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Long Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Junping Xiao
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng, Jilin 137000, China.
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
43
|
Jia S, Tan X, Wu L, Zhao Z, Song X, Feng J, Zhang L, Ma X, Zhang Z, Sun X, Han B. Lignin-derived carbon nanosheets boost electrochemical reductive amination of pyruvate to alanine. iScience 2023; 26:107776. [PMID: 37720096 PMCID: PMC10502407 DOI: 10.1016/j.isci.2023.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Efficient and sustainable amino acid synthesis is essential for industrial applications. Electrocatalytic reductive amination has emerged as a promising method, but challenges such as undesired side reactions and low efficiency persist. Herein, we demonstrated a lignin-derived catalyst for alanine synthesis. Carbon nanosheets (CNSs) were synthesized from lignin via a template-assisted method and doped with nitrogen and sulfur to boost reductive amination and suppress side reactions. The resulting N,S-co-doped carbon nanosheets (NS-CNSs) exhibited outstanding electrochemical performance. It achieved a maximum alanine Faradaic efficiency of 79.5%, and a yield exceeding 1,199 μmol h-1 cm-2 on NS-CNS, with a selectivity above 99.9%. NS-CNS showed excellent durability during long-term electrolysis. Kinetic studies including control experiments and theoretical calculations provided further insights into the reaction pathway. Moreover, NS-CNS catalysts demonstrated potential in upgrading real-world polylactic acid plastic waste, yielding value-added alanine with a selectivity over 75%.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
44
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
45
|
Kuang P, Ni Z, Zhu B, Lin Y, Yu J. Modulating the d-Band Center Enables Ultrafine Pt 3 Fe Alloy Nanoparticles for pH-Universal Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303030. [PMID: 37392140 DOI: 10.1002/adma.202303030] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
By providing dual active sites to synergistically accelerate H2 O dissociation and H+ reduction, ordered intermetallic alloys usually show extraordinary performance for pH-universal hydrogen evolution reaction (HER). Herein, activated N-doped mesoporous carbon spheres supported intermetallic Pt3 Fe alloys (Pt3 Fe/NMCS-A), as a highly-efficient electrocatalyst for pH-universal HER, are reported. The Pt3 Fe/NMCS-A exhibits low overpotentials (η10 ) of 13, 29, and 48 mV to deliver 10 mA cm-2 in 0.5 m H2 SO4 , 1.0 m KOH, and 1.0 m phosphate buffered solution (PBS), respectively, as well as robust stability to maintain the overall catalytic performances. Theoretical studies reveal that the strong Pt 5d-Fe 3d orbital electronic interactions negatively shift the d-band center (εd ) of Pt 5d orbital, resulting in reduced H* adsorption energy of Pt sites and enhanced acidic HER activity. With Pt and Fe acting as co-adsorption sites for H* and *OH intermediates, respectively, a low energy barrier is required for Pt3 Fe/NMCS-A to dissociate H2 O to afford H* intermediates, which greatly promotes the H* adsorption and H2 formation in alkaline and neutral conditions. The synthetic strategy is further extended to the synthesis of Pt3 Co and Pt3 Ni alloys with excellent HER activity in pH-universal electrolytes, demonstrating the great potential of these Pt-based alloys for practical applications.
Collapse
Affiliation(s)
- Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Zhenrui Ni
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
46
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, Luo X, Cheng C, Wang Y, Li S, Zhao C. Mn-Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer-Based H 2 -Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303331. [PMID: 37295069 DOI: 10.1002/adma.202303331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Among the platinum-group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption-desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn-oxygen complex, this study reports to design Mn-oxygen compounds coordinated Ru sites (MOC-Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption-desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC-Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long-range H* spillover for H2 -release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC-Ru catalyst holds great potential as cathode for H2 -production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water-splitting cathode.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
47
|
Xie Y, Xiao S, Huang L, Guo J, Bai M, Gao Y, Zhou H, Qiu L, Cheng C, Han X. Cascade and Ultrafast Artificial Antioxidases Alleviate Inflammation and Bone Resorption in Periodontitis. ACS NANO 2023; 17:15097-15112. [PMID: 37378617 DOI: 10.1021/acsnano.3c04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Periodontitis, one of the most common, challenging, and rapidly expanding oral diseases, is an oxidative stress-related disease caused by excessive reactive oxygen species (ROS) production. Developing ROS-scavenging materials to regulate the periodontium microenvironments is essential for treating periodontitis. Here, we report on creating cobalt oxide-supported Ir (CoO-Ir) as a cascade and ultrafast artificial antioxidase to alleviate local tissue inflammation and bone resorption in periodontitis. It is demonstrated that the Ir nanoclusters are uniformly supported on the CoO lattice, and there is stable chemical coupling and strong charge transfer from Co to Ir sites. Benefiting from its structural advantages, CoO-Ir presents cascade and ultrafast superoxide dismutase-catalase-like catalytic activities. Notably, it displays distinctly increased Vmax (76.249 mg L-1 min-1) and turnover number (2.736 s-1) when eliminating H2O2, which surpasses most of the by-far-reported artificial enzymes. Consequently, the CoO-Ir not only provides efficient cellular protection from ROS attack but also promotes osteogenetic differentiation in vitro. Furthermore, CoO-Ir can efficiently combat periodontitis by inhibiting inflammation-induced tissue destruction and promoting osteogenic regeneration. We believe that this report will shed meaningful light on creating cascade and ultrafast artificial antioxidases and offer an effective strategy to combat tissue inflammation and osteogenic resorption in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sutong Xiao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongju Zhou
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Guo F, Zhang Z, Chen R, Tan Y, Wu W, Wang Z, Zeng T, Zhu W, Lin C, Cheng N. Dual roles of sub-nanometer NiO in alkaline hydrogen evolution reaction: breaking the Volmer limitation and optimizing d-orbital electronic configuration. MATERIALS HORIZONS 2023; 10:2913-2920. [PMID: 37158051 DOI: 10.1039/d3mh00416c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pt-based nanoclusters toward the hydrogen evolution reaction (HER) remain the most promising electrocatalysts. However, the sluggish alkaline Volmer-step kinetics and the high-cost have hampered progress in developing high-performance HER catalysts. Herein, we propose to construct sub-nanometer NiO to tune the d-orbital electronic structure of nanocluster-level Pt for breaking the Volmer-step limitation and reducing the Pt-loading. Theoretical simulations firstly suggest that electron transfer from NiO to Pt nanoclusters could downshift the Ed-band of Pt and result in the well-optimized adsorption/desorption strength of the hydrogen intermediate (H*), therefore accelerating the hydrogen generation rate. NiO and Pt nanoclusters confined into the inherent pores of N-doped carbon derived from ZIF-8 (Pt/NiO/NPC) were designed to realize the structure of computational prediction and boost the alkaline hydrogen evolution. The optimal 1.5%Pt/NiO/NPC exhibited an excellent HER performance and stability with a low Tafel slope (only 22.5 mv dec-1) and an overpotential of 25.2 mV at 10 mA cm-2. Importantly, the 1.5%Pt/NiO/NPC possesses a mass activity of 17.37 A mg-1 at the overpotential of 20 mV, over 54 times higher than the benchmark 20 wt% Pt/C. Furthermore, DFT calculations illustrate that the Volmer-step could be accelerated owing to the high OH- attraction of NiO nanoclusters, leading to the Pt nanoclusters exhibiting a balance of H* adsorption and desorption (ΔGH* = -0.082 eV). Our findings provide new insights into breaking the water dissociation limit of Pt-based catalysts by coupling with a metal oxide.
Collapse
Affiliation(s)
- Fei Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Caoxin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
49
|
Cho J, Lim T, Kim H, Meng L, Kim J, Lee S, Lee JH, Jung GY, Lee KS, Viñes F, Illas F, Exner KS, Joo SH, Choi CH. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat Commun 2023; 14:3233. [PMID: 37270530 PMCID: PMC10239452 DOI: 10.1038/s41467-023-38964-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Platinum single-atom catalysts hold promise as a new frontier in heterogeneous electrocatalysis. However, the exact chemical nature of active Pt sites is highly elusive, arousing many hypotheses to compensate for the significant discrepancies between experiments and theories. Here, we identify the stabilization of low-coordinated PtII species on carbon-based Pt single-atom catalysts, which have rarely been found as reaction intermediates of homogeneous PtII catalysts but have often been proposed as catalytic sites for Pt single-atom catalysts from theory. Advanced online spectroscopic studies reveal multiple identities of PtII moieties on the single-atom catalysts beyond ideally four-coordinated PtII-N4. Notably, decreasing Pt content to 0.15 wt.% enables the differentiation of low-coordinated PtII species from the four-coordinated ones, demonstrating their critical role in the chlorine evolution reaction. This study may afford general guidelines for achieving a high electrocatalytic performance of carbon-based single-atom catalysts based on other d8 metal ions.
Collapse
Affiliation(s)
- Junsic Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haesol Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ling Meng
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jinjong Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghoon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong Hoon Lee
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Gwan Yeong Jung
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kug-Seung Lee
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Francesc Viñes
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Cluster of Excellence RESOLV, 44801 Bochum, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), 47057, Duisburg, Germany.
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
50
|
Li C, Kim SH, Lim HY, Sun Q, Jiang Y, Noh HJ, Kim SJ, Baek J, Kwak SK, Baek JB. Self-Accommodation Induced Electronic Metal-Support Interaction on Ruthenium Site for Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301369. [PMID: 36853204 DOI: 10.1002/adma.202301369] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Indexed: 05/26/2023]
Abstract
Tuning the metal-support interaction of supported metal catalysts has been found to be the most effective approach to modulating electronic structure and improving catalytic performance. But practical understanding of the charge transfer mechanism at the electronic level of catalysis process has remained elusive. Here, it is reported that ruthenium (Ru) nanoparticles can self-accommodate into Fe3 O4 and carbon support (Ru-Fe3 O4 /C) through the electronic metal-support interaction, resulting in robust catalytic activity toward the alkaline hydrogen evolution reaction (HER). Spectroscopic evidence and theoretical calculations demonstrate that electronic perturbation occurred in the Ru-Fe3 O4 /C, and that charge redistribution directly influenced adsorption behavior during the catalytic process. The RuO bond formed by orbital mixing changes the charge state of the surface Ru site, enabling more electrons to flow to H intermediates (H* ) for favorable adsorption. The weak binding strength of the RuO bond also reinforces the anti-bonding character of H* with a more favorable recombination of H* species into H2 molecules. Because of this satisfactory catalytic mechanism, the Ru-Fe3 O4 /C supported nanoparticle catalyst demonstrated better HER activity and robust stability than the benchmark commercial Pt/C benchmark in alkaline media.
Collapse
Affiliation(s)
- Changqing Li
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Su Hwan Kim
- LG Energy Solution Battery Research Center, 188 Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Hyeong Yong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Qikun Sun
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yi Jiang
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seok-Jin Kim
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehoon Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|