1
|
Gedeon A, Yab E, Dinut A, Sadowski E, Capton E, Dreneau A, Petit J, Gioia B, Piveteau C, Djaout K, Lecat E, Wehenkel AM, Gubellini F, Mechaly A, Alzari PM, Deprez B, Baulard A, Aubry A, Willand N, Petrella S. Molecular mechanism of a triazole-containing inhibitor of Mycobacterium tuberculosis DNA gyrase. iScience 2024; 27:110967. [PMID: 39429773 PMCID: PMC11489056 DOI: 10.1016/j.isci.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Antimicrobial resistance remains a persistent and pressing public health concern. Here, we describe the synthesis of original triazole-containing inhibitors targeting the DNA gyrase, a well-validated drug target for developing new antibiotics. Our compounds demonstrate potent antibacterial activity against various pathogenic bacteria, with notable potency against Mycobacterium tuberculosis (Mtb). Moreover, one hit, compound 10a, named BDM71403, was shown to be more potent in Mtb than the NBTI of reference, gepotidacin. Mechanistic enzymology assays reveal a competitive interaction of BDM71403 with fluoroquinolones within the Mtb gyrase cleavage core. High-resolution cryo-electron microscopy structural analysis provides detailed insights into the ternary complex formed by the Mtb gyrase, double-stranded DNA, and either BDM71403 or gepotidacin, providing a rational framework to understand the superior in vitro efficacy on Mtb. This study highlights the potential of triazole-based scaffolds as promising gyrase inhibitors, offering new avenues for drug development in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Antoine Gedeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Emilie Yab
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Aurelia Dinut
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Elodie Sadowski
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Estelle Capton
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Aurore Dreneau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Bruna Gioia
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Estelle Lecat
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, 75015 Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Plate-Forme de Cristallographie, CNRS UMR 3528, 75015 Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Benoît Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Alexandra Aubry
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Stéphanie Petrella
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, 75015 Paris, France
| |
Collapse
|
2
|
Liu R, Sun J, Li LF, Cheng Y, Li M, Fu L, Li S, Peng G, Wang Y, Liu S, Qu X, Ran J, Li X, Pang E, Qiu HJ, Wang Y, Qi J, Wang H, Gao GF. Structural basis for difunctional mechanism of m-AMSA against African swine fever virus pP1192R. Nucleic Acids Res 2024; 52:11301-11316. [PMID: 39166497 PMCID: PMC11472052 DOI: 10.1093/nar/gkae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.
Collapse
Affiliation(s)
- Ruili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- Beijing Life Science Academy, Beijing 102200, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yingxian Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Guorui Peng
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Sheng Liu
- SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Ran
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, Liaoning Province 110030, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Erqi Pang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Xin Y, Xian R, Yang Y, Cong J, Rao Z, Li X, Chen Y. Structural and functional insights into the T-even type bacteriophage topoisomerase II. Nat Commun 2024; 15:8719. [PMID: 39379365 PMCID: PMC11461880 DOI: 10.1038/s41467-024-53037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
T-even type bacteriophages are virulent phages commonly used as model organisms, playing a crucial role in understanding various biological processes. One such process involves the regulation of DNA topology during phage replication upon host infection, governed by type IIA DNA topoisomerases. In spite of various studies on prokaryotic and eukaryotic counterparts, viral topoisomerase II remains insufficiently understood, especially the unique domain composition of T4 phage. In this study, we determine the cryo-EM structures of topoisomerase II from T4 and T6 phages, including full-length structures of both apo and DNA-binding states which have never been determined before. Together with other conformational states, these structures provide an explicit blueprint of mechanisms of phage topoisomerase II. Particularly, the asymmetric dimeric interactions observed in cryo-EM structures of T6 phage topoisomerase II ATPase domain and central domain bound with DNA shed light on the asynchronous ATP usage and asynchronous cleavage of the G-segment DNA, respectively. The elucidation of phage topoisomerase II's structures and functions not only enhances our understanding of mechanisms and evolutionary parallels with prokaryotic and eukaryotic homologs but also highlights its potential as a model for developing type IIA topoisomerase inhibitors.
Collapse
Affiliation(s)
- Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runqi Xian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Miura-Ajima N, Suwanthada P, Kongsoi S, Kim H, Pachanon R, Koide K, Mori S, Thapa J, Nakajima C, Suzuki Y. Effect of WQ-3334 on Campylobacter jejuni carrying a DNA gyrase with dominant amino acid substitutions conferring quinolone resistance. J Infect Chemother 2024; 30:1028-1034. [PMID: 38580055 DOI: 10.1016/j.jiac.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.
Collapse
Affiliation(s)
- Nami Miura-Ajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | | | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan.
| |
Collapse
|
5
|
Hameed P S, Kotakonda H, Sharma S, Nandishaiah R, Katagihallimath N, Rao R, Sadler C, Slater I, Morton M, Chandrasekaran A, Griffen E, Pillai D, Reddy S, Bharatham N, Venkatesan S, Jonnalagadda V, Jayaraman R, Nanjundappa M, Sharma M, Raveendran S, Rajagopal S, Tumma H, Watters A, Becker H, Lindley J, Flamm R, Huband M, Sahm D, Hackel M, Mathur T, Kolamunnage-Dona R, Unsworth J, Mcentee L, Farrington N, Manickam D, Chandrashekara N, Jayachandiran S, Reddy H, Shanker S, Richard V, Thomas T, Nagaraj S, Datta S, Sambandamurthy V, Ramachandran V, Clay R, Tomayko J, Das S, V B. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun 2024; 15:8202. [PMID: 39294149 PMCID: PMC11410943 DOI: 10.1038/s41467-024-52557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
The global crisis of antimicrobial resistance (AMR) necessitates the development of broad-spectrum antibacterial drugs effective against multi-drug resistant (MDR) pathogens. BWC0977, a Novel Bacterial Topoisomerase Inhibitor (NBTI) selectively inhibits bacterial DNA replication via inhibition of DNA gyrase and topoisomerase IV. BWC0977 exhibited a minimum inhibitory concentration (MIC90) of 0.03-2 µg/mL against a global panel of MDR Gram-negative bacteria including Enterobacterales and non-fermenters, Gram-positive bacteria, anaerobes and biothreat pathogens. BWC0977 retains activity against isolates resistant to fluoroquinolones (FQs), carbapenems and colistin and demonstrates efficacy against multiple pathogens in two rodent species with significantly higher drug levels in the epithelial lining fluid of infected lungs. In healthy volunteers, single-ascending doses of BWC0977 administered intravenously ( https://clinicaltrials.gov/study/NCT05088421 ) was found to be safe, well tolerated (primary endpoint) and achieved dose-proportional exposures (secondary endpoint) consistent with modelled data from preclinical studies. Here, we show that BWC0977 has the potential to treat a range of critical-care infections including MDR bacterial pneumonias.
Collapse
Affiliation(s)
- Shahul Hameed P
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harish Kotakonda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreevalli Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Radha Nandishaiah
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ranga Rao
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Claire Sadler
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Ian Slater
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Michael Morton
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | | | - Ed Griffen
- Medchemica Ltd., No. 8162245, Ebenezer House, Newcastle-under-Lyme, Staffordshire, ST5 2BE, England
| | - Dhanashree Pillai
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sambasiva Reddy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nagakumar Bharatham
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Suryanarayanan Venkatesan
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Venugopal Jonnalagadda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ramesh Jayaraman
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Mahesh Nanjundappa
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Maitrayee Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Savitha Raveendran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harikrishna Tumma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Amy Watters
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Holly Becker
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Jill Lindley
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Robert Flamm
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Michael Huband
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Dan Sahm
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | - Meredith Hackel
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | | | - Ruwanthi Kolamunnage-Dona
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jennifer Unsworth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Laura Mcentee
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nikki Farrington
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Dhanasekaran Manickam
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Narayana Chandrashekara
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sivakandan Jayachandiran
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Hrushikesava Reddy
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sathya Shanker
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Vijay Richard
- Narayana Health, Mazumdar Shaw Medical Center, 258/A, Bommasandra Industrial Area, Hosur Road, Bangalore, 560 099, India
| | - Teby Thomas
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Savitha Nagaraj
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasan Sambandamurthy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Robert Clay
- Highbury Regulatory Science Limited, SK10 4TG, Nether Alderley, Cheshire, SK10 4TG, UK
| | - John Tomayko
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Balasubramanian V
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India.
| |
Collapse
|
6
|
Abd El-Haleem A, Ammar U, Masci D, El-Ansary S, Abdel Rahman D, Abou-Elazm F, El-Dydamony N. Discovery of Benzopyrone-Based Candidates as Potential Antimicrobial and Photochemotherapeutic Agents through Inhibition of DNA Gyrase Enzyme B: Design, Synthesis, In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2024; 17:1197. [PMID: 39338359 PMCID: PMC11434840 DOI: 10.3390/ph17091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial DNA gyrase is considered one of the validated targets for antibacterial drug discovery. Benzopyrones have been reported as promising derivatives that inhibit bacterial DNA gyrase B through competitive binding into the ATP binding site of the B subunit. In this study, we designed and synthesized twenty-two benzopyrone-based derivatives with different chemical features to assess their antimicrobial and photosensitizing activities. The antimicrobial activity was evaluated against B. subtilis, S. aureus, E. coli, and C. albicans. Compounds 6a and 6b (rigid tetracyclic-based derivatives), 7a-7f (flexible-linker containing benzopyrones), and 8a-8f (rigid tricyclic-based compounds) exhibited promising results against B. subtilis, S. aureus, and E. coli strains. Additionally, these compounds demonstrated photosensitizing activities against the B. subtilis strain. Both in silico molecular docking and in vitro DNA gyrase supercoiling inhibitory assays were performed to study their potential mechanisms of action. Compounds 8a-8f exhibited the most favorable binding interactions, engaging with key regions within the ATP binding site of the DNA gyrase B domain. Moreover, compound 8d displayed the most potent IC50 value (0.76 μM) compared to reference compounds (novobiocin = 0.41 μM and ciprofloxacin = 2.72 μM). These results establish a foundation for structure-based optimization targeting DNA gyrase inhibition with antibacterial activity.
Collapse
Affiliation(s)
- Akram Abd El-Haleem
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| | - Usama Ammar
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Sohair El-Ansary
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Doaa Abdel Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma Abou-Elazm
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt;
| | - Nehad El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| |
Collapse
|
7
|
Liu KT, Chen SF, Chan NL. Structural insights into the assembly of type IIA topoisomerase DNA cleavage-religation center. Nucleic Acids Res 2024; 52:9788-9802. [PMID: 39077950 PMCID: PMC11381327 DOI: 10.1093/nar/gkae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases' role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification. To understand this assembly process in detail, we report the catalytic core structures of human Top2α and Top2β in an on-pathway conformational state. This state features an in trans formation of an interface between the Tower and opposing TOPRIM domain, revealing a groove for accommodating incoming G-segment DNA. Structural superimposition further unveils how subsequent DNA-binding-induced disengagement of the TOPRIM and Tower domains allows a firm grasp of the bound DNA for cleavage/religation. Notably, we identified a previously undocumented protein-DNA interaction, formed between an arginine-capped C-terminus of an α-helix in the TOPRIM domain and the DNA backbone, significantly contributing to Top2 function. This work uncovers a previously unrecognized role of the Tower domain, highlighting its involvement in anchoring and releasing the TOPRIM domain, thus priming Top2 for DNA binding and cleavage.
Collapse
Affiliation(s)
- Ko-Ting Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shin-Fu Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
8
|
Khanna A, Kumar N, Rana R, Jyoti, Sharma A, Muskan, Kaur H, Bedi PMS. Fluoroquinolones tackling antimicrobial resistance: Rational design, mechanistic insights and comparative analysis of norfloxacin vs ciprofloxacin derivatives. Bioorg Chem 2024; 153:107773. [PMID: 39241583 DOI: 10.1016/j.bioorg.2024.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs. Herein, we have explored the latest advancements in antimicrobial activities of FN analogues and the effect of various substitutions with a focus on utilizing the FN nucleus to search for novel potential antimicrobial candidates. Moreover, this review also provides a comparative analysis of two widely prescribed FNs that are ciprofloxacin and norfloxacin, explaining their rationale for their design, structure-activity relationships (SAR), causes of resistance, and mechanistic studies. These insights will prove advantageous for new researchers by aiding them in designing novel and effective FN-based compounds to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Nitish Kumar
- Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab 145001, India.
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | | | |
Collapse
|
9
|
Bakker AT, Kotsogianni I, Avalos M, Punt JM, Liu B, Piermarini D, Gagestein B, Slingerland CJ, Zhang L, Willemse JJ, Ghimire LB, van den Berg RJHBN, Janssen APA, Ottenhoff THM, van Boeckel CAA, van Wezel GP, Ghilarov D, Martin NI, van der Stelt M. Discovery of isoquinoline sulfonamides as allosteric gyrase inhibitors with activity against fluoroquinolone-resistant bacteria. Nat Chem 2024; 16:1462-1472. [PMID: 38898213 PMCID: PMC11374673 DOI: 10.1038/s41557-024-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2024] [Indexed: 06/21/2024]
Abstract
Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mariana Avalos
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Jeroen M Punt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bing Liu
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Diana Piermarini
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Joost J Willemse
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Leela B Ghimire
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, the Netherlands.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
10
|
Yi X, Feng M, He F, Xiao Z, Wang Y, Wang S, Yao H. Multi-omics analysis explores the impact of ofloxacin pressure on the metabolic state in Escherichia coli. J Glob Antimicrob Resist 2024; 39:59-68. [PMID: 39168372 DOI: 10.1016/j.jgar.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES The rising threat of antibiotic resistance poses a significant challenge to public health. The research on the new direction of resistance mechanisms is crucial for overcoming this hurdle. This study examines metabolic changes by comparing sensitive and experimentally induced ofloxacin-resistant Escherichia coli (E. coli) strains using multi-omics analyses, aiming to provide novel insights into bacterial resistance. METHODS An ofloxacin-resistant E. coli strain was selected by being exposed to high concentration of ofloxacin. Comparative analyses involving transcriptomics, proteomics, and acetylomics were conducted between the wild-type and the ofloxacin-resistant (Re-OFL) strains. Enrichment pathways of differentially expressed genes, proteins and acetylated proteins between the two strains were analysed using gene ontology and Kyoto Encyclopedia of Genes and Genomes method. In addition, the metabolic network of E. coli was mapped using integrated multi-omics analysis strategies. RESULTS We identified significant differences in 2775 mRNAs, 1062 proteins, and 1015 acetylated proteins between wild-type and Re-OFL strains. Integrated omics analyses revealed that the common alterations enriched in metabolic processes, particularly the glycolytic pathway. Further analyses demonstrated that 14 metabolic enzymes exhibited upregulated acetylation levels and downregulated transcription and protein levels. Moreover, seven of these metabolic enzymes (fba, tpi, gapA, pykA, sdhA, fumA, and mdh) were components related to the glycolytic pathway. CONCLUSIONS The changes of metabolic enzymes induced by antibiotics seem to be a key factor for E. coli to adapt to the pressure of antibiotics, which shed new light on understanding the adaptation mechanism when responding to ofloxacin pressure.
Collapse
Affiliation(s)
- Xiaoyu Yi
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Yichuan Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
11
|
Suwanthada P, Kongsoi S, Jayaweera S, Akapelwa ML, Thapa J, Nakajima C, Suzuki Y. Interplay between Amino Acid Substitution in GyrA and QnrB19: Elevating Fluoroquinolone Resistance in Salmonella Typhimurium. ACS Infect Dis 2024; 10:2785-2794. [PMID: 38898378 DOI: 10.1021/acsinfecdis.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Globally, there have been increasing reports of antimicrobial resistance in nontyphoidal Salmonella (NTS), which can develop into severe and potentially life-threatening diarrhea. This study focuses on the synergistic effects of DNA gyrase mutations and plasmid-mediated quinolone resistance (PMQR) genes, specifically qnrB19, on fluoroquinolone (FQ) resistance in Salmonella Typhimurium. By utilizing recombinant mutants, GyrAS83F and GyrAD87N, and QnrB19's, we discovered a significant increase in fluoroquinolones resistance when QnrB19 is present. Specifically, ciprofloxacin and moxifloxacin's inhibitory concentrations rose 10- and 8-fold, respectively. QnrB19 was found to enhance the resistance capacity of mutant DNA gyrases, leading to high-level FQ resistance. Additionally, we observed that the ratio of QnrB19 to DNA gyrase played a critical role in determining whether QnrB19 could protect DNA gyrase against FQ inhibition. Our findings underscore the critical need to understand these resistance mechanisms, as their coexistence enables bacteria to withstand therapeutic FQ levels, posing a significant challenge to treatment efficacy.
Collapse
Affiliation(s)
- Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 73140, Thailand
| | - Sasini Jayaweera
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| |
Collapse
|
12
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
13
|
Powell J, Mann CA, Toth PD, Nolan S, Steinert A, Ove C, Seffernick JT, Wozniak DJ, Kebriaei R, Lindert S, Osheroff N, Yalowich JC, Mitton-Fry MJ. Development of Novel Bacterial Topoisomerase Inhibitors Assisted by Computational Screening. ACS Med Chem Lett 2024; 15:1287-1297. [PMID: 39140037 PMCID: PMC11318591 DOI: 10.1021/acsmedchemlett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 08/15/2024] Open
Abstract
Multidrug-resistant bacterial infections pose an ever-evolving threat to public health. Since the outset of the antibacterial age, bacteria have developed a multitude of diverse resistance mechanisms that suppress the effectiveness of current therapies. New drug entities, such as Novel Bacterial Topoisomerase Inhibitors (NBTIs), can circumvent this major issue. A computational docking model was employed to predict the binding to DNA gyrase of atypical NBTIs with novel pharmacophores. Synthesis of NBTIs based on computational docking and subsequent antibacterial evaluation against both Gram-positive and Gram-negative bacteria yielded congeners with outstanding anti-staphylococcal activity and varying activity against select Gram-negative pathogens.
Collapse
Affiliation(s)
- Joshua
W. Powell
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chelsea A. Mann
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Paul D. Toth
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sheri Nolan
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anja Steinert
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Clarissa Ove
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin T. Seffernick
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel J. Wozniak
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Razieh Kebriaei
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Neil Osheroff
- Department of Biochemistry and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack C. Yalowich
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark J. Mitton-Fry
- Division
of Medicinal Chemistry and Pharmacognosy, Department of Chemistry and Biochemistry, Microbial Infection
and Immunity, Division of Outcomes and Translational Sciences, Department of Microbiology, and Division of Pharmaceutics
and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Yoon H, Lee HH, Noh HS, Lee SJ. Identification of genus Deinococcus strains by PCR detection using the gyrB gene and its extension to Bacteria domain. J Microbiol Methods 2024; 223:106980. [PMID: 38936431 DOI: 10.1016/j.mimet.2024.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
In radiation-resistant bacteria belonging to the genus Deinococcus, transposition events of insertion sequences (IS elements) leading to phenotypic changes from a reddish color to white were detected following exposure to gamma irradiation and hydrogen peroxide treatment. This change resulted from the integration of IS elements into the phytoene desaturase gene, a key enzyme in the carotenoid biosynthesis pathway. To facilitate species identification and distinguish among Deinococcus strains, the gyrB gene encoding the B subunit of DNA gyrase was utilized. The s gnificance of the gyrB gene is well recognized not only in genome replication through the regulation of supercoiling but also in phylogenetic analysis providing support for 16S rRNA-based identification. Its mutation rate surpasses that of the 16S rRNA gene, offering greater resolution between closely related species, particularly those exhibiting >99% similarity. In this study, phylogenetic analysis was conducted comparing the 16S rRNA and gyrB gene sequences of Deinococcus species. Species-specific and genus-specific primers targeting Deinococcus species were designed and experimentally validated for selective amplification and rapid identification of the targeted species. This approach allows for the omission of 16S rRNA sequencing in the targeted Deinococcus species. Therefore, the gyrB gene is useful for identifying bacterial species and genus-level detection from individual microbes or microbial consortia using specialized primer sets for PCR amplification.
Collapse
Affiliation(s)
- Hyeonsik Yoon
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Hee Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Seong Noh
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Jae Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
15
|
Kloula Ben Ghorbal S, Dhaya I, Ouzari IH, Chatti A. Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch. World J Microbiol Biotechnol 2024; 40:243. [PMID: 38869625 DOI: 10.1007/s11274-024-04033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| | - Ibtihel Dhaya
- LR18ES03- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecules Valorization, University of Tunis El Manar, Tunis, Tunisia
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Physiques et Naturelles de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia
- Unite de Biochimie des Lipides et Interactions des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| |
Collapse
|
16
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024:eesp00012022. [PMID: 38864557 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Germe TRM, Bush NG, Baskerville VM, Saman D, Benesch JLP, Maxwell A. Rapid, DNA-induced interface swapping by DNA gyrase. eLife 2024; 12:RP86722. [PMID: 38856655 PMCID: PMC11164529 DOI: 10.7554/elife.86722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (-1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface 'swapping' (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed 'swivelling' mechanism for DNA gyrase (Gubaev et al., 2016).
Collapse
Affiliation(s)
- Thomas RM Germe
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Natassja G Bush
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Victoria M Baskerville
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Dominik Saman
- Department of Chemistry, Biochemistry Building, University of OxfordOxfordUnited Kingdom
| | - Justin LP Benesch
- Department of Chemistry, Biochemistry Building, University of OxfordOxfordUnited Kingdom
| | - Anthony Maxwell
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
18
|
Pisano L, Giovannuzzi S, Supuran CT. Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing. Expert Opin Ther Pat 2024; 34:511-524. [PMID: 38856987 DOI: 10.1080/13543776.2024.2367005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
Collapse
Affiliation(s)
- Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Kokot M, Minovski N. Dynamic Profiling and Binding Affinity Prediction of NBTI Antibacterials against DNA Gyrase Enzyme by Multidimensional Machine Learning and Molecular Dynamics Simulations. ACS OMEGA 2024; 9:18278-18295. [PMID: 38680300 PMCID: PMC11044241 DOI: 10.1021/acsomega.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for de novo design/optimization of new NBTIs. Utilizing in vitro NBTI experimental data, we constructed two comprehensive multidimensional DNA gyrase surrogate models for Staphylococcus aureus (q2 = 0.791) and Escherichia coli (q2 = 0.806). Both models accurately predicted the IC50s of 26 NBTIs from our recent studies. To investigate the NBTI's dynamic profile and binding to both targets, 10 selected NBTIs underwent molecular dynamics (MD) simulations. The analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method employing an in-house derived set of fitting parameters (α = 0.16, β = 0.029, γ = 0.0, and intercept = -1.72), which are successfully applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free energies of NBTIs against S. aureus and E. coli DNA gyrase. We are confident that this integrated modeling approach could be valuable in the de novo design and optimization of efficient NBTIs for combating resistant bacterial pathogens.
Collapse
Affiliation(s)
- Maja Kokot
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- The
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
20
|
Oviatt A, Gibson EG, Huang J, Mattern K, Neuman KC, Chan PF, Osheroff N. Interactions between Gepotidacin and Escherichia coli Gyrase and Topoisomerase IV: Genetic and Biochemical Evidence for Well-Balanced Dual-Targeting. ACS Infect Dis 2024; 10:1137-1151. [PMID: 38606465 PMCID: PMC11015057 DOI: 10.1021/acsinfecdis.3c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.
Collapse
Affiliation(s)
- Alexandria
A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Elizabeth G. Gibson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jianzhong Huang
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Karen Mattern
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
- VA
Tennessee
Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
21
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
Vayssières M, Marechal N, Yun L, Lopez Duran B, Murugasamy NK, Fogg JM, Zechiedrich L, Nadal M, Lamour V. Structural basis of DNA crossover capture by Escherichia coli DNA gyrase. Science 2024; 384:227-232. [PMID: 38603484 PMCID: PMC11108255 DOI: 10.1126/science.adl5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Nils Marechal
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Long Yun
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Brian Lopez Duran
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Naveen Kumar Murugasamy
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Jonathan M. Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Life Sciences, Université Paris Cité, Paris, France
| | - Valérie Lamour
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Sachdeva E, Aggarwal S, Kaur G, Gupta D, Ethayathulla AS, Kaur P. The acidic C-terminal tail of DNA Gyrase of Salmonella enterica serovar Typhi controls DNA relaxation in an acidic environment. Int J Biol Macromol 2024; 261:129728. [PMID: 38272423 DOI: 10.1016/j.ijbiomac.2024.129728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.
Collapse
Affiliation(s)
- Ekta Sachdeva
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Shubham Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
24
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
25
|
Liu T, Wang ZJ, Shi YZ, Tao R, Huang H, Zhao YL, Luo XD. Curcusinol from the fruit of Carex baccans with antibacterial activity against multidrug-resistant strains. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116892. [PMID: 37460030 DOI: 10.1016/j.jep.2023.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carex baccans, known as Shan-Bai-Zi or Ye-Gao-Liang in China, is a traditional medicinal herb used by several ethnic groups in Yunnan Province. It is utilized for the treatment of wound infections, ulcers, and dysentery. However, there is currently a dearth of research reports on its antimicrobial potential. AIM OF THE STUDY The substance basis of the antimicrobial activity of C. baccans will be unveiled, and the in vitro and in vivo antibacterial activities against multidrug-resistant bacteria of its major active compounds, as well as their preliminary mechanisms of action, will be investigated. MATERIALS AND METHODS An antibacterial bioactivity-guided isolation method was used to isolate and identify the active compound curcusinol from C. baccans. UPLC-DAD-MS was employed for the quantitative analysis of curcusinol. The antibacterial activity, resistance profile, synergistic effects, anti-biofilm activity, and potential mechanisms of action of curcusinol against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and other multidrug-resistant bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii) were investigated using various methods, including the broth microdilution method, scanning electron microscopy, time kill assay, multi-generational resistance induction assay, checkerboard synergy assay, anti-biofilm assay, and metabolomics. Furthermore, the therapeutic efficacy of curcusinol was assessed in vivo by establishing an animal skin wound infection model of MRSA. RESULTS Curcusinol was isolated from the fruit of C. baccans, which accounts for 3.1% of the dry weight of the fruit. Curcusinol exhibited significant bactericidal and anti-biofilm activities against antibiotic-resistant Gram-positive bacteria in vitro. Furthermore, curcusinol acted as an antibiotic adjuvant to enhance the activity of various commonly used antibiotics against both Gram-positive and Gram-negative antibiotic-resistant bacteria without cytotoxicity to mammalian cells (A549 and RAW264.7) at 64 μM. Moreover, curcusinol affected arginine biosynthesis, cysteine and methionine metabolism, and alanine, aspartate, and glutamate metabolism significantly in MRSA cells under stress. Additionally, curcusinol effectively treated MRSA-infected mouse skin wounds and accelerated wound healing in vivo. CONCLUSIONS The results of this study not only support the traditional uses of C. baccans but also demonstrate that its major active compound, curcusinol, is an effective plant-derived bactericidal agent and antibacterial adjuvant with potential applications in the treatment of skin infections.
Collapse
Affiliation(s)
- Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Ran Tao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Huan Huang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
26
|
Izmest'ev ES, Pestova SV, Kolesnikova AI, Baidamshina DR, Kayumov AR, Rubtsova SA. Terpene-Functionalized Fluoroquinolones as Potential Antimicrobials: Synthesis and Properties. ChemMedChem 2023; 18:e202300358. [PMID: 37872856 DOI: 10.1002/cmdc.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
This study was the first to synthesize terpene-containing conjugates of fluoroquinolones, ciprofloxacin and norfloxacin, and to evaluate their antibacterial activity against gram-positive methicillin sensitive (MSSA) and methicillin resistant (MRSA) S. aureus, gram-negative P. aeruginosa as well as antifungal activity against C. albicans. The ability of obtained fluoroquinolones to inhibit S. aureus growth was found to depend upon the presence of a linker separating the bulky terpene and fluoroquinolone fragments, and this activity diminished with increasing its length. The highest activity against MSSA was demonstrated by ciprofloxacin derivatives with campholenic (MIC 1 μg/mL) and 2-(isobornan-2-yl-sulfanyl)acetyl (MIC 0.5 μg/mL) substituents. The compound with the last fragment showed high activity against MRSA (MIC 8 μg/mL). The terpene-functionalized norfloxacin derivatives generally proved to be less active than those containing ciprofloxacin fragment. Camphor-10-sulfonylamide derivative with the ciprofloxacin fragment was the only one of all compounds that showed high antifungal activity against C. albicans (8 μg/mL). The study presents data on docking fluoroquinolones to S. aureus DNA gyrase to explain the reasons for manifestation or disappearance of antibacterial activity. The cytotoxicity of fluoroquinolones that showed any antimicrobial activity was investigated against bovine primary lung cells, and they were found to be not toxic in most cases.
Collapse
Affiliation(s)
- Evgeniy S Izmest'ev
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| | - Svetlana V Pestova
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| | - Alena I Kolesnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Diana R Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Svetlana A Rubtsova
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| |
Collapse
|
27
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two Classes of DNA Gyrase Inhibitors Elicit Distinct Evolutionary Trajectories Toward Resistance in Gram-Negative Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546596. [PMID: 37425702 PMCID: PMC10327078 DOI: 10.1101/2023.06.26.546596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - James E. Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jaime E. Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marinela L. Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
28
|
Maliszewski D, Demirel R, Wróbel A, Baradyn M, Ratkiewicz A, Drozdowska D. s-Triazine Derivatives Functionalized with Alkylating 2-Chloroethylamine Fragments as Promising Antimicrobial Agents: Inhibition of Bacterial DNA Gyrases, Molecular Docking Studies, and Antibacterial and Antifungal Activity. Pharmaceuticals (Basel) 2023; 16:1248. [PMID: 37765056 PMCID: PMC10650753 DOI: 10.3390/ph16091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The spectrum of biological properties of s-triazine derivatives is broad and includes anti-microbial, anti-cancer, and anti-neurodegenerative activities, among others. The s-triazine molecule, due to the possibility of substituting three substituents, offers many opportunities to obtain hybrid compounds with a wide variety of activities. A group of 1,3,5 triazine derivatives containing a dipeptide, 2-ethylpiperazine, and a methoxy group as substituents was screened for their antimicrobial activity. An in vitro study was conducted on pathogenic bacteria (E. coli, S. aureus, B. subtilis, and M. luteus), yeasts (C. albicans), and filamentous fungi (A. fumigatus, A. flavus, F. solani, and P. citrinum) via microdilution in broth, and the results were compared with antibacterial (Streptomycin) and antifungal (Ketoconazole and Nystatin) antibiotics. Several s-triazine analogues have minimal inhibitory concentrations lower than the standard. To confirm the inhibitory potential of the most active compounds against gyrases E. coli and S. aureus, a bacterial gyrases inhibition assay, and molecular docking studies were performed. The most active s-triazine derivatives contained the -NH-Trp(Boc)-AlaOMe, -NH-Asp(OtBu)-AlaOMe, and -NH-PheOMe moieties in their structures.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| | - Rasime Demirel
- Department of Biology, Eskisehir Technical University, Eskişehir 26555, Turkey;
| | - Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| | - Maciej Baradyn
- Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Artur Ratkiewicz
- Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland; (M.B.); (A.R.)
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; (D.M.); (A.W.)
| |
Collapse
|
29
|
Medellín-Luna MF, Hernández-López H, Castañeda-Delgado JE, Martinez-Gutierrez F, Lara-Ramírez E, Espinoza-Rodríguez JJ, García-Cruz S, Portales-Pérez DP, Cervantes-Villagrana AR. Fluoroquinolone Analogs, SAR Analysis, and the Antimicrobial Evaluation of 7-Benzimidazol-1-yl-fluoroquinolone in In Vitro, In Silico, and In Vivo Models. Molecules 2023; 28:6018. [PMID: 37630269 PMCID: PMC10458221 DOI: 10.3390/molecules28166018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Structure-activity relationship (SAR) studies allow the evaluation of the relationship between structural chemical changes and biological activity. Fluoroquinolones have chemical characteristics that allow their structure to be modified and new analogs with different therapeutic properties to be generated. The objective of this research is to identify and select the C-7 heterocycle fluoroquinolone analog (FQH 1-5) with antibacterial activity similar to the reference fluoroquinolone through in vitro, in silico, and in vivo evaluations. First, SAR analysis was conducted on the FQH 1-5, using an in vitro antimicrobial sensibility model in order to select the best compound. Then, an in silico model mechanism of action analysis was carried out by molecular docking. The non-bacterial cell cytotoxicity was evaluated, and finally, the antimicrobial potential was determined by an in vivo model of topical infection in mice. The results showed antimicrobial differences between the FQH 1-5 and Gram-positive and Gram-negative bacteria, identifying the 7-benzimidazol-1-yl-fluoroquinolone (FQH-2) as the most active against S. aureus. Suggesting the same mechanism of action as the other fluoroquinolones; no cytotoxic effects on non-bacterial cells were found. FQH-2 was demonstrated to decrease the amount of bacteria in infected wound tissue.
Collapse
Affiliation(s)
- Mitzzy Fátima Medellín-Luna
- Ciencias Farmacobiológicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210, Mexico; (M.F.M.-L.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico
| | - Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico
- Investigadores por México, CONAHCYT, Consejo Nacional de Humanidades, Ciencias y Tecnologias, Ciudad de México 03940, Mexico
| | - Fidel Martinez-Gutierrez
- Ciencias Farmacobiológicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210, Mexico; (M.F.M.-L.)
- Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, San Luis Potosí 28210, Mexico
| | - Edgar Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reyonsa 88710, Mexico
| | | | - Salvador García-Cruz
- Departamento de Cirugía Experimental e Investigación Quirúrgica y Bioterio, “Claude Bernard”, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Diana Patricia Portales-Pérez
- Ciencias Farmacobiológicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210, Mexico; (M.F.M.-L.)
- Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, San Luis Potosí 28210, Mexico
| | | |
Collapse
|
30
|
Dauda SE, Collins JA, Byl JAW, Lu Y, Yalowich JC, Mitton-Fry MJ, Osheroff N. Actions of a Novel Bacterial Topoisomerase Inhibitor against Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enhancement of Double-Stranded DNA Breaks. Int J Mol Sci 2023; 24:12107. [PMID: 37569485 PMCID: PMC10419083 DOI: 10.3390/ijms241512107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an emerging class of antibacterials that target gyrase and topoisomerase IV. A hallmark of NBTIs is their ability to induce gyrase/topoisomerase IV-mediated single-stranded DNA breaks and suppress the generation of double-stranded breaks. However, a previous study reported that some dioxane-linked amide NBTIs induced double-stranded DNA breaks mediated by Staphylococcus aureus gyrase. To further explore the ability of this NBTI subclass to increase double-stranded DNA breaks, we examined the effects of OSUAB-185 on DNA cleavage mediated by Neisseria gonorrhoeae gyrase and topoisomerase IV. OSUAB-185 induced single-stranded and suppressed double-stranded DNA breaks mediated by N. gonorrhoeae gyrase. However, the compound stabilized both single- and double-stranded DNA breaks mediated by topoisomerase IV. The induction of double-stranded breaks does not appear to correlate with the binding of a second OSUAB-185 molecule and extends to fluoroquinolone-resistant N. gonorrhoeae topoisomerase IV, as well as type II enzymes from other bacteria and humans. The double-stranded DNA cleavage activity of OSUAB-185 and other dioxane-linked NBTIs represents a paradigm shift in a hallmark characteristic of NBTIs and suggests that some members of this subclass may have alternative binding motifs in the cleavage complex.
Collapse
Affiliation(s)
- Soziema E. Dauda
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 42310, USA
| | - Mark J. Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
31
|
Byl JAW, Mueller R, Bax B, Basarab GS, Chibale K, Osheroff N. A Series of Spiropyrimidinetriones that Enhances DNA Cleavage Mediated by Mycobacterium tuberculosis Gyrase. ACS Infect Dis 2023; 9:706-715. [PMID: 36802491 PMCID: PMC10006343 DOI: 10.1021/acsinfecdis.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The rise in drug-resistant tuberculosis has necessitated the search for alternative antibacterial treatments. Spiropyrimidinetriones (SPTs) represent an important new class of compounds that work through gyrase, the cytotoxic target of fluoroquinolone antibacterials. The present study analyzed the effects of a novel series of SPTs on the DNA cleavage activity of Mycobacterium tuberculosis gyrase. H3D-005722 and related SPTs displayed high activity against gyrase and increased levels of enzyme-mediated double-stranded DNA breaks. The activities of these compounds were similar to those of the fluoroquinolones, moxifloxacin, and ciprofloxacin and greater than that of zoliflodacin, the most clinically advanced SPT. All the SPTs overcame the most common mutations in gyrase associated with fluoroquinolone resistance and, in most cases, were more active against the mutant enzymes than wild-type gyrase. Finally, the compounds displayed low activity against human topoisomerase IIα. These findings support the potential of novel SPT analogues as antitubercular drugs.
Collapse
Affiliation(s)
- Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rudolf Mueller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ben Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
32
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
33
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
34
|
A 2.8 Å Structure of Zoliflodacin in a DNA Cleavage Complex with Staphylococcus aureus DNA Gyrase. Int J Mol Sci 2023; 24:ijms24021634. [PMID: 36675148 PMCID: PMC9865888 DOI: 10.3390/ijms24021634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water-metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
Collapse
|
35
|
Michalczyk E, Hommernick K, Behroz I, Kulike M, Pakosz-Stępień Z, Mazurek L, Seidel M, Kunert M, Santos K, von Moeller H, Loll B, Weston JB, Mainz A, Heddle JG, Süssmuth RD, Ghilarov D. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat Catal 2023; 6:52-67. [PMID: 36741192 PMCID: PMC9886550 DOI: 10.1038/s41929-022-00904-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023]
Abstract
The peptide antibiotic albicidin is a DNA topoisomerase inhibitor with low-nanomolar bactericidal activity towards fluoroquinolone-resistant Gram-negative pathogens. However, its mode of action is poorly understood. We determined a 2.6 Å resolution cryoelectron microscopy structure of a ternary complex between Escherichia coli topoisomerase DNA gyrase, a 217 bp double-stranded DNA fragment and albicidin. Albicidin employs a dual binding mechanism where one end of the molecule obstructs the crucial gyrase dimer interface, while the other intercalates between the fragments of cleaved DNA substrate. Thus, albicidin efficiently locks DNA gyrase, preventing it from religating DNA and completing its catalytic cycle. Two additional structures of this trapped state were determined using synthetic albicidin analogues that demonstrate improved solubility, and activity against a range of gyrase variants and E. coli topoisomerase IV. The extraordinary promiscuity of the DNA-intercalating region of albicidins and their excellent performance against fluoroquinolone-resistant bacteria holds great promise for the development of last-resort antibiotics.
Collapse
Affiliation(s)
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Zuzanna Pakosz-Stępień
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Lukasz Mazurek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Maria Kunert
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | | | - Bernhard Loll
- moloX GmbH, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - John B Weston
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
36
|
Antibiotics Limit Adaptation of Drug-Resistant Staphylococcus aureus to Hypoxia. Antimicrob Agents Chemother 2022; 66:e0092622. [PMID: 36409116 PMCID: PMC9765076 DOI: 10.1128/aac.00926-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial pathogens are confronted with a range of challenges at the site of infection, including exposure to antibiotic treatment and harsh physiological conditions, that can alter the fitness benefits and costs of acquiring antibiotic resistance. Here, we develop an experimental system to recapitulate resistance gene acquisition by Staphylococcus aureus and test how the subsequent evolution of the resistant bacterium is modulated by antibiotic treatment and oxygen levels, both of which are known to vary extensively at sites of infection. We show that acquiring tetracycline resistance was costly, reducing competitive growth against the isogenic strain without the resistance gene in the absence of the antibiotic, for S. aureus under hypoxic but not normoxic conditions. Treatment with tetracycline or doxycycline drove the emergence of enhanced resistance through mutations in an RluD-like protein-encoding gene and duplications of tetL, encoding the acquired tetracycline-specific efflux pump. In contrast, evolutionary adaptation by S. aureus to hypoxic conditions, which evolved in the absence of antibiotics through mutations affecting gyrB, was impeded by antibiotic treatment. Together, these data suggest that the horizontal acquisition of a new resistance mechanism is merely a starting point for the emergence of high-level resistance under antibiotic selection but that antibiotic treatment constrains pathogen adaptation to other important environmental selective forces such as hypoxia, which in turn could limit the survival of these highly resistant but poorly adapted genotypes after antibiotic treatment is ended.
Collapse
|
37
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
38
|
Fujita H, Osaku A, Sakane Y, Yoshida K, Yamada K, Nara S, Mukai T, Su’etsugu M. Enzymatic Supercoiling of Bacterial Chromosomes Facilitates Genome Manipulation. ACS Synth Biol 2022; 11:3088-3099. [PMID: 35998348 PMCID: PMC9486964 DOI: 10.1021/acssynbio.2c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The physical stability of bacterial chromosomes is important for their in vitro manipulation, while genetic stability is important in vivo. However, extracted naked chromosomes in the open circular form are fragile due to nicks and gaps. Using a nick/gap repair and negative supercoiling reaction (named SCR), we first achieved the negative supercoiling of the whole genomes extracted from Escherichia coli and Vibrio natriegens cells. Supercoiled chromosomes of 0.2-4.6 megabase (Mb) were separated by size using a conventional agarose gel electrophoresis and served as DNA size markers. We also achieved the enzymatic replication of 1-2 Mb chromosomes using the reconstituted E. coli replication-cycle reaction (RCR). Electroporation-ready 1 Mb chromosomes were prepared by a modified SCR performed at a low salt concentration (L-SCR) and directly introduced into commercial electrocompetent E. coli cells. Since successful electroporation relies on the genetic stability of a chromosome in cells, genetically stable 1 Mb chromosomes were developed according to a portable chromosome format (PCF). Using physically and genetically stabilized chromosomes, the democratization of genome synthetic biology will be greatly accelerated.
Collapse
|
39
|
Kokot M, Weiss M, Zdovc I, Anderluh M, Hrast M, Minovski N. Diminishing hERG inhibitory activity of aminopiperidine-naphthyridine linked NBTI antibacterials by structural and physicochemical optimizations. Bioorg Chem 2022; 128:106087. [PMID: 35970069 DOI: 10.1016/j.bioorg.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities. Substitution of the linker's tertiary amine with polar groups outcome in diminished hERG inhibition. Compound 17 expresses nanomolar enzyme inhibitory potency and antibacterial activity against both Gram-positive and Gram-negative bacteria as well as reduced hERG inhibition relative to our previously published NBTI analogs. Here, we point to some important NBTI's structural features that influence their hERG inhibitory activity.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
41
|
Villain P, Catchpole R, Forterre P, Oberto J, da Cunha V, Basta T. Expanded dataset reveals the emergence and evolution of DNA gyrase in Archaea. Mol Biol Evol 2022; 39:6639447. [PMID: 35811376 PMCID: PMC9348778 DOI: 10.1093/molbev/msac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase is a type II topoisomerase with the unique capacity to introduce negative supercoiling in DNA. In bacteria, DNA gyrase has an essential role in the homeostatic regulation of supercoiling. While ubiquitous in bacteria, DNA gyrase was previously reported to have a patchy distribution in Archaea but its emergent function and evolutionary history in this domain of life remains elusive. In this study, we used phylogenomic approaches and an up-to date sequence dataset to establish global and archaea-specific phylogenies of DNA gyrases. The most parsimonious evolutionary scenario infers that DNA gyrase was introduced into the lineage leading to Euryarchaeal group II via a single horizontal gene transfer from a bacterial donor which we identified as an ancestor of Gracilicutes and/or Terrabacteria. The archaea-focused trees indicate that DNA gyrase spread from Euryarchaeal group II to some DPANN and Asgard lineages via rare horizontal gene transfers. The analysis of successful recent transfers suggests a requirement for syntropic or symbiotic/parasitic relationship between donor and recipient organisms. We further show that the ubiquitous archaeal Topoisomerase VI may have co-evolved with DNA gyrase to allow the division of labor in the management of topological constraints. Collectively, our study reveals the evolutionary history of DNA gyrase in Archaea and provides testable hypotheses to understand the prerequisites for successful establishment of DNA gyrase in a naive archaeon and the associated adaptations in the management of topological constraints.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
42
|
Kokot M, Anderluh M, Hrast M, Minovski N. The Structural Features of Novel Bacterial Topoisomerase Inhibitors That Define Their Activity on Topoisomerase IV. J Med Chem 2022; 65:6431-6440. [PMID: 35503563 PMCID: PMC9109137 DOI: 10.1021/acs.jmedchem.2c00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The continued emergence
of bacterial resistance has created an
urgent need for new and effective antibacterial agents. Bacterial
type II topoisomerases, such as DNA gyrase and topoisomerase IV (topoIV),
are well-validated targets for antibacterial chemotherapy. The novel
bacterial topoisomerase inhibitors (NBTIs) represent one of the new
promising classes of antibacterial agents. They can inhibit both of
these bacterial targets; however, their potencies differ on the targets
among species, making topoIV probably a primary target of NBTIs in
Gram-negative bacteria. Therefore, it is important to gain an insight
into the NBTIs key structural features that govern the topoIV inhibition.
However, in Gram-positive bacteria, topoIV is also a significant target
for achieving dual-targeting, which in turn contributes to avoiding
bacterial resistance caused by single-target mutations. In this perspective,
we address the structure–activity relationship guidelines for
NBTIs that target the topoIV enzyme in Gram-positive and Gram-negative
bacteria.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
43
|
Isoquinolinedione-urea hybrids: Synthesis, antibacterial evaluation, drug-likeness, molecular docking and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Purushothaman M, Dhar SK, Natesh R. Role of unique loops in oligomerization and ATPase function of Plasmodium falciparum gyrase B. Protein Sci 2022; 31:323-332. [PMID: 34716632 PMCID: PMC8820116 DOI: 10.1002/pro.4217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
DNA gyrase is an ATP dependent Type IIA topoisomerase that is unique to prokaryotes. Interestingly DNA gyrase has also been found in the apicoplasts of apicomplexan parasites like Plasmodium falciparum (Pf) the causative agent of Malaria. Gyrase B (GyrB), a subunit of gyrase A2 B2 complex has an N-terminal domain (GyrBN) which is endowed with ATPase activity. We reported earlier that PfGyrB exhibits ATP-independent dimerization unlike its bacterial counterparts. Here we report the role of two unique regions (L1 and L2) identified in PfGyrBN. Deletions of L1 alone (PfGyrBNΔL1), or L1 and L2 together (PfGyrBNΔL1ΔL2) have indicated that these regions may play an important role in ATPase activity and the oligomeric state of PfGyrBN. Our experiments show that the deletion of L1 region disrupts the dimer interface of PfGyrBN and reduces its ATPase activity. Further through ITC experiments we show that the binding affinity of ATP to PfGyrBN is reduced upon the deletion of L1 region. We have observed a reduction in ATPase activity for of all three proteins PfGyrBN, PfGyrBNΔL1, and PfGyrBNΔL1ΔL2 in presence of coumermycin. Our results suggests that L1 region of PfGyrBN is likely to be functionally important and may provide a unique dimer interface that affects its enzymatic activity. Since deletion of L1 region decreases the affinity of ATP to the protein, this region can be targeted toward designing novel inhibitors of ATP hydrolysis.
Collapse
Affiliation(s)
- Monica Purushothaman
- School of BiologyIndian Institute of Science Education and Research ThiruvananthapuramThiruvananthapuramKeralaIndia
| | - Suman Kumar Dhar
- Special Centre of Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Ramanathan Natesh
- School of BiologyIndian Institute of Science Education and Research ThiruvananthapuramThiruvananthapuramKeralaIndia
| |
Collapse
|
45
|
Molecular characterization of Mycobacterium ulcerans DNA gyrase and identification of mutations reduced susceptibility against quinolones in vitro. Antimicrob Agents Chemother 2022; 66:e0190221. [PMID: 35041504 PMCID: PMC9017346 DOI: 10.1128/aac.01902-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Buruli ulcer disease is a neglected necrotizing and disabling cutaneous tropical illness caused by Mycobacterium ulcerans. Fluoroquinolone (FQ), used in the treatment of this disease, has been known to act by inhibiting the enzymatic activities of DNA gyrase. However, the detailed molecular basis of these characteristics and the FQ resistance mechanisms in M. ulcerans remains unknown. This study investigated the detailed molecular mechanism of M. ulcerans DNA gyrase and the contribution of FQ resistance in vitro using recombinant proteins from the M. ulcerans subsp. shinshuense and Agy99 strains with reduced sensitivity to FQs. The IC50 of FQs against Ala91Val and Asp95Gly mutants of M. ulcerans shinshuense and Agy99 GyrA subunits were 3.7- to 42.0-fold higher than those against wild-type (WT) enzyme. Similarly, the quinolone concentrations required to induce 25% of the maximum DNA cleavage (CC25) was 10- to 210-fold higher than those for the WT enzyme. Furthermore, the interaction between the amino acid residues of the WT/mutant M. ulcerans DNA gyrase and FQ side chains were assessed by molecular docking studies. This was the first elaborative study demonstrating the contribution of mutations in M. ulcerans DNA GyrA subunit to FQ resistance in vitro.
Collapse
|
46
|
Elseginy SA, Anwar MM. Pharmacophore-Based Virtual Screening and Molecular Dynamics Simulation for Identification of a Novel DNA Gyrase B Inhibitor with Benzoxazine Acetamide Scaffold. ACS OMEGA 2022; 7:1150-1164. [PMID: 35036778 PMCID: PMC8756603 DOI: 10.1021/acsomega.1c05732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 05/10/2023]
Abstract
DNA gyrase B is one of the enzyme targets for antimicrobial drug development, and its absence in mammals makes it a suitable target for the creation of safe antibacterial drugs. We identified six novel hits as DNA gyrase B inhibitors in the present study by employing 3D-pharmacophore structure-based virtual screening. The lead compounds complied with drug-likeness rules and lacked toxicity. Compound 4 (ZINC32858011) showed the highest inhibitory activity with an IC50 value of 6.3 ± 0.1 μM against the DNA gyrase enzyme. In contrast, the positive controls ciprofloxacin and novobiocin used in enzyme inhibition assay had IC50 values of 14.4 ± 0.2 and 12.4 ± 0.2 μM, respectively. The molecular docking of the six hits demonstrated that compounds 1, 2, 4, and 6 had suitable fitting modes inside the binding pocket. Molecular dynamics simulations were carried out for the six hits and the rmsd, rmsf, radius of gyration, and solvent accessible surface area parameters obtained from 100 ns molecular dynamics simulations for the six compounds complexed with a DNA gyrase B protein indicated that compound 4 (ZINC32858011) formed the most stable complex with DNA gyrase B. The binding free energy calculation with the MM-PBSA method suggested that the van der Waals interaction, followed by electrostatic force, played a significant role in the binding. Per-residue free binding energy decomposition showed that Ile78 contributed the most for the binding energy followed by Asn46, Asp49, Glu50, Asp73, Ile78, Pro79, Ala86, Ile90, Val120, Thr165, and Val167.
Collapse
Affiliation(s)
- Samia A. Elseginy
- Green
Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- . Phone: +20(1150882009)
| | - Manal M. Anwar
- Therapeutical
Chemistry Department, National Research
Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
47
|
Kever L, Hünnefeld M, Brehm J, Heermann R, Frunzke J. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum. Mol Microbiol 2021; 116:1268-1280. [PMID: 34536319 DOI: 10.1111/mmi.14813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
By targeting key regulatory hubs of their host, bacteriophages represent a powerful source for the identification of novel antimicrobial proteins. Here, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of Corynebacterium glutamicum resulted in the identification of the gyrase-inhibiting protein Cg1978, termed Gip. Pull-down assays and surface plasmon resonance revealed a direct interaction of Gip with the gyrase subunit A (GyrA). The inhibitory activity of Gip was shown to be specific to the DNA gyrase of its bacterial host C. glutamicum. Overproduction of Gip in C. glutamicum resulted in a severe growth defect as well as an induction of the SOS response. Furthermore, reporter assays revealed an RecA-independent induction of the cryptic CGP3 prophage, most likely caused by topological alterations. Overexpression of gip was counteracted by an increased expression of gyrAB and a reduction of topA expression at the same time, reflecting the homeostatic control of DNA topology. We postulate that the prophage-encoded Gip protein plays a role in modulating gyrase activity to enable efficient phage DNA replication. A detailed elucidation of the mechanism of action will provide novel directions for the design of drugs targeting DNA gyrase.
Collapse
Affiliation(s)
- Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jannis Brehm
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
48
|
Kokot M, Weiss M, Zdovc I, Hrast M, Anderluh M, Minovski N. Structurally Optimized Potent Dual-Targeting NBTI Antibacterials with an Enhanced Bifurcated Halogen-Bonding Propensity. ACS Med Chem Lett 2021; 12:1478-1485. [PMID: 34527181 PMCID: PMC8436411 DOI: 10.1021/acsmedchemlett.1c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
![]()
We designed and synthesized
an optimized library of novel bacterial
topoisomerase inhibitors with p-halogenated phenyl
right-hand side fragments and significantly enhanced and balanced
dual-targeted DNA gyrase and topoisomerase IV activities of Staphylococcus aureus and Escherichia coli. By increasing the electron-withdrawing properties of the p-halogenated phenyl right-hand side fragment and maintaining
a similar lipophilicity and size, an increased potency was achieved,
indicating that the antibacterial activities of this series of novel
bacterial topoisomerase inhibitors against all target enzymes are
determined by halogen-bonding rather than van der Waals interactions.
They show nanomolar enzyme inhibitory and whole-cell antibacterial
activities against S. aureus and methicillin-resistant S. aureus (MRSA) strains. However, due to the relatively
high substrate specificity for the bacterial efflux pumps, they tend
to be less potent against E. coli and other Gram-negative
pathogens.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Martina Hrast
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Marko Anderluh
- The Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
49
|
Abstract
Malaria persists as a major health problem due to the spread of drug resistance and the lack of effective vaccines. DNA gyrase is a well-validated and extremely effective therapeutic target in bacteria, and it is also known to be present in the apicoplast of malarial species, including Plasmodium falciparum. This raises the possibility that it could be a useful target for novel antimalarials. To date, characterization and screening of this gyrase have been hampered by difficulties in cloning and purification of the GyrA subunit, which is necessary together with GyrB for reconstitution of the holoenzyme. To overcome this, we employed a library of compounds with specificity for P. falciparum GyrB and assessed them in activity tests utilizing P. falciparum GyrB together with Escherichia coli GyrA to reconstitute a functional hybrid enzyme. Two inhibitory compounds were identified that preferentially inhibited the supercoiling activity of the hybrid enzyme over the E. coli enzyme. Of these, purpurogallin (PPG) was found to disrupt DNA binding to the hybrid gyrase complex and thus reduce the DNA-induced ATP hydrolysis of the enzyme. Binding studies indicated that PPG showed higher-affinity binding to P. falciparum GyrB than to the E. coli protein. We suggest that PPG achieves its inhibitory effect on gyrase through interaction with P. falciparum GyrB leading to disruption of DNA binding and, consequently, reduction of DNA-induced ATPase activity. The compound also showed an inhibitory effect against the malaria parasite in vitro and may be of interest for further development as an antimalarial agent.
Collapse
|
50
|
Basic residues at the C-gate of DNA gyrase are involved in DNA supercoiling. J Biol Chem 2021; 297:101000. [PMID: 34303706 PMCID: PMC8368997 DOI: 10.1016/j.jbc.2021.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate.
Collapse
|