1
|
Mazzeo P, Ganster C, Wiedenhöft J, Shirneshan K, Rittscher K, Brzuszkiewicz EB, Steinemann D, Schieck M, Müller‐Thomas C, Treiber H, Braulke F, Germing U, Sockel K, Balaian E, Schanz J, Platzbecker U, Götze KS, Haase D. Comprehensive sequential genetic analysis delineating frequency, patterns, and prognostic impact of genomic dynamics in a real-world cohort of patients with lower-risk MDS. Hemasphere 2024; 8:e70014. [PMID: 39315323 PMCID: PMC11417473 DOI: 10.1002/hem3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
The acquisition of subsequent genetic lesions (clonal evolution, CE) and/or the expansion of existing clones (CEXP) contributes to clonal dynamics (CD) in myelodysplastic syndromes (MDS). Although CD plays an important role in high-risk patients in disease progression and transformation into acute myeloid leukemia (AML), knowledge about CD in lower-risk MDS (LR-MDS) patients is limited due to lack of robust longitudinal data considering the long clinically stable courses of the disease. In this retrospective analysis, we delineate the frequency and the prognostic impact of CD in an unselected real-world cohort of LR-MDS patients. We screened 68 patients with a median follow-up of 40.5 months and a median of 7.5 (range: 2-22) timepoints for CE and CEXP detected by chromosomal banding analysis, fluorescence in situ hybridization, sequencing, and molecular karyotyping. In 30/68 patients, 47 CE events and a CD rate of 1 event per 4 years were documented. Of note, patients with at least 1 CE event had an increased probability for subsequent treatment. Unexpectedly, CE did not correlate with inferior outcomes, which could be reasonably explained by CD detection triggering the subsequent start of a disease-modifying therapy.
Collapse
Affiliation(s)
- Paolo Mazzeo
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Christina Ganster
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - John Wiedenhöft
- Department of Human GeneticsUniversity of Leipzig Medical CenterLeipzigGermany
| | - Katayoon Shirneshan
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Katharina Rittscher
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Elzbieta B. Brzuszkiewicz
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Doris Steinemann
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
| | | | - Catharina Müller‐Thomas
- Department of Medicine IIITechnical University of Munich School of Medicine and HealthMunichGermany
| | - Hannes Treiber
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Friederike Braulke
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
- Comprehensive Cancer CenterUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical ImmunologyHeinrich‐Heine‐UniversitätDüsseldorfGermany
| | - Katja Sockel
- Medical Clinic and Policlinic IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Ekaterina Balaian
- Medical Clinic and Policlinic IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Julie Schanz
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular TherapyLeipzig University HospitalLeipzigGermany
| | - Katharina S. Götze
- Department of Medicine IIITechnical University of Munich School of Medicine and HealthMunichGermany
| | - Detlef Haase
- Department of Hematology and Medical Oncology, INDIGHO laboratoryUniversity Medical Center Göttingen (UMG)GöttingenGermany
| |
Collapse
|
2
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Awada H, Gurnari C, Visconte V, Durmaz A, Kuzmanovic T, Awada H, Tu ZJ, Cook JR, Bolwell BJ, Sobecks R, Kalaycio M, Bosler D, Maciejewski JP. Clonal hematopoiesis-derived therapy-related myeloid neoplasms after autologous hematopoietic stem cell transplant for lymphoid and non-lymphoid disorders. Leukemia 2024; 38:1266-1274. [PMID: 38684821 PMCID: PMC11147764 DOI: 10.1038/s41375-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Therapy-related myeloid neoplasms (tMN) are complications of cytotoxic therapies. Risk of tMN is high in recipients of autologous hematopoietic stem cell transplantation (aHSCT). Acquisition of genomic mutations represents a key pathogenic driver but the origins, timing and dynamics, particularly in the context of preexisting or emergent clonal hematopoiesis (CH), have not been sufficiently clarified. We studied a cohort of 1507 patients undergoing aHSCT and a cohort of 263 patients who developed tMN without aHSCT to determine clinico-molecular features unique to post-aHSCT tMN. We show that tMN occurs in up to 2.3% of patients at median of 2.6 years post-AHSCT. Age ≥ 60 years, male sex, radiotherapy, high treatment burden ( ≥ 3 lines of chemotherapy), and graft cellularity increased the risk of tMN. Time to evolution and overall survival were shorter in post-aHSCT tMN vs. other tMN, and the earlier group's mutational pattern was enriched in PPM1D and TP53 lesions. Preexisting CH increased the risk of adverse outcomes including post-aHSCT tMN. Particularly, antecedent lesions affecting PPM1D and TP53 predicted tMN evolution post-transplant. Notably, CH-derived tMN had worse outcomes than non CH-derived tMN. As such, screening for CH before aHSCT may inform individual patients' prognostic outcomes and influence their prospective treatment plans. Presented in part as an oral abstract at the 2022 American Society of Hematology Annual Meeting, New Orleans, LA, 2022.
Collapse
Affiliation(s)
- Hussein Awada
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Arda Durmaz
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Teodora Kuzmanovic
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA
| | - Hassan Awada
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Zheng Jin Tu
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Brian J Bolwell
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matt Kalaycio
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Bosler
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, NY, USA.
| |
Collapse
|
4
|
Biernacki MA, Lok J, Black RG, Foster KA, Cummings C, Woodward KB, Monahan T, Oehler VG, Stirewalt DL, Wu D, Rongvaux A, Deeg HJ, Bleakley M. Discovery of U2AF1 neoantigens in myeloid neoplasms. J Immunother Cancer 2023; 11:e007490. [PMID: 38164756 PMCID: PMC10729103 DOI: 10.1136/jitc-2023-007490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) arise from somatic mutations acquired in hematopoietic stem and progenitor cells, causing cytopenias and predisposing to transformation into secondary acute myeloid leukemia (sAML). Recurrent mutations in spliceosome genes, including U2AF1, are attractive therapeutic targets as they are prevalent in MDS and sAML, arise early in neoplastic cells, and are generally absent from normal cells, including normal hematopoietic cells. MDS and sAML are susceptible to T cell-mediated killing, and thus engineered T-cell immunotherapies hold promise for their treatment. We hypothesized that targeting spliceosome mutation-derived neoantigens with transgenic T-cell receptor (TCR) T cells would selectively eradicate malignant cells in MDS and sAML. METHODS We identified candidate neoantigen epitopes from recurrent protein-coding mutations in the spliceosome genes SRSF2 and U2AF1 using a multistep in silico process. Candidate epitopes predicted to bind human leukocyte antigen (HLA) class I, be processed and presented from the parent protein, and not to be subject to tolerance then underwent in vitro immunogenicity screening. CD8+ T cells recognizing immunogenic neoantigen epitopes were evaluated in in vitro assays to assess functional avidity, confirm the predicted HLA restriction, the potential for recognition of similar peptides, and the ability to kill neoplastic cells in an antigen-specific manner. Neoantigen-specific TCR were sequenced, cloned into lentiviral vectors, and transduced into third-party T cells after knock-out of endogenous TCR, then tested in vitro for specificity and ability to kill neoplastic myeloid cells presenting the neoantigen. The efficacy of neoantigen-specific T cells was evaluated in vivo in a murine cell line-derived xenograft model. RESULTS We identified two neoantigens created from a recurrent mutation in U2AF1, isolated CD8+ T cells specific for the neoantigens, and demonstrated that transferring their TCR to third-party CD8+ T cells is feasible and confers specificity for the U2AF1 neoantigens. Finally, we showed that these neoantigen-specific TCR-T cells do not recognize normal hematopoietic cells but efficiently kill malignant myeloid cells bearing the specific U2AF1 mutation, including primary cells, in vitro and in vivo. CONCLUSIONS These data serve as proof-of-concept for developing precision medicine approaches that use neoantigen-directed T-cell receptor-transduced T cells to treat MDS and sAML.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- CD8-Positive T-Lymphocytes
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Antigens, Neoplasm
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Epitopes/metabolism
Collapse
Affiliation(s)
- Melinda Ann Biernacki
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jessica Lok
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ralph Graeme Black
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kimberly A Foster
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Carrie Cummings
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kyle B Woodward
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tim Monahan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vivian G Oehler
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Derek L Stirewalt
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Anthony Rongvaux
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hans Joachim Deeg
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Marie Bleakley
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Kaseb H, Visconte V, Socha DS, Crane GM, Durkin L, Cook JR, Maciejewski JP, Hsi ED, Rogers HJ. The clinicopathologic significance of NPM1 mutation and ability to detect mutated NPM1 by immunohistochemistry in non-AML myeloid neoplasms. Genes Chromosomes Cancer 2023; 62:573-580. [PMID: 36959701 PMCID: PMC11104021 DOI: 10.1002/gcc.23139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
NPM1 mutated non-AML myeloid neoplasms (MN; <20% blasts) are characterized by an aggressive clinical course in a few studies. In this retrospective study, we evaluate the clinicopathologic and immunohistochemical features of non-AML MN patients with NPM1 mutations. We assessed NPM1 mutation by targeted next generation sequencing (NGS). Cytoplasmic NPM1 expression was assessed by immunohistochemistry (IHC) on formalin-fixed, formic acid-decalcified bone marrow biopsy specimens. We evaluated 34 non-AML MN patients with NPM1 mutations comprising MDS (22), MPN (3) and MDS/MPN (9). They commonly presented with anemia (88%), thrombocytopenia (58%) and leukopenia (50%). Bone marrow dysplasia was common (79%). The karyotype was often normal (64%). NGS for MN-associated mutations performed in a subset of the patients showed a median of 3 mutations. NPM1 mutations were more often missense (c.859C > T p. L287F; 65%) than frameshift insertion/duplication (35%) with median variant allele frequency (VAF; 9.7%, range 5.1%-49.8%). Mutated NPM1 by IHC showed cytoplasmic positivity in 48% and positivity was associated with higher VAF. The median overall survival (OS) in this cohort was 70 months. Nine patients (26%) progressed to AML. OS in patients who progressed to AML was significantly shorter than the one of patients without progression to AML (OS 20 vs. 128 months, respectively, log rank p = 0.05). NPM1 mutated non-AML MN patients commonly had cytopenias, dysplasia, normal karyotype, mutations in multiple genes, and an unfavorable clinical outcome, including progression to AML. Our data demonstrated that IHC for NPM1 can be a useful supplementary tool to predict NPM1 mutation in some non-AML MN; however, genetic testing cannot be replaced by IHC assessment.
Collapse
Affiliation(s)
- Hatem Kaseb
- Department of Pathology, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel S. Socha
- Department of Pathology, OhioHealth, Riverside Methodist Hospital, Columbus, Ohio, USA
| | - Genevieve M. Crane
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa Durkin
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - James R. Cook
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric D. Hsi
- Department of Pathology and Laboratory Medicine, Wake Forest School of Medicine, Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Heesun J. Rogers
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Takahashi K, Tanaka T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer 2023; 9:707-715. [PMID: 37302922 PMCID: PMC10766088 DOI: 10.1016/j.trecan.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Myeloid malignancies, a group of hematopoietic disorders that includes acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs), are caused by the accumulation of genetic and epigenetic changes in hematopoietic stem and progenitor cells (HSPCs) over time. Despite the relatively low number of genomic drivers compared with other forms of cancer, the process by which these changes shape the genomic architecture of myeloid malignancies remains elusive. Recent advancements in clonal hematopoiesis research and the use of cutting-edge single cell technologies have shed new light on the developmental process of myeloid malignancies. In this review, we delve into the intricacies of clonal evolution in myeloid malignancies and its implications for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel scheme for defining the clinical implications of TP53 mutations in myeloid neoplasia. J Hematol Oncol 2023; 16:91. [PMID: 37537667 PMCID: PMC10401750 DOI: 10.1186/s13045-023-01480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND TP53 mutations (TP53MT) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. METHODS We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model by identifying an optimal VAF cutoff using a statistically robust strategy of sampling-based regression on survival data to accurately classify the TP53 allelic configuration and assess prognosis more precisely. RESULTS Overall, TP53MT were found in 1010 patients. Following the traditional criteria, 36% of the cases were classified as single hits, while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53MT. Interestingly, our method was able to upstage 192 out of 352 (54.5%) traditionally single hit lesions into a probable biallelic category. Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. In addition, single-cell DNA studies unveiled the biallelic nature of previously considered monoallelic cases. CONCLUSION Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
- Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Medical Oncology & Hematology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Division of Hematology & Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ishani Pandit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Yazan Madanat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taha Bat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Ramsha Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA
| | | | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9620 Carnegie Ave N Building, Building NE6-250, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
9
|
Pagliuca S, Gurnari C, Hercus C, Hergalant S, Hong S, Dhuyser A, D'Aveni M, Aarnink A, Rubio MT, Feugier P, Ferraro F, Carraway HE, Sobecks R, Hamilton BK, Majhail NS, Visconte V, Maciejewski JP. Leukemia relapse via genetic immune escape after allogeneic hematopoietic cell transplantation. Nat Commun 2023; 14:3153. [PMID: 37258544 PMCID: PMC10232425 DOI: 10.1038/s41467-023-38113-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Graft-versus-leukemia (GvL) reactions are responsible for the effectiveness of allogeneic hematopoietic cell transplantation as a treatment modality for myeloid neoplasia, whereby donor T- effector cells recognize leukemia neoantigens. However, a substantial fraction of patients experiences relapses because of the failure of the immunological responses to control leukemic outgrowth. Here, through a broad immunogenetic study, we demonstrate that germline and somatic reduction of human leucocyte antigen (HLA) heterogeneity enhances the risk of leukemic recurrence. We show that preexistent germline-encoded low evolutionary divergence of class II HLA genotypes constitutes an independent factor associated with disease relapse and that acquisition of clonal somatic defects in HLA alleles may lead to escape from GvL control. Both class I and II HLA genes are targeted by somatic mutations as clonal selection factors potentially impairing cellular immune responses and response to immunomodulatory strategies. These findings define key molecular modes of post-transplant leukemia escape contributing to relapse.
Collapse
Affiliation(s)
- Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- CNRS UMR 7365, IMoPA, Biopole of University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Colin Hercus
- Novocraft Technologies Sdn Bhd, Kuala Lumpur, Malaysia
| | - Sébastien Hergalant
- Inserm UMR-S 1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500, Vandœuvre-lès-Nancy, France
| | - Sanghee Hong
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adele Dhuyser
- CNRS UMR 7365, IMoPA, Biopole of University of Lorraine, Vandœuvre-lès-Nancy, France
- Histocompatibility Department, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Maud D'Aveni
- Department of Hematology, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- CNRS UMR 7365, IMoPA, Biopole of University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Alice Aarnink
- CNRS UMR 7365, IMoPA, Biopole of University of Lorraine, Vandœuvre-lès-Nancy, France
- Histocompatibility Department, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marie Thérèse Rubio
- Department of Hematology, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- CNRS UMR 7365, IMoPA, Biopole of University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Pierre Feugier
- Department of Hematology, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hetty E Carraway
- Leukemia Program, Hematology Department, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Blood and Marrow Transplant Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Binder V, Li W, Faisal M, Oyman K, Calkins DL, Shaffer J, Teets EM, Sher S, Magnotte A, Belardo A, Deruelle W, Gregory TC, Orwick S, Hagedorn EJ, Perlin JR, Avagyan S, Lichtig A, Barrett F, Ammerman M, Yang S, Zhou Y, Carson WE, Shive HR, Blachly JS, Lapalombella R, Zon LI, Blaser BW. Microenvironmental control of hematopoietic stem cell fate via CXCL8 and protein kinase C. Cell Rep 2023; 42:112528. [PMID: 37209097 PMCID: PMC10824047 DOI: 10.1016/j.celrep.2023.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
Altered hematopoietic stem cell (HSC) fate underlies primary blood disorders but microenvironmental factors controlling this are poorly understood. Genetically barcoded genome editing of synthetic target arrays for lineage tracing (GESTALT) zebrafish were used to screen for factors expressed by the sinusoidal vascular niche that alter the phylogenetic distribution of the HSC pool under native conditions. Dysregulated expression of protein kinase C delta (PKC-δ, encoded by prkcda) increases the number of HSC clones by up to 80% and expands polyclonal populations of immature neutrophil and erythroid precursors. PKC agonists such as cxcl8 augment HSC competition for residency within the niche and expand defined niche populations. CXCL8 induces association of PKC-δ with the focal adhesion complex, activating extracellular signal-regulated kinase (ERK) signaling and expression of niche factors in human endothelial cells. Our findings demonstrate the existence of reserve capacity within the niche that is controlled by CXCL8 and PKC and has significant impact on HSC phylogenetic and phenotypic fate.
Collapse
Affiliation(s)
- Vera Binder
- Dr. von Hauner Childrens' Hospital, University Hospital Ludwig Maximillian's University, Department of Pediatric Hematology/Oncology, 80337 Munich, Germany
| | - Wantong Li
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Muhammad Faisal
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Konur Oyman
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Donn L Calkins
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Jami Shaffer
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Emily M Teets
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Steven Sher
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Andrew Magnotte
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Alex Belardo
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - William Deruelle
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - T Charles Gregory
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; The Ohio State University College of Medicine, Department of Biomedical Informatics, Columbus, OH 43210, USA
| | - Shelley Orwick
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Elliott J Hagedorn
- Boston University School of Medicine, Department of Medicine, Boston, MA 02118, USA
| | - Julie R Perlin
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Asher Lichtig
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Francesca Barrett
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Michelle Ammerman
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Heather R Shive
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - James S Blachly
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; The Ohio State University College of Medicine, Department of Biomedical Informatics, Columbus, OH 43210, USA
| | - Rosa Lapalombella
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Bradley W Blaser
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Kewan T, Durmaz A, Bahaj W, Gurnari C, Terkawi L, Awada H, Ogbue OD, Ahmed R, Pagliuca S, Awada H, Kubota Y, Mori M, Ponvilawan B, Al-Share B, Patel BJ, Carraway HE, Scott J, Balasubramanian SK, Bat T, Madanat Y, Sekeres MA, Haferlach T, Visconte V, Maciejewski JP. Molecular patterns identify distinct subclasses of myeloid neoplasia. Nat Commun 2023; 14:3136. [PMID: 37253784 PMCID: PMC10229666 DOI: 10.1038/s41467-023-38515-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource ( https://drmz.shinyapps.io/mds_latent ).
Collapse
Affiliation(s)
- Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology and Medical Oncology, Yale University, New Haven, CT, USA.
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Laila Terkawi
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ramsha Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical Hematology, CHRU de Nancy, Nancy, France
| | - Hassan Awada
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bayan Al-Share
- Department of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Bhumika J Patel
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Suresh K Balasubramanian
- Department of Hematology and Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Taha Bat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yazan Madanat
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Cancer Center, University of Miami, Miami, FL, USA
| | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Kewan T, Bahaj W, Durmaz A, Aly M, Ogbue OD, Carraway HE, Sekeres MA, Visconte V, Gurnari C, Maciejewski JP. Validation of the Molecular International Prognostic Scoring System in patients with myelodysplastic syndromes. Blood 2023; 141:1768-1772. [PMID: 36720101 PMCID: PMC10933698 DOI: 10.1182/blood.2022018896] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Affiliation(s)
- Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Yale University, New Haven, CT
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Mai Aly
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Olisaemeka D Ogbue
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Mikkael A Sekeres
- Department of Hematology and Oncology, University of Miami, Miami, FL
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
13
|
Pagliuca S, Gurnari C, Hercus C, Hergalant S, Hong S, Dhuyser A, D'Aveni M, Aarnink A, Rubio MT, Feugier P, Ferraro F, Carraway HE, Sobecks R, Hamilton BK, Majhail NS, Visconte V, Maciejewski JP. Leukemia relapse via genetic immune escape after allogeneic hematopoietic cell transplantation. RESEARCH SQUARE 2023:rs.3.rs-2773498. [PMID: 37066269 PMCID: PMC10104200 DOI: 10.21203/rs.3.rs-2773498/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Graft-versus-leukemia (GvL) reactions are responsible for the effectiveness of allogeneic hematopoietic cell transplantation as a treatment modality for myeloid neoplasia, whereby donor T- effector cells recognize leukemia neoantigens. However, a substantial fraction of patients experience relapses because of the failure of the immunological responses to control leukemic outgrowth. Here, through a broad immunogenetic study, we demonstrate that germline and somatic reduction of human leucocyte antigen (HLA) heterogeneity enhances the risk of leukemic recurrence. We show that preexistent germline-encoded low evolutionary divergence of class II HLA genotypes constitutes an independent factor associated with disease relapse and that acquisition of clonal somatic defects in HLA alleles may lead to escape from GvL control. Both class I and II HLA genes are targeted by somatic mutations as clonal selection factors potentially impairing cellular immune reactions and response to immunomodulatory strategies. These findings define key molecular modes of post-transplant leukemia escape contributing to relapse.
Collapse
Affiliation(s)
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Colin Hercus
- Novocraft Technologies Sdn Bhd, Kuala Lumpur, Malaysia
| | - Sébastien Hergalant
- Inserm UMR S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
| | - Sanghee Hong
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adele Dhuyser
- Histocompatibility department, CHRU Nancy, Nancy, France
| | - Maud D'Aveni
- Department of Clinical Hematology, CHRU Nancy, Nancy, France
| | - Alice Aarnink
- Histocompatibility department, CHRU Nancy, Nancy, France
| | | | - Pierre Feugier
- Department of Clinical Hematology, CHRU Nancy, Nancy, France
| | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hetty E Carraway
- Leukemia program, Hematology Department, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Blood and Marrow Transplant Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
14
|
Bahaj W, Kewan T, Gurnari C, Durmaz A, Ponvilawan B, Pandit I, Kubota Y, Ogbue OD, Zawit M, Madanat Y, Bat T, Balasubramanian SK, Awada H, Ahmed R, Mori M, Meggendorfer M, Haferlach T, Visconte V, Maciejewski JP. Novel Scheme for Defining the Clinical Implications of TP53 Mutations in Myeloid Neoplasia. RESEARCH SQUARE 2023:rs.3.rs-2656206. [PMID: 36945617 PMCID: PMC10029089 DOI: 10.21203/rs.3.rs-2656206/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background: TP53 mutations ( TP53 MT ) occur in diverse genomic configurations. Particularly, biallelic inactivation is associated with poor overall survival in cancer. Lesions affecting only one allele might not be directly leukemogenic, questioning the presence of cryptic biallelic subclones in cases with dismal prognosis. Methods: We have collected clinical and molecular data of 7400 patients with myeloid neoplasms and applied a novel model to properly resolve the allelic configuration of TP53 MT and assess prognosis more precisely. Results: Overall, TP53 MT were found in 1010 patients. Following the traditional criteria, 36% of cases were classified as single hits while 64% exhibited double hits genomic configuration. Using a newly developed molecular algorithm, we found that 579 (57%) patients had unequivocally biallelic, 239 (24%) likely contained biallelic, and 192 (19%) had most likely monoallelic TP53 MT . Such classification was further substantiated by a survival-based model built after re-categorization. Among cases traditionally considered monoallelic, the overall survival of those with probable monoallelic mutations was similar to the one of wild-type patients and was better than that of patients with a biallelic configuration. As a result, patients with certain biallelic hits, regardless of the disease subtype (AML or MDS), had a similar prognosis. Similar results were observed when the model was applied to an external cohort. These results were recapitulated by single-cell DNA studies, which unveiled the biallelic nature of previously considered monoallelic cases. Conclusion: Our novel approach more accurately resolves TP53 genomic configuration and uncovers genetic mosaicism for the use in the clinical setting to improve prognostic evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Taha Bat
- University of Texas Southwestern Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gurnari C, Pagliuca S, Prata PH, Galimard JE, Catto LFB, Larcher L, Sebert M, Allain V, Patel BJ, Durmaz A, Pinto AL, Inacio MC, Hernandez L, Dhedin N, Caillat-Zucman S, Clappier E, Sicre de Fontbrune F, Voso MT, Visconte V, Peffault de Latour R, Soulier J, Calado RT, Socié G, Maciejewski JP. Clinical and Molecular Determinants of Clonal Evolution in Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria. J Clin Oncol 2023; 41:132-142. [PMID: 36054881 PMCID: PMC10476808 DOI: 10.1200/jco.22.00710] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Secondary myeloid neoplasms (sMNs) remain the most serious long-term complications in patients with aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH). However, sMNs lack specific predictors, dedicated surveillance measures, and early therapeutic interventions. PATIENTS AND METHODS We studied a multicenter, retrospective cohort of 1,008 patients (median follow-up 8.6 years) with AA and PNH to assess clinical and molecular determinants of clonal evolution. RESULTS Although none of the patients transplanted upfront (n = 117) developed clonal complications (either sMN or secondary PNH), the 10-year cumulative incidence of sMN in nontransplanted cases was 11.6%. In severe AA, older age at presentation and lack of response to immunosuppressive therapy were independently associated with increased risk of sMN, whereas untreated patients had the highest risk among nonsevere cases. The elapsed time from AA to sMN was 4.5 years. sMN developed in 94 patients. The 5-year overall survival reached 40% and was independently associated with bone marrow blasts at sMN onset. Myelodysplastic syndrome with high-risk phenotypes, del7/7q, and ASXL1, SETBP1, RUNX1, and RAS pathway gene mutations were the most frequent characteristics. Cross-sectional studies of clonal dynamics from baseline to evolution revealed that PIGA/human leukocyte antigen lesions decreased over time, being replaced by clones with myeloid hits. PIGA and BCOR/L1 mutation carriers had a lower risk of sMN progression, whereas myeloid driver lesions marked the group with a higher risk. CONCLUSION The risk of sMN in AA is associated with disease severity, lack of response to treatment, and patients' age. sMNs display high-risk morphological, karyotypic, and molecular features. The landscape of acquired somatic mutations is complex and incompletely understood and should be considered with caution in medical management.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
- Department of Clinical Hematology, CHRU Nancy, Nancy, France
| | - Pedro Henrique Prata
- University of Paris, Paris, France
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, Riberão Preto, Brazil
- Hematology and Transplantation Unit, Hôpital Saint Louis, AP-HP, Paris, France
| | | | - Luiz Fernando B. Catto
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, Riberão Preto, Brazil
| | - Lise Larcher
- University of Paris, Paris, France
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
| | - Marie Sebert
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
- Hematology Seniors, Hôpital Saint Louis, AP-HP, Paris, France
| | - Vincent Allain
- University of Paris, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP,Paris, France
| | - Bhumika J. Patel
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Andre L. Pinto
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, Riberão Preto, Brazil
| | - Mariana C.B. Inacio
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, Riberão Preto, Brazil
| | - Lucie Hernandez
- University of Paris, Paris, France
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
| | - Nathalie Dhedin
- Hematology Adolescents and Young Adults, Hôpital Saint Louis, AP-HP,Paris, France
| | - Sophie Caillat-Zucman
- University of Paris, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP,Paris, France
| | - Emmanuelle Clappier
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
| | - Flore Sicre de Fontbrune
- Hematology and Transplantation Unit, Hôpital Saint Louis, AP-HP, Paris, France
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Paris, France
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Régis Peffault de Latour
- University of Paris, Paris, France
- Hematology and Transplantation Unit, Hôpital Saint Louis, AP-HP, Paris, France
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Paris, France
| | - Jean Soulier
- University of Paris, Paris, France
- INSERM U 944/CNRS UMR 7212, Institut de Recherche Saint-Louis, Paris, France
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology and Oncology, University of São Paulo, Riberão Preto, Brazil
| | - Gérard Socié
- University of Paris, Paris, France
- Hematology and Transplantation Unit, Hôpital Saint Louis, AP-HP, Paris, France
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Paris, France
- INSERM UMR 976, Institut de Recherche Saint-Louis, Paris, France
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
16
|
Xu JJ, Chalk AM, Wall M, Langdon WY, Smeets MF, Walkley CR. Srsf2 P95H/+ co-operates with loss of TET2 to promote myeloid bias and initiate a chronic myelomonocytic leukemia-like disease in mice. Leukemia 2022; 36:2883-2893. [PMID: 36271153 DOI: 10.1038/s41375-022-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Recurrent mutations in RNA splicing proteins and epigenetic regulators contribute to the development of myelodysplastic syndrome (MDS) and related myeloid neoplasms. In chronic myelomonocytic leukemia (CMML), SRSF2 mutations occur in ~50% of patients and TET2 mutations in ~60%. Clonal analysis indicates that either mutation can arise as the founder lesion. Based on human cancer genetics we crossed an inducible Srsf2P95H/+ mutant model with Tet2fl/fl mice to mutate both concomitantly in hematopoietic stem cells. At 20-24 weeks post mutation induction, we observed subtle differences in the Srsf2/Tet2 mutants compared to either single mutant. Under conditions of native hematopoiesis with aging, we see a distinct myeloid bias and monocytosis in the Srsf2/Tet2 mutants. A subset of the compound Srsf2/Tet2 mutants display an increased granulocytic and distinctive monocytic proliferation (myelomonocytic hyperplasia), with increased immature promonocytes and monoblasts and binucleate promonocytes. Exome analysis of progressed disease demonstrated mutations in genes and pathways similar to those reported in human CMML. Upon transplantation, recipients developed leukocytosis, monocytosis, and splenomegaly. We reproduce Srsf2/Tet2 co-operativity in vivo, yielding a disease with core characteristics of CMML, unlike single Srsf2 or Tet2 mutation. This model represents a significant step toward building high fidelity and genetically tractable models of CMML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
- Columbia Stem Cell Initiative, Columbia University Irving Medical Centre, New York City, NY, 10032, USA
| | - Alistair M Chalk
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Meaghan Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Monique F Smeets
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Carl R Walkley
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
17
|
Polprasert C, Kongkiatkamon S, Niparuck P, Rattanathammethee T, Wudhikarn K, Chuncharunee S, Kobbuaklee S, Suksusut A, Lanamtieng T, Lawasut P, Asawapanumas T, Bunworasate U, Rojnuckarin P. Genetic mutations associated with blood count abnormalities in myeloid neoplasms. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:765-771. [PMID: 35766510 DOI: 10.1080/16078454.2022.2094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) predominantly present with varying degrees of cytopenia, while myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) exhibit proliferative features. Genetic defects underlying different complete blood count (CBC) alterations remain to be defined. OBJECTIVE We aimed to evaluate mutations and impacts on abnormal blood counts in MDS and MDS/MPN. METHOD MDS and MDS/MPN patients were recruited and sequenced by targeted next-generation sequencing. Clinical parameters, especially CBC, were evaluated for the association with genetic abnormalities and clinical outcomes. RESULTS A total of 168 patients with myeloid neoplasms were recruited (92 cases of low-risk MDS, 57 cases of high-risk MDS and 19 cases of MDS/MPN). Compared to low-risk MDS and MDS/MPN, patients with high-risk MDS were presented with more severe neutropenia with 17.5% showing absolute neutrophil counts (ANC) lower than 0.5 × 109/L. Patients with MDS/MPN more commonly harboured mutations and had a higher number of mutations per case than low-risk MDS (94.7% vs. 56.5%; p < 0.001 and 3 vs. 1; p < 0.001, respectively). Patients with SF3B1 mutations showed lower haemoglobin levels than wild-type (7.9 vs. 8.4 g/dL, p = 0.02), but were associated with normal platelet counts (286 vs. 93 × 109/L; p < 0.001). Patients with U2AF1 mutations were associated with more severe leukopenia than wild-type (3 vs. 4.18 × 109/L; p = 0.02). KRAS mutations were associated with monocytosis (p < 0.001). Multivariate analysis revealed high-risk MDS, MDS/MPN, severe neutropenia (ANC < 0.5 × 109/L), and mutations in ASXL1 and SETBP1 were associated with inferior survival outcomes. CONCLUSION Certain mutations were related to more severe anaemia, lower white blood cell count or monocytosis in Asian MDS and MDS/MPN patients.
Collapse
Affiliation(s)
- Chantana Polprasert
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Kongkiatkamon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi hospital, Bangkok, Thailand
| | | | - Kitsada Wudhikarn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi hospital, Bangkok, Thailand
| | - Sirorat Kobbuaklee
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Amornchai Suksusut
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Theerin Lanamtieng
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panisinee Lawasut
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Thiti Asawapanumas
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Bunworasate
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
El Hussein S, Loghavi S. The Impact of Clonal Hierarchy and Heterogeneity on Phenotypic Manifestations of Myelodysplastic Neoplasms. Cancers (Basel) 2022; 14:5690. [PMID: 36428782 PMCID: PMC9688198 DOI: 10.3390/cancers14225690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Until recently, conventional prognostication of myelodysplastic neoplasms (MDS) was performed using the revised International Prognostic Scoring System (IPSS-R), with additional adverse prognoses conferred by select mutations. Nonetheless, the clonal diversity and dynamics of coexisting mutations have been shown to alter the prognosis and treatment response in patients with MDS. Often in the process of clonal evolution, various initial hits are preferentially followed by a specific spectrum of secondary alterations, shaping the phenotypic and biologic features of MDS. Our ability to recapitulate the clonal ontology of MDS is a necessary step toward personalized therapy and the conceptualization of a better classification system, which ideally would take into consideration all genomic aberrations and their inferred clonal architecture in individual cases. In this review, we summarize our current understanding of the molecular landscape of MDS and the role of mutational combinations, clonal burden, and clonal hierarchy in defining the clinical fate of the disease.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14607, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Kongkiatkamon S, Terkawi L, Guan Y, Adema V, Hasipek M, Dombrovski T, Co M, Walter W, Awada H, Parker Y, Hutter S, Pagliuca S, Gurnari C, Rogers HJ, Meggendorfer M, Lindner DJ, Haferlach T, Visconte V, LaFramboise T, Jha BK, Maciejewski JP. Rare germline alterations of myeloperoxidase predispose to myeloid neoplasms. Leukemia 2022; 36:2086-2096. [PMID: 35761024 DOI: 10.1038/s41375-022-01630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Myeloperoxidase (MPO) gene alterations with variable clinical penetrance have been found in hereditary MPO deficiency, but their leukemia association in patients and carriers has not been established. Germline MPO alterations were found to be significantly enriched in myeloid neoplasms: 28 pathogenic/likely pathogenic variants were identified in 100 patients. The most common alterations were c.2031-2 A > C, R569W, M519fs* and Y173C accounting for about half of the cases. While functional experiments showed that the marrow stem cell pool of Mpo-/- mice was not increased, using competitive repopulation demonstrated that Mpo-/- grafts gained growth advantage over MPO wild type cells. This finding also correlated with increased clonogenic potential after serial replating in the setting of H2O2-induced oxidative stress. Furthermore, we demonstrated that H2O2-induced DNA damage and activation of error-prone DNA repair may result in secondary genetic damage potentially predisposing to leukemia leukemic evolution. In conclusion, our study for the first time demonstrates that germline MPO variants may constitute risk alleles for MN evolution.
Collapse
Affiliation(s)
- Sunisa Kongkiatkamon
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Laila Terkawi
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yihong Guan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vera Adema
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana Dombrovski
- Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Milo Co
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas LaFramboise
- Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Luo B, Dong F, Qin T, Zhang Q, Bai H, Wang J, Jia Y, Ma S, Jiang E, Cheng T, Xiao Z, Ema H. Myelodysplastic syndromes are multiclonal diseases derived from hematopoietic stem and progenitor cells. Exp Hematol Oncol 2022; 11:28. [PMID: 35578364 PMCID: PMC9109331 DOI: 10.1186/s40164-022-00280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are generally considered as a group of clonal diseases derived from hematopoietic stem cells, but a number of studies have suggested that they are derived from myeloid progenitor cells. We aimed to identify the cell of origin in MDS by single-cell analyses. Targeted single-cell RNA sequencing, covering six frequently mutated genes (U2AF1, SF3B1, TET2, ASXL1, TP53, and DNMT3A) in MDS, was developed and performed on individual cells isolated from the CD34+ and six lineage populations in the bone marrow of healthy donors (HDs) and patients with MDS. The detected mutations were used as clonal markers to define clones. By dissecting the distribution of clones in six lineages, the clonal origin was determined. We identified three mutations both in HDs and patients with MDS, termed clonal hematopoiesis (CH) mutations. We also identified fifteen mutations only detected in patients with MDS, termed MDS mutations. Clonal analysis showed that CH clones marked by CH mutations and MDS clones marked by MDS mutations were derived from hematopoietic stem cells as well as various hematopoietic progenitor cells. Most patients with MDS showed the chimeric state with CH clones and MDS clones. Clone size analysis suggested that CH mutations may not contribute to clonal expansion of MDS. In conclusion, MDS comprise multiple clones derived from hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Bingqing Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tiejun Qin
- MDS and MPN Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qingyun Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haitao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhijian Xiao
- MDS and MPN Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
21
|
Hu C, Wang X. Predictive and prognostic value of gene mutations in myelodysplastic syndrome treated with hypomethylating agents: a meta-analysis. Leuk Lymphoma 2022; 63:2336-2351. [PMID: 35543621 DOI: 10.1080/10428194.2022.2070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the effect of gene mutations on overall response rate (ORR) and overall survival (OS) in myelodysplastic syndrome (MDS) treated with hypomethylating agents (HMAs) has been explored, the effect is still controversial. We performed this meta-analysis to investigate the effect. The pooled odds ratio (OR) and 95% confidence interval (CI) for ORR and the pooled hazard ratio (HR) and 95%CI for OS were chosen to estimate the effect. The pooled OR of TET2 was 0.73 (95%CI: 0.59-0.91, p = 0.005) and the pooled OR of ASXL1 was 1.38 (95%CI: 1.12-1.71, p = 0.003). As for prognosis, the pooled HR of RUNX1 was 1.45 (95%CI: 1.15-1.85, p = 0.002). The pooled HR of TP53 was 2.30 (95%CI: 1.83-2.90, p < 0.001) and the pooled HR of U2AF1 was 1.41 (95%CI: 1.15-1.74, p = 0.001). There was no statistical difference shown in other genes. Therefore, TET2 mutation and ASXL1 wild-type were the predictor of better response to HMAs. Mutations of TP53, RUNX1, and U2AF1 were associated with poor prognosis in MDS.
Collapse
Affiliation(s)
- Chaolu Hu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Shen Q, Feng Y, Gong X, Jia Y, Gao Q, Jiao X, Qi S, Liu X, Wei H, Huang B, Zhao N, Song X, Ma Y, Liang S, Zhang D, Qin L, Wang Y, Qu S, Zou Y, Chen Y, Guo Y, Yi S, An G, Jiao Z, Zhang S, Li L, Yan J, Wang H, Song Z, Mi Y, Qiu L, Zhu X, Wang J, Xiao Z, Chen J. A Phenogenetic Axis that Modulates Clinical Manifestation and Predicts Treatment Outcome in Primary Myeloid Neoplasms. CANCER RESEARCH COMMUNICATIONS 2022; 2:258-276. [PMID: 36873623 PMCID: PMC9981215 DOI: 10.1158/2767-9764.crc-21-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Although the concept of "myeloid neoplasm continuum" has long been proposed, few comparative genomics studies directly tested this hypothesis. Here we report a multi-modal data analysis of 730 consecutive newly diagnosed patients with primary myeloid neoplasm, along with 462 lymphoid neoplasm cases serving as the outgroup. Our study identified a "Pan-Myeloid Axis" along which patients, genes, and phenotypic features were all aligned in sequential order. Utilizing relational information of gene mutations along the Pan-Myeloid Axis improved prognostic accuracy for complete remission and overall survival in adult patients of de novo acute myeloid leukemia and for complete remission in adult patients of myelodysplastic syndromes with excess blasts. We submit that better understanding of the myeloid neoplasm continuum might shed light on how treatment should be tailored to individual diseases. Significance The current criteria for disease diagnosis treat myeloid neoplasms as a group of distinct, separate diseases. This work provides genomics evidence for a "myeloid neoplasm continuum" and suggests that boundaries between myeloid neoplastic diseases are much more blurred than previously thought.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qingyan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Linfeng Li
- Yidu Cloud Technology Inc., Beijing, China
| | - Jun Yan
- Yidu Cloud Technology Inc., Beijing, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Zhou J, Zuo M, Li L, Li F, Ke P, Zhou Y, Xu Y, Gao X, Guan Y, Xia X, Yi X, Zhang X, Huang Y. PIM1 and CD79B Mutation Status Impacts the Outcome of Primary Diffuse Large B-Cell Lymphoma of the CNS. Front Oncol 2022; 12:824632. [PMID: 35223507 PMCID: PMC8864287 DOI: 10.3389/fonc.2022.824632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary diffuse large B cell lymphoma of the central nervous system (CNS DLBCL) is a rare malignancy with a distinct genetic profile. The clinicopathological significance of the mutation patterns remains unknown. Forty cases of primary CNS DLBCL were subjected to targeted exome sequencing covering 413 genes, including MYD88, CD79B and PIM1. Mutational analysis recognized two groups. The CDP (including CD79B and/or PIM1mutations) group was identified in 27 cases (67.5%), and the non-CDP (without CD79B and PIM1 mutations) group was identified in 13 cases 32.5%). The CDP group tended to occur in older patients (median age 57.0 vs. 48.4 years, p=0.015). Patients in the CDP group had a significantly longer 2-year overall survival (OS) (76% and 40%, p=0.0372) than those in the non-CDP group. Multivariate analysis revealed that age less than 60 years, no MYC and BCL2 double expression, and CDP group were three independent risk factors indicating favorable OS. PyClone analysis revealed the subcloning heterogeneity between the groups. In addition, transcriptional sequencing was successfully performed in 8 cases. A total of 131 genes were significantly differentially expressed between these two groups. The major categories of biological processes that were significantly altered between these two groups related to intracellular metabolism mechanisms. We developed a new molecular classification to divide CNS DLBCL into CDP and non-CDP groups based on CD79B and PIM1 mutational status. Patients with PIM1 and/or CD79B mutations had favorable long-term survival after high-dose methotrexate-based polychemotherapy.
Collapse
Affiliation(s)
- Jihao Zhou
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lifeng Li
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Fang Li
- Geneplus-Beijing Institute, Beijing, China
| | - Peng Ke
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Xu
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Xuan Gao
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Yanfang Guan
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Xuefeng Xia
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Xin Yi
- Medical Center, Geneplus-Beijing, Beijing, China
| | - Xinyou Zhang
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuhua Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
West RR, Calvo KR, Embree LJ, Wang W, Tuschong LM, Bauer TR, Tillo D, Lack J, Droll S, Hsu AP, Holland SM, Hickstein DD. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv 2022; 6:793-807. [PMID: 34529785 PMCID: PMC8945308 DOI: 10.1182/bloodadvances.2021005065] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Patients with GATA2 deficiencyharbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 deficiency to identify acquired mutations that are associated with myeloid malignancies. Myelodysplastic syndrome (MDS) was the most common diagnosis (∼44%), followed by GATA2 bone marrow immunodeficiency disorder (G2BMID; ∼37%). Thirteen percent of the cohort had GATA2 mutations but displayed no disease manifestations. There were no correlations between age or sex with disease progression or survival. Cytogenetic analyses showed a high incidence of abnormalities (∼43%), notably trisomy 8 (∼23%) and monosomy 7 (∼12%), but the changes did not correlate with lower survival. Somatic mutations in ASXL1 and STAG2 were detected in ∼25% of patients, although the mutations were rarely concomitant. Mutations in DNMT3A were found in ∼10% of patients. These somatic mutations were found similarly in G2BMID and MDS, suggesting clonal hematopoiesis in early stages of disease, before the onset of MDS. ASXL1 mutations conferred a lower survival probability and were more prevalent in female patients. STAG2 mutations also conferred a lower survival probability, but did not show a statistically significant sex bias. There was a conspicuous absence of many commonly mutated genes associated with myeloid malignancies, including TET2, IDH1/2, and the splicing factor genes. Notably, somatic mutations in chromatin-related genes and cohesin genes characterized disease progression in GATA2 deficiency.
Collapse
Affiliation(s)
- Robert R. West
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | | | - Lisa J. Embree
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Weixin Wang
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Laura M. Tuschong
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Thomas R. Bauer
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Desiree Tillo
- Genomics Core, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Justin Lack
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Stephenie Droll
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| |
Collapse
|
25
|
Herbig M, Jacobi A, Wobus M, Weidner H, Mies A, Kräter M, Otto O, Thiede C, Weickert MT, Götze KS, Rauner M, Hofbauer LC, Bornhäuser M, Guck J, Ader M, Platzbecker U, Balaian E. Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes. Sci Rep 2022; 12:870. [PMID: 35042906 PMCID: PMC8766444 DOI: 10.1038/s41598-022-04939-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagnosis. We used real-time deformability cytometry (RT-DC) to measure bone marrow biopsy samples of MDS patients and age-matched healthy individuals. RT-DC is a high-throughput (1000 cells/s) imaging flow cytometer capable of recording morphological and mechanical properties of single cells. Properties of single cells were quantified using automated image analysis, and machine learning was employed to discover morpho-mechanical patterns in thousands of individual cells that allow to distinguish healthy vs. MDS samples. We found that distribution properties of cell sizes differ between healthy and MDS, with MDS showing a narrower distribution of cell sizes. Furthermore, we found a strong correlation between the mechanical properties of cells and the number of disease-determining mutations, inaccessible with current diagnostic approaches. Hence, machine-learning assisted RT-DC could be a promising tool to automate sample analysis to assist experts during diagnosis or provide a scalable solution for MDS diagnosis to regions lacking sufficient medical experts.
Collapse
Affiliation(s)
- Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Angela Jacobi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Manja Wobus
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Heike Weidner
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Anna Mies
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen in Kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany
| | - Christian Thiede
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marie-Theresa Weickert
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Katharina S Götze
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Martina Rauner
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Lorenz C Hofbauer
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Martin Bornhäuser
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Ekaterina Balaian
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun 2021; 12:7244. [PMID: 34903734 PMCID: PMC8669028 DOI: 10.1038/s41467-021-27472-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.
Collapse
Affiliation(s)
- Brooks A Benard
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Logan B Leak
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Gentles
- Department of Medicine (Biomedical Informatics/Quantitative Sciences unit), Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Gurnari C, Pagliuca S, Kewan T, Bahaj W, Mori M, Patel BJ, Visconte V, Maciejewski JP. Is nature truly healing itself? Spontaneous remissions in Paroxysmal Nocturnal Hemoglobinuria. Blood Cancer J 2021; 11:187. [PMID: 34839350 PMCID: PMC8627504 DOI: 10.1038/s41408-021-00582-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,University of Paris, Paris, France
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bhumika J Patel
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
28
|
Awada H, Durmaz A, Gurnari C, Kishtagari A, Meggendorfer M, Kerr CM, Kuzmanovic T, Durrani J, Shreve J, Nagata Y, Radivoyevitch T, Advani AS, Ravandi F, Carraway HE, Nazha A, Haferlach C, Saunthararajah Y, Scott J, Visconte V, Kantarjian H, Kadia T, Sekeres MA, Haferlach T, Maciejewski JP. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia. Blood 2021; 138:1885-1895. [PMID: 34075412 PMCID: PMC8767789 DOI: 10.1182/blood.2020010603] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
Collapse
MESH Headings
- Bayes Theorem
- Cytogenetics
- Gene Expression Regulation, Leukemic
- Genomics
- Humans
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Machine Learning
- Mutation
- Neoplasms, Second Primary/classification
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Teodora Kuzmanovic
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jibran Durrani
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jacob Shreve
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yasunobu Nagata
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Anjali S Advani
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Hetty E Carraway
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Center for Clinical Artificial Intelligence, Cleveland Clinic, Cleveland, OH
| | | | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Mikkael A Sekeres
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
29
|
Gurnari C, Visconte V. 'We cannot paint them all with the same brush': the need for a better definition of patients with myelodysplastic syndromes for clinical trial design. Br J Haematol 2021; 196:268-269. [PMID: 34693518 DOI: 10.1111/bjh.17909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
30
|
Gallì A, Todisco G, Catamo E, Sala C, Elena C, Pozzi S, Bono E, Ferretti VV, Rizzo E, Molteni E, Zibellini S, Sarchi M, Boveri E, Ferrari J, Fiorelli N, Camaschella C, Gasparini P, Toniolo D, Cazzola M, Malcovati L. Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood 2021; 138:965-976. [PMID: 34255818 DOI: 10.1182/blood.2021011323] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Clonal cytopenia of undetermined significance (CCUS) is associated with an increased risk of developing a myeloid neoplasm with myelodysplasia (MN). To identify the features of the mutant clone(s) that is associated with clinical phenotype and progression, we studied the following cohorts of individuals: 311 patients with idiopathic cytopenia of undetermined significance (ICUS), 532 community-dwelling individuals without hematologic phenotype (n = 355) or with unexplained anemia (n = 177), and 592 patients with overt MN. Ninety-two of 311 (30%) patients with ICUS carried a somatic genetic lesion that signaled CCUS. Clonal hematopoiesis (CH) was detected in 19.7% and 27.7% of nonanemic and anemic community-dwelling individuals, respectively. Different mutation patterns and variant allele frequencies (VAFs) (clone metrics parameters) were observed in the conditions studied. Recurrent mutation patterns exhibited different VAFs associated with marrow dysplasia (0.17-0.48), indicating variable clinical expressivity of mutant clones. Unsupervised clustering analysis based on mutation profiles identified 2 major clusters, characterized by isolated DNMT3A mutations (CH-like cluster) or combinatorial mutation patterns (MN-like cluster), and showing different overall survival (HR, 1.8). In patients with CCUS, the 2 clusters had different risk of progression to MN (HR, 2.7). Within the MN-like cluster, distinct subsets with different risk of progression to MN were identified based on clone metrics. These findings unveil marked variability in the clinical expressivity of myeloid driver genes and underline the limitations of morphologic dysplasia for clinical staging of mutant hematopoietic clones. Clone metrics appears to be critical for informing clinical decision-making in patients with clonal cytopenia.
Collapse
Affiliation(s)
- Anna Gallì
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eulalia Catamo
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Elena
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
| | - Sara Pozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Bono
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | - Silvia Zibellini
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
| | - Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Boveri
- Department of Pathology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Ferrari
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nicolas Fiorelli
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Mario Cazzola
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luca Malcovati
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Stasik S, Eckardt JN, Kramer M, Röllig C, Krämer A, Scholl S, Hochhaus A, Crysandt M, Brümmendorf TH, Naumann R, Steffen B, Kunzmann V, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause S, Herbst R, Hänel M, Frickhofen N, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Rácil Z, Platzbecker U, Berdel WE, Mayer J, Serve H, Müller-Tidow C, Ehninger G, Bornhäuser M, Schetelig J, Middeke JM, Thiede C. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia. Blood Adv 2021; 5:3279-3289. [PMID: 34459887 PMCID: PMC8525221 DOI: 10.1182/bloodadvances.2021004631] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) is an important regulator of RAS signaling and frequently affected by mutations in patients with acute myeloid leukemia (AML). Despite the relevance for leukemogenesis and as a potential therapeutic target, the prognostic role is controversial. To investigate the prognostic impact of PTPN11 mutations, we analyzed 1529 adult AML patients using next-generation sequencing. PTPN11 mutations were detected in 106 of 1529 (6.93%) patients (median VAF: 24%) in dominant (36%) and subclonal (64%) configuration. Patients with PTPN11 mutations were associated with concomitant mutations in NPM1 (63%), DNMT3A (37%), and NRAS (21%) and had a higher rate of European LeukemiaNet (ELN) favorable cytogenetics (57.8% vs 39.1%; P < .001) and higher white blood cell counts (P = .007) compared with PTPN11 wild-type patients. In a multivariable analysis, PTPN11 mutations were independently associated with poor overall survival (hazard ratio [HR]: 1.75; P < .001), relapse-free survival (HR: 1.52; P = .013), and a lower rate of complete remission (odds ratio: 0.46; P = .008). Importantly, the deleterious effect of PTPN11 mutations was confined predominantly to the ELN favorable-risk group and patients with subclonal PTPN11 mutations (HR: 2.28; P < .001) but not found with dominant PTPN11 mutations (HR: 1.07; P = .775), presumably because of significant differences within the rate and spectrum of associated comutations. In conclusion, our data suggest an overall poor prognostic impact of PTPN11 mutations in AML, which is significantly modified by the underlying cytogenetics and the clonal context in which they occur.
Collapse
Affiliation(s)
- Sebastian Stasik
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan-Niklas Eckardt
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Alwin Krämer
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Martina Crysandt
- Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation , Uniklinik RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Klinik für Hämatologie, Onkologie, Hämostasiologie und Stammzelltransplantation , Uniklinik RWTH Aachen, Aachen, Germany
| | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Volker Kunzmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Hämatologie, Onkologie, Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Hämatologie, Onkologie, Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Klinik für Innere Medizin V, Paracelsus Medizinische Privatuniversität, Klinikum Nürnberg Nord, Nürnberg, Germany
| | | | - Stefan Krause
- Medizinische Klinik V, Paracelsus Medizinische Privatuniversität, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Regina Herbst
- Medizinische Klinik III, Klinikum Chemnitz, Chemnitz, Germany
| | - Mathias Hänel
- Medizinische Klinik III, Klinikum Chemnitz, Chemnitz, Germany
| | | | - Richard Noppeney
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Kaiser
- Medizinische Klinik II, St. Bernward Krankenhaus, Hildesheim, Germany
| | - Claudia D Baldus
- Hämatologie und Onkologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Zdenek Rácil
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I, Hämatologie und Zelltherapie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Jiri Mayer
- Masaryk University and University Hospital, Department of Internal Medicine, Hematology and Oncology, Brno, Czech Republic
| | - Hubert Serve
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany; and
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
32
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
33
|
Genetics of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:cancers13143380. [PMID: 34298596 PMCID: PMC8304604 DOI: 10.3390/cancers13143380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndrome (MDS) describes a heterogeneous group of bone marrow diseases, now understood to reflect numerous germline and somatic drivers, characterized by recurrent cytogenetic abnormalities and gene mutations. Precursor conditions including clonal hematopoiesis of indeterminate potential and clonal cytopenia of undetermined significance confer risk for MDS as well as other hematopoietic malignancies and cardiovascular complications. The future is likely to bring an understanding of those individuals who are at the highest risk of progression to MDS and preventive strategies to prevent malignant transformation.
Collapse
|
34
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
35
|
Bonora M, Missiroli S, Perrone M, Fiorica F, Pinton P, Giorgi C. Mitochondrial Control of Genomic Instability in Cancer. Cancers (Basel) 2021; 13:cancers13081914. [PMID: 33921106 PMCID: PMC8071454 DOI: 10.3390/cancers13081914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer cells display among its hallmark genomic instability. This is a progressive tendency in accumulate genome alteration which contributes to the damage of genes regulating cell division and tumor suppression. Genomic instability favors the appearance of survival-promoting mutations, increasing the likelihood that those mutations will propagate into daughter cells and have a significant impact on cancer progression. Among the many factor influencing this phenomenon, mitochondrial physiology is emerging. Mitochondria are bound to genomic instability by responding to DNA alteration to trigger cell death programs and as a source for DNA damage. Mitochondrial alterations prototypical of cancer can desensitize the mitochondrial route of cell death, facilitating the survival of cell acquiring new mutations, or can stimulate mitochondrial mediated DNA damage, boosting the mutation rate and genomic instability itself. Abstract Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Sonia Missiroli
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Mariasole Perrone
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Paolo Pinton
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Carlotta Giorgi
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
- Correspondence:
| |
Collapse
|
36
|
Moiseev IS, Tcvetkov NY, Barkhatov IM, Barabanshikova MV, Bug DS, Petuhova NV, Tishkov AV, Bakin EA, Izmailova EA, Shakirova AI, Kulagin AD, Morozova EV. High mutation burden in the checkpoint and micro-RNA processing genes in myelodysplastic syndrome. PLoS One 2021; 16:e0248430. [PMID: 33730109 PMCID: PMC7968630 DOI: 10.1371/journal.pone.0248430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
A number of sequencing studies identified the prognostic impact of somatic mutations in myelodysplastic syndrome (MDS). However the majority of them focused on methylation regulation, apoptosis and proliferation genes. Despite the number of experimental studies published on the role of micro-RNA processing and checkpoint genes in the development of MDS, the clinical data about mutational landscape in these genes is limited. We performed a pilot study which evaluated mutational burden in these genes and their association with common MDS mutations. High prevalence of mutations was observed in the genes studied: 54% had mutations in DICER1, 46% had mutations in LAG3, 20% in CTLA4, 23% in B7-H3, 17% in DROSHA, 14% in PD-1 and 3% in PD-1L. Cluster analysis that included these mutations along with mutations in ASXL1, DNMT3A, EZH2, IDH1, RUNX1, SF3B1, SRSF2, TET2 and TP53 effectively predicted overall survival in the study group (HR 4.2, 95%CI 1.3-13.6, p = 0.016). The study results create the rational for incorporating micro-RNA processing and checkpoint genes in the sequencing panels for MDS and evaluate their role in the multicenter studies.
Collapse
Affiliation(s)
- Ivan Sergeevich Moiseev
- RM Gorbacheva Research Institute, Pavlov University, Saint-Petersburg, Russian Federation
- * E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hasserjian RP, Buckstein R, Patnaik MM. Navigating Myelodysplastic and Myelodysplastic/Myeloproliferative Overlap Syndromes. Am Soc Clin Oncol Educ Book 2021; 41:328-350. [PMID: 34010050 DOI: 10.1200/edbk_320113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndromes (MDS) and MDS/myeloproliferative neoplasms (MPNs) are clonal diseases that differ in morphologic diagnostic criteria but share some common disease phenotypes that include cytopenias, propensity to acute myeloid leukemia evolution, and a substantially shortened patient survival. MDS/MPNs share many clinical and molecular features with MDS, including frequent mutations involving epigenetic modifier and/or spliceosome genes. Although the current 2016 World Health Organization classification incorporates some genetic features in its diagnostic criteria for MDS and MDS/MPNs, recent accumulation of data has underscored the importance of the mutation profiles on both disease classification and prognosis. Machine-learning algorithms have identified distinct molecular genetic signatures that help refine prognosis and notable associations of these genetic signatures with morphologic and clinical features. Combined geno-clinical models that incorporate mutation data seem to surpass the current prognostic schemes. Future MDS classification and prognostication schema will be based on the portfolio of genetic aberrations and traditional features, such as blast count and clinical factors. Arriving at these systems will require studies on large patient cohorts that incorporate advanced computational analysis. The current treatment algorithm in MDS is based on patient risk as derived from existing prognostic and disease classes. Luspatercept is newly approved for patients with MDS and ring sideroblasts who are transfusion dependent after erythropoietic-stimulating agent failure. Other agents that address red blood cell transfusion dependence in patients with lower-risk MDS and the failure of hypomethylating agents in higher-risk disease are in advanced testing. Finally, a plethora of novel targeted agents and immune checkpoint inhibitors are being evaluated in combination with a hypomethylating agent backbone to augment the depth and duration of response and, we hope, improve overall survival.
Collapse
Affiliation(s)
| | - Rena Buckstein
- Division of Hematology/Oncology, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN
| |
Collapse
|
38
|
Awada H, Durmaz A, Gurnari C, Kishtagari A, Zawit M, Pagliuca S, Visconte V. Friend or foe? The case of Wilms' Tumor 1 (WT1) mutations in acute myeloid leukemia. Blood Cells Mol Dis 2021; 88:102549. [PMID: 33636567 DOI: 10.1016/j.bcmd.2021.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Wilms tumor 1 (WT1) gene is commonly mutated in acute myeloid leukemia (AML), particularly in younger age population. The mechanism through which WT1 mutations drive leukemogenesis have not been fully elucidated; however, recent studies reported an association with the epigenetic pathway. Here, we studied the phenotypic characteristics and somatic mutational profile of 114 WT1-mutant AML patients and focused on potential WT1 gene relations to other cooperative genomic events that may impact disease prognosis. Invariant phenotypic and genomic associations of WT1 mutations in AML were uncovered and rigorously described. Our findings help improving the current understanding and definition of WT1-mutant AML patients' characteristics and clinical outcomes.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; University of Paris, Paris, France
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
39
|
Awada H, Kerr CM, Durmaz A, Adema V, Gurnari C, Pagliuca S, Zawit M, Kongkiatkamon S, Rogers HJ, Saunthararajah Y, Sekeres MA, Carraway H, Maciejewski JP, Visconte V. Clonal trajectories and cellular dynamics of myeloid neoplasms with SF3B1 mutations. Leukemia 2021; 35:3324-3328. [PMID: 33603144 DOI: 10.1038/s41375-021-01176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vera Adema
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sunisa Kongkiatkamon
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty Carraway
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
40
|
Analysis of Intratumoral Heterogeneity in Myelodysplastic Syndromes with Isolated del(5q) Using a Single Cell Approach. Cancers (Basel) 2021; 13:cancers13040841. [PMID: 33671317 PMCID: PMC7922695 DOI: 10.3390/cancers13040841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by ineffective differentiation of one or more bone marrow cell lineages. Only 50% of patients with de novo MDS will be found to have cytogenetic abnormalities, of which del(5q) is the most common. In 10% of MDS cases, del(5q) is found as a sole abnormality. In this work, a single cell approach was used to analyze intratumoral heterogeneity in four patients with MDS with isolated del(5q). We were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS with isolated del(5q) and the importance of patient-specific molecular characterization. Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological diseases. Among them, the most well characterized subtype is MDS with isolated chromosome 5q deletion (MDS del(5q)), which is the only one defined by a cytogenetic abnormality that makes these patients candidates to be treated with lenalidomide. During the last decade, single cell (SC) analysis has emerged as a powerful tool to decipher clonal architecture and to further understand cancer and other diseases at higher resolution level compared to bulk sequencing techniques. In this study, a SC approach was used to analyze intratumoral heterogeneity in four patients with MDS del(5q). Single CD34+CD117+CD45+CD19- bone marrow hematopoietic stem progenitor cells were isolated using the C1 system (Fluidigm) from diagnosis or before receiving any treatment and from available follow-up samples. Selected somatic alterations were further analyzed in SC by high-throughput qPCR (Biomark HD, Fluidigm) using specific TaqMan assays. A median of 175 cells per sample were analyzed. Inferred clonal architectures were relatively simple and either linear or branching. Similar to previous studies based on bulk sequencing to infer clonal architecture, we were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS del(5q) and the importance of patient-specific molecular characterization.
Collapse
|
41
|
Reilly A, Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. Stem Cell Res 2021; 52:102195. [PMID: 33592565 PMCID: PMC10115516 DOI: 10.1016/j.scr.2021.102195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of cells from patients with genetic disorders to pluripotency is a promising avenue to understanding disease biology. A number of induced pluripotent stem cell (iPSC) models of inherited monogenic blood disorders have been reported over the past decade. However, the application of iPSCs for modeling of hematological malignancies has only recently been explored. Blood malignancies comprise a spectrum of genetically heterogeneous disorders marked by the acquisition of somatic mutations and chromosomal aberrations. This genetic heterogeneity presents unique challenges for iPSC modeling, but also opportunities to capture genetically distinct states and generate models of stepwise progression from normal to malignant hematopoiesis. Here we briefly review the current state of this field, highlighting current models of acquired pre-malignant and malignant blood disorders and clonal evolution, and challenges including barriers to reprogramming and differentiation of iPSCs into bona fide hematopoietic stem cells.
Collapse
Affiliation(s)
- Andreea Reilly
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
42
|
Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev 2020; 48:100791. [PMID: 33423844 DOI: 10.1016/j.blre.2020.100791] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis with varying degrees of dysplasia and peripheral cytopenias. MDS are driven by structural chromosomal alterations and somatic mutations in neoplastic myeloid cells, which are supported by a tumorigenic and a proinflammatory marrow microenvironment. Current treatment strategies for lower-risk MDS focus on improving quality of life and cytopenias, while prolonging survival and delaying disease progression is the focus for higher-risk MDS. Several promising drugs are in the horizon, including the hypoxia-inducible factor stabilizer roxadustat, telomerase inhibitor imetelstat, oral hypomethylating agents (CC-486), TP53 modulators (APR-246 and ALRN-6924), and the anti-CD47 antibody magrolimab. Targeted therapies approved for acute myeloid leukemia treatment, such as isocitrate dehdyrogenase inhibitors and venetoclax, are also being studied for use in MDS. In this review, we provide a brief overview of pathogenesis and current treatment strategies in MDS followed by a discussion of newer agents that are under clinical investigation.
Collapse
|
43
|
Pellagatti A, Boultwood J. SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul 2020; 79:100776. [PMID: 33358369 DOI: 10.1016/j.jbior.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
44
|
Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells 2020; 9:E2512. [PMID: 33233642 PMCID: PMC7699752 DOI: 10.3390/cells9112512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular pathogenesis of myelodysplastic syndrome (MDS) is complex due to the high rate of genomic heterogeneity. Significant advances have been made in the last decade which elucidated the landscape of molecular alterations (cytogenetic abnormalities, gene mutations) in MDS. Seminal experimental studies have clarified the role of diverse gene mutations in the context of disease phenotypes, but the lack of faithful murine models and/or cell lines spontaneously carrying certain gene mutations have hampered the knowledge on how and why specific pathways are associated with MDS pathogenesis. Here, we summarize the genomics of MDS and provide an overview on the deregulation of pathways and the latest molecular targeted therapeutics.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| |
Collapse
|
45
|
Nagata Y, Zhao R, Awada H, Kerr CM, Mirzaev I, Kongkiatkamon S, Nazha A, Makishima H, Radivoyevitch T, Scott JG, Sekeres MA, Hobbs BP, Maciejewski JP. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood 2020; 136:2249-2262. [PMID: 32961553 PMCID: PMC7702479 DOI: 10.1182/blood.2020005488] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Morphologic interpretation is the standard in diagnosing myelodysplastic syndrome (MDS), but it has limitations, such as varying reliability in pathologic evaluation and lack of integration with genetic data. Somatic events shape morphologic features, but the complexity of morphologic and genetic changes makes clear associations challenging. This article interrogates novel clinical subtypes of MDS using a machine-learning technique devised to identify patterns of cooccurrence among morphologic features and genomic events. We sequenced 1079 MDS patients and analyzed bone marrow morphologic alterations and other clinical features. A total of 1929 somatic mutations were identified. Five distinct morphologic profiles with unique clinical characteristics were defined. Seventy-seven percent of higher-risk patients clustered in profile 1. All lower-risk (LR) patients clustered into the remaining 4 profiles: profile 2 was characterized by pancytopenia, profile 3 by monocytosis, profile 4 by elevated megakaryocytes, and profile 5 by erythroid dysplasia. These profiles could also separate patients with different prognoses. LR MDS patients were classified into 8 genetic signatures (eg, signature A had TET2 mutations, signature B had both TET2 and SRSF2 mutations, and signature G had SF3B1 mutations), demonstrating association with specific morphologic profiles. Six morphologic profiles/genetic signature associations were confirmed in a separate analysis of an independent cohort. Our study demonstrates that nonrandom or even pathognomonic relationships between morphology and genotype to define clinical features can be identified. This is the first comprehensive implementation of machine-learning algorithms to elucidate potential intrinsic interdependencies among genetic lesions, morphologies, and clinical prognostic in attributes of MDS.
Collapse
Affiliation(s)
- Yasunobu Nagata
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Ran Zhao
- Department of Quantitative Health Sciences and
| | - Hassan Awada
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Cassandra M Kerr
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Inom Mirzaev
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Sunisa Kongkiatkamon
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH; and
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Jacob G Scott
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH; and
| | | | - Jaroslaw P Maciejewski
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
46
|
Hebeda K, Boudova L, Beham-Schmid C, Orazi A, Kvasnicka HM, Gianelli U, Tzankov A. Progression, transformation, and unusual manifestations of myelodysplastic syndromes and myelodysplastic-myeloproliferative neoplasms: lessons learned from the XIV European Bone Marrow Working Group Course 2019. Ann Hematol 2020; 100:117-133. [PMID: 33128619 DOI: 10.1007/s00277-020-04307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Disease progression in myelodysplastic syndromes (MDS) and myelodysplastic-myeloproliferative neoplasms (MDS/MPN) is a major source of mortality. The European Bone Marrow Working Group organized a dedicated workshop to address MDS and MDS/MPN progression, and myeloid neoplasms with histiocytic and lymphoblastic outgrowths in 2019 in Frankfurt, Germany. In this report, we summarize clinical, histopathological, and molecular features of 28 cases. Most cases illustrate that prognostic mutational profiles change during follow-up due to accumulation of high-risk mutations in the trunk clone, and that results from repeated molecular testing can often explain the clinical progression, suggesting that regular genetic testing may predict transformation by early detection of aggressive clones. Importantly, identical mutations can be linked to different clinical behaviors or risks of fibrotic progression and/or transformation in a context-dependent manner, i.e., MDS or MDS/MPN. Moreover, the order of mutational acquisition and the involved cell lineages matter. Several cases exemplify that histiocytic outgrowths in myeloid neoplasms are usually accompanied by a more aggressive clinical course and may be considered harbinger of disease progression. Exceptionally, lymphoblastic transformations can be seen. As best estimable, the histiocytic and lymphoblastic compounds in all occasions were clonally related to the myeloid compound and-where studied-displayed genomic alterations of, e.g., transcription factor genes or genes involved in MAPK signaling that might be mechanistically linked to the respective type of non-myeloid outgrowth.
Collapse
Affiliation(s)
- Konnie Hebeda
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Attilio Orazi
- Department of Pathology, Texas Tech Health Sciences Center El Paso, El Paso, TX, USA
| | | | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and Fondazione IRCCS, Ca' Granda-Maggiore Policlinico, Milan, Italy
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland.
| |
Collapse
|
47
|
Prognostic Markers of Myelodysplastic Syndromes. ACTA ACUST UNITED AC 2020; 56:medicina56080376. [PMID: 32727068 PMCID: PMC7466347 DOI: 10.3390/medicina56080376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal disease characterized by multilineage dysplasia, peripheral blood cytopenias, and a high risk of transformation to acute myeloid leukemia. In theory, from clonal hematopoiesis of indeterminate potential to hematologic malignancies, there is a complex interplay between genetic and epigenetic factors, including miRNA. In practice, karyotype analysis assigns patients to different prognostic groups, and mutations are often associated with a particular disease phenotype. Among myeloproliferative disorders, secondary MDS is a group of special entities with a typical spectrum of genetic mutations and cytogenetic rearrangements resembling those in de novo MDS. This overview analyzes the present prognostic systems of MDS and the most recent efforts in the search for genetic and epigenetic markers for the diagnosis and prognosis of MDS.
Collapse
|
48
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
49
|
Zhang H, Song Y, Du Z, Li X, Zhang J, Chen S, Chen F, Li T, Zhan Q. Exome sequencing identifies new somatic alterations and mutation patterns of tongue squamous cell carcinoma in a Chinese population. J Pathol 2020; 251:353-364. [PMID: 32432340 DOI: 10.1002/path.5467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is an aggressive group of tumors characterized by high rates of regional lymph node metastasis and local recurrence. Emerging evidence has revealed genetic variations of TSCC across different geographical regions due to the impact of multiple risk factors such as chewing betel-quid. However, we know little of the mutational processes of TSCC in the Chinese population without the history of chewing betel-quid/tobacco. To explore the mutational spectrum of this disease, we performed whole-exome sequencing of sample pairs, comprising tumors and normal tissue, from 82 TSCC patients. In addition to identifying seven previously known TSCC-associated genes (TP53, CDKN2A, PIK3CA, NOTCH1, ASXL1, USH2A, and CSMD3), the analysis revealed six new genes (GNAQ, PRG4, RP1, ZNF16, NBEA, and PTPRC) that had not been reported previously in TSCC. Our in vitro experiments identified ZNF16 for the first time as a solid tumor associated gene to promote malignancy of TSCC cells. We also identified a microRNA (miR-585-5p) encoded by the 5q35.1 region and characterized it as a tumor suppressor by targeting SOX9. At least one non-silent mutation of genes involved in the 10 canonical oncogenic pathways (Notch, RTK-RAS, PI3K, Wnt, Cell cycle, p53, Myc, Hippo, TGFβ, and Nrf2) was found in 82.9% of cases. Collectively, our data extend the spectrum of TSCC mutations and define novel diagnosis markers and potential clinical targets for TSCC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhenglin Du
- China National Center for Bioinformation & National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Shuai Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Tiejun Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, PR China.,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
50
|
Clonal dominance is an adverse prognostic factor in acute myeloid leukemia treated with intensive chemotherapy. Leukemia 2020; 35:712-723. [PMID: 32581253 DOI: 10.1038/s41375-020-0932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Intra-tumor heterogeneity portends poor outcome in many cancers. In AML, a higher number of drivers worsens prognosis. The Shannon Index is a robust metric of clonal heterogeneity that accounts for the number of clones, but also their relative abundance. We show that a Shannon Index can be estimated from bulk sequencing, which is correlated (ρ = 0.76) with clonal diversity from single-colony genotyping. In a discovery cohort of 292 patients with sequencing of 43 genes, a higher number of drivers (HR = 1.18, P = 0.028) and a lower Shannon Index (HR = 0.68, P = 0.048), the latter reflecting clonal dominance, are independently associated with worse OS independently of European LeukemiaNet 2017 risk. These findings are validated in an independent cohort of 1184 patients with 111-gene sequencing (number of drivers HR = 1.16, P = 1 × 10-5, Shannon Index HR = 0.81, P = 0.007). By re-interrogating paired diagnosis/relapse exomes from 50 cytogenetically normal AMLs, we find clonal dominance at diagnosis to be correlated with the gain of a significantly higher number of mutations at relapse (P = 6 × 10-6), hence with clonal sweeping. Our results suggest that clonal dominance at diagnosis is associated with the presence of a leukemic phenotype allowing rapid expansion of new clones and driving relapse after chemotherapy.
Collapse
|