1
|
Revenu C, Lebreton C, Cannata Serio M, Rosello M, Duclaux-Loras R, Duroure K, Nicolle O, Eggeler F, Prospéri MT, Stoufflet J, Vougny J, Lépine P, Michaux G, Cerf-Bensussan N, Coudrier E, Perez F, Parlato M, Del Bene F. Myosin 1b regulates intestinal epithelial morphogenesis via interaction with UNC45A. Cell Rep 2024; 43:114941. [PMID: 39636728 DOI: 10.1016/j.celrep.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Vesicle trafficking and the establishment of apicobasal polarity are essential processes in epithelial morphogenesis. UNC45A deficiency has been reported in a multi-organ syndrome presenting with severe diarrhea associated with enterocyte polarity defects. Myosin 1b, an actin motor able to bind membranes, regulates membrane shaping and vesicle trafficking. Here, we show that MYO1B is part of the UNC45A interactome. In the absence of UNC45A, myosin 1b is degraded and forms aggregates when proteasome activity is inhibited. In 3D Caco-2 cells, lumen formation is impaired in the absence of myosin 1b, associated with spindle orientation defects, Golgi apparatus fragmentation, and trafficking impairment. In zebrafish larvae, loss of myo1b results in intestinal bulb epithelium folding defects associated with terminal web disorganization and vesicle accumulation, reminiscent of villous atrophy. In conclusion, we show that myosin 1b plays an unexpected role in the development of the intestinal epithelium downstream of UNC45A, establishing its contribution in the gut defects reported in UNC45A patients.
Collapse
Affiliation(s)
- Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corinne Lebreton
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Magda Cannata Serio
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marion Rosello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Fanny Eggeler
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Marie-Thérèse Prospéri
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Julie Stoufflet
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Priscilla Lépine
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| |
Collapse
|
2
|
Handler JS, Li Z, Dveirin RK, Fang W, Goodarzi H, Fertig EJ, Kalhor R. Identifying a gene signature of metastatic potential by linking pre-metastatic state to ultimate metastatic fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607813. [PMID: 39185156 PMCID: PMC11343111 DOI: 10.1101/2024.08.14.607813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.
Collapse
Affiliation(s)
- Jesse S Handler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zijie Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel K Dveirin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
4
|
Sato Y, Yoshimura K, Matsuda K, Haraguchi T, Marumo A, Yamagishi M, Sato S, Ito K, Yajima J. Membrane-bound myosin IC drives the chiral rotation of the gliding actin filament around its longitudinal axis. Sci Rep 2023; 13:19908. [PMID: 37963943 PMCID: PMC10646037 DOI: 10.1038/s41598-023-47125-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Myosin IC, a single-headed member of the myosin I family, specifically interacts with anionic phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) in the cell membrane via the pleckstrin homology domain located in the myosin IC tail. Myosin IC is widely expressed and physically links the cell membrane to the actin cytoskeleton; it plays various roles in membrane-associated physiological processes, including establishing cellular chirality, lipid transportation, and mechanosensing. In this study, we evaluated the motility of full-length myosin IC of Drosophila melanogaster via the three-dimensional tracking of quantum dots bound to actin filaments that glided over a membrane-bound myosin IC-coated surface. The results revealed that myosin IC drove a left-handed rotational motion in the gliding actin filament around its longitudinal axis, indicating that myosin IC generated a torque perpendicular to the gliding direction of the actin filament. The quantification of the rotational motion of actin filaments on fluid membranes containing different PI(4,5)P2 concentrations revealed that the rotational pitch was longer at lower PI(4,5)P2 concentrations. These results suggest that the torque generated by membrane-bound myosin IC molecules can be modulated based on the phospholipid composition of the cell membrane.
Collapse
Affiliation(s)
- Yusei Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kohei Yoshimura
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Kyohei Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Akisato Marumo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Suguru Sato
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Inage, Chiba, Japan.
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Komaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Research Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Zhang HF, Delaidelli A, Javed S, Turgu B, Morrison T, Hughes CS, Yang X, Pachva M, Lizardo MM, Singh G, Hoffmann J, Huang YZ, Patel K, Shraim R, Kung SH, Morin GB, Aparicio S, Martinez D, Maris JM, Bosse KR, Williams KC, Sorensen PH. A MYCN-independent mechanism mediating secretome reprogramming and metastasis in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadg6693. [PMID: 37611092 PMCID: PMC10446492 DOI: 10.1126/sciadv.adg6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Taylor Morrison
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Christopher S. Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Xiaqiu Yang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Manideep Pachva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Michael M. Lizardo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Zhou Huang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| |
Collapse
|
6
|
Diaz-Valencia JD, Estrada-Abreo LA, Rodríguez-Cruz L, Salgado-Aguayo AR, Patiño-López G. Class I Myosins, molecular motors involved in cell migration and cancer. Cell Adh Migr 2022; 16:1-12. [PMID: 34974807 PMCID: PMC8741282 DOI: 10.1080/19336918.2021.2020705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023] Open
Abstract
Class I Myosins are a subfamily of motor proteins with ATPase activity and a characteristic structure conserved in all myosins: A N-Terminal Motor Domain, a central Neck and a C terminal Tail domain. Humans have eight genes for these myosins. Class I Myosins have different functions: regulate membrane tension, participate in endocytosis, exocytosis, intracellular trafficking and cell migration. Cell migration is influenced by many cellular components including motor proteins, like myosins. Recently has been reported that changes in myosin expression have an impact on the migration of cancer cells, the formation of infiltrates and metastasis. We propose that class I myosins might be potential markers for future diagnostic, prognostic or even as therapeutic targets in leukemia and other cancers.Abbreviations: Myo1g: Myosin 1g; ALL: Acute Lymphoblastic Leukemia, TH1: Tail Homology 1; TH2: Tail Homology 2; TH3: Tail Homology 3.
Collapse
Affiliation(s)
- Juan D. Diaz-Valencia
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| | - Laura A. Estrada-Abreo
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Leonor Rodríguez-Cruz
- Cell Biology and Flow Cytometry Laboratory, Metropolitan Autonomous University, México City, Mexico
| | - Alfonso R. Salgado-Aguayo
- Rheumatic Diseases Laboratory, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Genaro Patiño-López
- Immunology and Proteomics Laboratory, Children’s Hospital of Mexico, Mexico City, Mexico
| |
Collapse
|
7
|
Liu PJ, Gunther LK, Garone ME, Zhang C, Perez D, Bi-Karchin J, Pellenz CD, Chase SE, Presti MF, Plante EL, Martin CE, Lovric S, Yengo CM, Hildebrandt F, Krendel M. Steroid-Resistant Nephrotic Syndrome-Associated MYO1E Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. J Am Soc Nephrol 2022; 33:1989-2007. [PMID: 36316095 PMCID: PMC9678034 DOI: 10.1681/asn.2021111505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Laura K. Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Diana Perez
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jing Bi-Karchin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Christopher D. Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Maria F. Presti
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Eric L. Plante
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Svjetlana Lovric
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
8
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
9
|
Pernier J, Schauer K. Does the Actin Network Architecture Leverage Myosin-I Functions? BIOLOGY 2022; 11:biology11070989. [PMID: 36101369 PMCID: PMC9311500 DOI: 10.3390/biology11070989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the “pantograph” for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à L’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
10
|
Abstract
The precise assembly and disassembly of actin filaments is required for several cellular processes, and their regulation has been scrutinized for decades. Twenty years ago, a handful of studies marked the advent of a new type of experiment to study actin dynamics: using optical microscopy to look at individual events, taking place on individual filaments in real time. Here, we summarize the main characteristics of this approach and how it has changed our ability to understand actin assembly dynamics. We also highlight some of its caveats and reflect on what we have learned over the past 20 years, leading us to propose a set of guidelines, which we hope will contribute to a better exploitation of this powerful tool.
Collapse
|
11
|
Xie L, Huang H, Zheng Z, Yang Q, Wang S, Chen Y, Yu J, Cui C. MYO1B enhances colorectal cancer metastasis by promoting the F-actin rearrangement and focal adhesion assembly via RhoA/ROCK/FAK signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1543. [PMID: 34790749 PMCID: PMC8576704 DOI: 10.21037/atm-21-4702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Background Colorectal cancer (CRC) has a high worldwide incidence and mortality. Tumor metastasis is one of the primary reasons for the poor prognosis of CRC patients. However, the mechanism underlying CRC metastasis is still unclear. Myosin 1B (MYO1B) is important for cell migration and motility and is part of the myosin superfamily that contains various myosins. Studies of prostate, cervical, and head and neck cancer have revealed preliminary findings concerning the effect of MYO1B on tumor metastasis. However, the role of MYO1B in CRC metastasis, as well as its underlying mechanism, remains unknown. Methods Quantitative real-time PCR and immunohistochemical staining methods were used to analyze the expression of MYO1B in human CRC and normal mucosa tissues. Lentivirus vector-based MYO1B oligonucleotides and short hairpin RNA (shRNA) were used to examine the functional relevance of MYO1B in CRC cells. Co-immunoprecipitation, western blotting, and immunofluorescence assays were used to investigate the underlying mechanism of MYO1B-mediated cell migration. Results The expression of MYO1B was increased in most CRC tissues and was positively associated with a greater risk of tumor metastasis and poor prognosis for patients. MYO1B was significantly associated with the migration and invasion properties of CRC cells in vitro and in vivo. MYO1B promoted F-actin rearrangement through the ROCK2/LIMK/Cofilin axis by enhancing the activation of RhoA. MYO1B also promoted the assembly of focal adhesions by targeting RhoA. Conclusions MYO1B plays a vital role in CRC metastasis by promoting the activation of RhoA. MYO1B may not only be a valid biomarker for predicting the risk of metastasis and poor prognosis in CRC but may also be a potential therapeutic target for patients with a high risk of tumor metastasis.
Collapse
Affiliation(s)
- Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyun Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shubo Wang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yaoxu Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Prospéri MT, Pernier J, Lachuer H, Coudrier E. Plekhh1, a partner of myosin 1 and an effector of EphB2 controls the cortical actin network for cell repulsion. J Cell Sci 2021; 134:272686. [PMID: 34723325 DOI: 10.1242/jcs.258802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
EphB2/ephrinB signalling that plays a major role in cell segregation during embryonic development and tissue homeostasis, induces an important reorganization of the cortical actin network. We have previously reported that myosin 1b contributes to the reorganisation of the cortical actin network upon EphB2 signalling. In this report we have identified Plekhh1, as a new partner of members of the myosin 1 family and EphB2 receptors. Plekhh1 interacts with myosin 1b via its N-terminus domain and with EphB2 via its C-terminus domain. Furthermore, Plekhh1 is tyrosine-phosphorylated, and this depends on EphB2 kinase activity. Such as the manipulation of the expression level of myosin 1b and myosin 1c, manipulation of Plekhh1 expression levels reveals that Plekhh1 controls the formation of filopodia, the length of focal adhesions and the formation of blebs. Furthermore, binding of Plekhh1 interacting domain to myosin 1b increases the motor activity of myosin 1b in vitro. Together our data show that Plekhh1 is an effector of EphB2 and suggest that Plekhh1 regulates the cortical actin network via the interaction of its N-terminus domain with myosin 1 upon EphB2/ephrinB signalling.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Hugo Lachuer
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| |
Collapse
|
13
|
Bartosova M, Zhang C, Schaefer B, Herzog R, Ridinger D, Damgov I, Levai E, Marinovic I, Eckert C, Romero P, Sallay P, Ujszaszi A, Unterwurzacher M, Wagner A, Hildenbrand G, Warady BA, Schaefer F, Zarogiannis SG, Kratochwill K, Schmitt CP. Glucose Derivative Induced Vasculopathy in Children on Chronic Peritoneal Dialysis. Circ Res 2021; 129:e102-e118. [PMID: 34233458 DOI: 10.1161/circresaha.121.319310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maria Bartosova
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Conghui Zhang
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - David Ridinger
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | - Ivan Damgov
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Eszter Levai
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- ELKH-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary (E.L.)
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Iva Marinovic
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Institute of Pathology (C.E.), University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery (P.R.), University of Heidelberg, Heidelberg, Germany
| | - Peter Sallay
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Akos Ujszaszi
- Division of Nephrology, Heidelberg University Hospital, Heidelberg, Germany (A.U.)
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | | | - Franz Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece (S.G.Z.)
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Pernier J, Morchain A, Caorsi V, Bertin A, Bousquet H, Bassereau P, Coudrier E. Myosin 1b flattens and prunes branched actin filaments. J Cell Sci 2020; 133:jcs247403. [PMID: 32895245 PMCID: PMC7522023 DOI: 10.1242/jcs.247403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 01/29/2023] Open
Abstract
Motile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Here, by performing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy, we show that this molecular motor flattens (reduces the branch angle) in the Arp2/3-dependent actin branches, resulting in them breaking, and reduces the probability of new branches forming. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and dynamics of actin networks in different cellular regions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| | - Antoine Morchain
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | | | - Aurélie Bertin
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Hugo Bousquet
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| |
Collapse
|
15
|
Walker M, Rizzuto P, Godin M, Pelling AE. Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Sci Rep 2020; 10:7696. [PMID: 32376876 PMCID: PMC7203149 DOI: 10.1038/s41598-020-64725-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
When stretched, cells cultured on 2D substrates share a universal softening and fluidization response that arises from poorly understood remodeling of well-conserved cytoskeletal elements. It is known, however, that the structure and distribution of the cytoskeleton is profoundly influenced by the dimensionality of a cell's environment. Therefore, in this study we aimed to determine whether cells cultured in a 3D matrix share this softening behavior and to link it to cytoskeletal remodeling. To achieve this, we developed a high-throughput approach to measure the dynamic mechanical properties of cells and allow for sub-cellular imaging within physiologically relevant 3D microtissues. We found that fibroblast, smooth muscle and skeletal muscle microtissues strain softened but did not fluidize, and upon loading cessation, they regained their initial mechanical properties. Furthermore, microtissue prestress decreased with the strain amplitude to maintain a constant mean tension. This adaptation under an auxotonic condition resulted in lengthening. A filamentous actin cytoskeleton was required, and responses were mirrored by changes to actin remodeling rates and visual evidence of stretch-induced actin depolymerization. Our new approach for assessing cell mechanics has linked behaviors seen in 2D cultures to a 3D matrix, and connected remodeling of the cytoskeleton to homeostatic mechanical regulation of tissues.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada
| | - Pauline Rizzuto
- Université Côte d'Azur, 28 Avenue de Valrose, Nice, 06108, France
| | - Michel Godin
- Department of Physics, STEM Complex, 150 Louis Pasteur Pvt., University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mechanical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N6N5, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| | - Andrew E Pelling
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada.
- Department of Physics, STEM Complex, 150 Louis Pasteur Pvt., University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.
- SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|