1
|
Liu R, Qiao X, Shi Y, Peterson CB, Bush WS, Cominelli F, Wang M, Zhang L. Constructing phylogenetic trees for microbiome data analysis: A mini-review. Comput Struct Biotechnol J 2024; 23:3859-3868. [PMID: 39554614 PMCID: PMC11564040 DOI: 10.1016/j.csbj.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
As next-generation sequencing technologies advance rapidly and the cost of metagenomic sequencing continues to decrease, researchers now face an unprecedented volume of microbiome data. This surge has stimulated the development of scalable microbiome data analysis methods and necessitated the incorporation of phylogenetic information into microbiome analysis for improved accuracy. Tools for constructing phylogenetic trees from 16S rRNA sequencing data are well-established, as the highly conserved regions of the 16S gene are limited, simplifying the identification of marker genes. In contrast, metagenomic and whole genome shotgun (WGS) sequencing involve sequencing from random fragments of the entire gene, making identification of consistent marker genes challenging owing to the vast diversity of genomic regions, resulting in a scarcity of robust tools for constructing phylogenetic trees. Although bacterial sequence tree construction tools exist for upstream bioinformatics, many downstream researchers-those integrating these trees into statistical models or machine learning-are either unaware of these tools or find them difficult to use due to the steep learning curve of processing raw sequences. This is compounded by the fact that public datasets often lack phylogenetic trees, providing only abundance tables and taxonomic classifications. To address this, we present a comprehensive review of phylogenetic tree construction techniques for microbiome data (16S rRNA or whole-genome shotgun sequencing). We outline the strengths and limitations of current methods, offering expert insights and step-by-step guidance to make these tools more accessible and widely applicable in quantitative microbiome data analysis.
Collapse
Affiliation(s)
- Ruitao Liu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Xi Qiao
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Yushu Shi
- Weill Cornell Medicine, Cornell University, 1300 York Ave, New York, 10065, NY, United States
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Digestive Health Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| |
Collapse
|
2
|
Aplakidou E, Vergoulidis N, Chasapi M, Venetsianou NK, Kokoli M, Panagiotopoulou E, Iliopoulos I, Karatzas E, Pafilis E, Georgakopoulos-Soares I, Kyrpides NC, Pavlopoulos GA, Baltoumas FA. Visualizing metagenomic and metatranscriptomic data: A comprehensive review. Comput Struct Biotechnol J 2024; 23:2011-2033. [PMID: 38765606 PMCID: PMC11101950 DOI: 10.1016/j.csbj.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
The fields of Metagenomics and Metatranscriptomics involve the examination of complete nucleotide sequences, gene identification, and analysis of potential biological functions within diverse organisms or environmental samples. Despite the vast opportunities for discovery in metagenomics, the sheer volume and complexity of sequence data often present challenges in processing analysis and visualization. This article highlights the critical role of advanced visualization tools in enabling effective exploration, querying, and analysis of these complex datasets. Emphasizing the importance of accessibility, the article categorizes various visualizers based on their intended applications and highlights their utility in empowering bioinformaticians and non-bioinformaticians to interpret and derive insights from meta-omics data effectively.
Collapse
Affiliation(s)
- Eleni Aplakidou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Nikolaos Vergoulidis
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Maria Chasapi
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Nefeli K. Venetsianou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Maria Kokoli
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Eleni Panagiotopoulou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikos C. Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Center of New Biotechnologies & Precision Medicine, Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Greece
- Hellenic Army Academy, 16673 Vari, Greece
| | - Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| |
Collapse
|
3
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Foo A, Brettell LE, Nichols HL, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L Nichols
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Claire Valiente Moro
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Mannochio-Russo H, Charron-Lamoureux V, van Faassen M, Lamichhane S, Gonçalves Nunes WD, Deleray V, Patan A, Vittali K, Rajkumar P, Abiead YE, Zhao HN, Portal Gomes PW, Mohanty I, Lee C, Sund A, Sharma M, Liu Y, Pattynama D, Walker GT, Norton GJ, Khatib L, Andalibi MS, Wang CX, Ellis RJ, Moore DJ, Iudicello JE, Franklin D, Letendre S, Chin L, Walker C, Renwick S, Zemlin J, Meehan MJ, Song X, Kasper D, Burcham Z, Kim JJ, Kadakia S, Raffatellu M, Bode L, Zengler K, Wang M, Siegel D, Knight R, Dorrestein PC. The microbiome diversifies N -acyl lipid pools - including short-chain fatty acid-derived compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621412. [PMID: 39554097 PMCID: PMC11565975 DOI: 10.1101/2024.10.31.621412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N -acyl lipids are important mediators of several biological processes including immune function and stress response. To enhance the detection of N -acyl lipids with untargeted mass spectrometry-based metabolomics, we created a reference spectral library retrieving N -acyl lipid patterns from 2,700 public datasets, identifying 851 N -acyl lipids that were detected 356,542 times. 777 are not documented in lipid structural databases, with 18% of these derived from short-chain fatty acids and found in the digestive tract and other organs. Their levels varied with diet, microbial colonization, and in people living with diabetes. We used the library to link microbial N -acyl lipids, including histamine and polyamine conjugates, to HIV status and cognitive impairment. This resource will enhance the annotation of these compounds in future studies to further the understanding of their roles in health and disease and highlight the value of large-scale untargeted metabolomics data for metabolite discovery.
Collapse
|
6
|
Tofani GSS, Leigh SJ, Gheorghe CE, Bastiaanssen TFS, Wilmes L, Sen P, Clarke G, Cryan JF. Gut microbiota regulates stress responsivity via the circadian system. Cell Metab 2024:S1550-4131(24)00399-1. [PMID: 39504963 DOI: 10.1016/j.cmet.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity. Microbial depletion disturbs the brain transcriptome and metabolome in stress-responding pathways in the hippocampus and amygdala across the day. This is coupled with a dysregulation of the circadian pacemaker in the brain that results in perturbed glucocorticoid rhythmicity. The resulting hyper-activation of the HPA axis at the sleep/wake transition drives time-of-day-specific impairments of the stress response and stress-sensitive behaviors. Finally, microbiota transplantation confirmed that diurnal oscillations of gut microbes underlie altered glucocorticoid secretion and that L. reuteri is a candidate strain for such effects. Our data offer compelling evidence that the microbiota regulates stress responsiveness in a circadian manner and is necessary to respond adaptively to stressors throughout the day.
Collapse
Affiliation(s)
- Gabriel S S Tofani
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Sarah-Jane Leigh
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - Paromita Sen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Alvarez‐Carreño C, Huynh AT, Petrov AS, Orengo C, Williams LD. BEAN and HABAS: Polyphyletic insertions in the DNA-directed RNA polymerase. Protein Sci 2024; 33:e5194. [PMID: 39467185 PMCID: PMC11515920 DOI: 10.1002/pro.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
The β and β' subunits of the RNA polymerase (RNAP) are large proteins with complex multi-domain architectures that include several insertional domains. Here, we analyze the domain organizations of RNAP-β and RNAP-β' using sequence, experimentally determined structures and AlphaFold structure predictions. We observe that lineage-specific insertional domains in bacterial RNAP-β belong to a group that we call BEAN (broadly embedded annex). We observe that lineage-specific insertional domains in bacterial RNAP-β' belong to a group that we call HABAS (hammerhead/barrel-sandwich hybrid). The BEAN domain has a characteristic three-dimensional structure composed of two square bracket-like elements that are antiparallel relative to each other. The HABAS domain contains a four-stranded open β-sheet with a GD-box-like motif in one of the β-strands and the adjoining loop. The BEAN domain is inserted not only in the bacterial RNAP-β', but also in the archaeal version of universal ribosomal protein L10. The HABAS domain is inserted in several metabolic proteins. The phylogenetic distributions of bacterial lineage-specific insertional domains of β and β' subunits of RNAP follow the Tree of Life. The presence of insertional domains can help establish a relative timeline of events in the evolution of a protein because insertion is inferred to post-date the base domain. We discuss mechanisms that might account for the discovery of homologous insertional domains in non-equivalent locations in bacteria and archaea.
Collapse
Affiliation(s)
| | - Angela T. Huynh
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Anton S. Petrov
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Christine Orengo
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Loren Dean Williams
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
8
|
Freire-Zapata V, Holland-Moritz H, Cronin DR, Aroney S, Smith DA, Wilson RM, Ernakovich JG, Woodcroft BJ, Bagby SC, Rich VI, Sullivan MB, Stegen JC, Tfaily MM. Microbiome-metabolite linkages drive greenhouse gas dynamics over a permafrost thaw gradient. Nat Microbiol 2024; 9:2892-2908. [PMID: 39354152 PMCID: PMC11522005 DOI: 10.1038/s41564-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures. This contradicts common assumptions in trait-based microbial models and highlights the limitations of measuring microbial community-level data alone. Furthermore, feature-scale analysis revealed connections between microbial taxa, metabolites and observed CO2 and CH4 porewater variations. Our study showcases insights gained by using feature-level data and microorganism-metabolite interactions to better understand metabolic processes that drive greenhouse gas emissions during ecosystem changes.
Collapse
Affiliation(s)
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA
| | - Dylan R Cronin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Sam Aroney
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Derek A Smith
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel M Wilson
- Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Jessica G Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Sarah C Bagby
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - James C Stegen
- Terrestrial and Aquatic Integration Team, Pacific Northwest National Laboratory, Richland, WA, USA
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Wehbi S, Wheeler A, Morel B, Manepalli N, Minh BQ, Lauretta DS, Masel J. Order of amino acid recruitment into the genetic code resolved by Last Universal Common Ancestor's protein domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589375. [PMID: 38659899 PMCID: PMC11042313 DOI: 10.1101/2024.04.13.589375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The current "consensus" order in which amino acids were added to the genetic code is based on potentially biased criteria, such as absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. More broadly, abiotic abundance might not reflect biotic abundance in the organisms in which the genetic code evolved. Here, we instead identify which protein domains date to the last universal common ancestor (LUCA), then infer the order of recruitment from deviations of their ancestrally reconstructed amino acid frequencies from the still-ancient post-LUCA controls. We find that smaller amino acids were added to the code earlier, with no additional predictive power in the previous "consensus" order. Metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Methionine and histidine were added to the code earlier than expected from their molecular weights, and glutamine later. Early methionine availability is compatible with inferred early use of S-adenosylmethionine, and early histidine with its purine-like structure and the demand for metal-binding. Even more ancient protein sequences - those that had already diversified into multiple distinct copies prior to LUCA - have significantly higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine), and lower frequencies of valine and glutamic acid than single copy LUCA sequences. If at least some of these sequences predate the current code, then their distinct enrichment patterns provide hints about earlier, alternative genetic codes.
Collapse
Affiliation(s)
- Sawsan Wehbi
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA
| | - Andrew Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nandini Manepalli
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bui Quang Minh
- School of Computing, Australian National University, Canberra, ACT, Australia
| | - Dante S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
10
|
Guccione C, Patel L, Tomofuji Y, McDonald D, Gonzalez A, Sepich-Poore GD, Sonehara K, Zakeri M, Chen Y, Dilmore AH, Damle N, Baranzini SE, Nakatsuji T, Gallo RL, Langmead B, Okada Y, Curtius K, Knight R. Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data. RESEARCH SQUARE 2024:rs.3.rs-4721159. [PMID: 39502785 PMCID: PMC11537348 DOI: 10.21203/rs.3.rs-4721159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As next-generation sequencing technologies produce deeper genome coverages at lower costs, there is a critical need for reliable computational host DNA removal in metagenomic data. We find that insufficient host filtration using prior human genome references can introduce false sex biases and inadvertently permit flow-through of host-specific DNA during bioinformatic analyses, which could be exploited for individual identification. To address these issues, we introduce and benchmark three host filtration methods of varying throughput, with concomitant applications across low biomass samples such as skin and high microbial biomass datasets including fecal samples. We find that these methods are important for obtaining accurate results in low biomass samples (e.g., tissue, skin). Overall, we demonstrate that rigorous host filtration is a key component of privacy-minded analyses of patient microbiomes and provide computationally efficient pipelines for accomplishing this task on large-scale datasets.
Collapse
Affiliation(s)
- Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA
| | - Yoshihiko Tomofuji
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Mohsen Zakeri
- Department of Computer Science, Johns Hopkins University
| | - Yang Chen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Neil Damle
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Sergio E. Baranzini
- Weill Institute for Neurosciences. Department of Neurology. University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Şapcı AOB, Mirarab S. Memory-bound k-mer selection for large and evolutionarily diverse reference libraries. Genome Res 2024; 34:1455-1467. [PMID: 39209553 PMCID: PMC11529837 DOI: 10.1101/gr.279339.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Using k-mers to find sequence matches is increasingly used in many bioinformatic applications, including metagenomic sequence classification. The accuracy of these downstream applications relies on the density of the reference databases, which are rapidly growing. Although the increased density provides hope for improvements in accuracy, scalability is a concern. Reference k-mers are kept in the memory during the query time, and saving all k-mers of these ever-expanding databases is fast becoming impractical. Several strategies for subsampling have been proposed, including minimizers and finding taxon-specific k-mers. However, we contend that these strategies are inadequate, especially when reference sets are taxonomically imbalanced, as are most microbial libraries. In this paper, we explore approaches for selecting a fixed-size subset of k-mers present in an ultra-large data set to include in a library such that the classification of reads suffers the least. Our experiments demonstrate the limitations of existing approaches, especially for novel and poorly sampled groups. We propose a library construction algorithm called k-mer RANKer (KRANK) that combines several components, including a hierarchical selection strategy with adaptive size restrictions and an equitable coverage strategy. We implement KRANK in highly optimized code and combine it with the locality-sensitive hashing classifier CONSULT-II to build a taxonomic classification and profiling method. On several benchmarks, KRANK k-mer selection significantly reduces memory consumption with minimal loss in classification accuracy. We show in extensive analyses based on CAMI benchmarks that KRANK outperforms k-mer-based alternatives in terms of taxonomic profiling and comes close to the best marker-based methods in terms of accuracy.
Collapse
Affiliation(s)
- Ali Osman Berk Şapcı
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, California 92093, USA
| | - Siavash Mirarab
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, California 92093, USA;
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
12
|
Schrago CG, Mello B. Challenges in Assembling the Dated Tree of Life. Genome Biol Evol 2024; 16:evae229. [PMID: 39475308 PMCID: PMC11523137 DOI: 10.1093/gbe/evae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Moody ERR, Álvarez-Carretero S, Mahendrarajah TA, Clark JW, Betts HC, Dombrowski N, Szánthó LL, Boyle RA, Daines S, Chen X, Lane N, Yang Z, Shields GA, Szöllősi GJ, Spang A, Pisani D, Williams TA, Lenton TM, Donoghue PCJ. The nature of the last universal common ancestor and its impact on the early Earth system. Nat Ecol Evol 2024; 8:1654-1666. [PMID: 38997462 PMCID: PMC11383801 DOI: 10.1038/s41559-024-02461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024]
Abstract
The nature of the last universal common ancestor (LUCA), its age and its impact on the Earth system have been the subject of vigorous debate across diverse disciplines, often based on disparate data and methods. Age estimates for LUCA are usually based on the fossil record, varying with every reinterpretation. The nature of LUCA's metabolism has proven equally contentious, with some attributing all core metabolisms to LUCA, whereas others reconstruct a simpler life form dependent on geochemistry. Here we infer that LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing implementation. Phylogenetic reconciliation suggests that LUCA had a genome of at least 2.5 Mb (2.49-2.99 Mb), encoding around 2,600 proteins, comparable to modern prokaryotes. Our results suggest LUCA was a prokaryote-grade anaerobic acetogen that possessed an early immune system. Although LUCA is sometimes perceived as living in isolation, we infer LUCA to have been part of an established ecological system. The metabolism of LUCA would have provided a niche for other microbial community members and hydrogen recycling by atmospheric photochemistry could have supported a modestly productive early ecosystem.
Collapse
Affiliation(s)
- Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | | | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - James W Clark
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Holly C Betts
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
| | | | - Stuart Daines
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Xi Chen
- Department of Earth Sciences, University College London, London, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Graham A Shields
- Department of Earth Sciences, University College London, London, UK
| | - Gergely J Szöllősi
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
Tang-Wing C, Mohanty I, Bryant M, Makowski K, Melendez D, Dorrestein PC, Knight R, Caraballo-Rodríguez AM, Allaband C, Jenné K. Impact of diet change on the gut microbiome of common marmosets ( Callithrix jacchus). mSystems 2024; 9:e0010824. [PMID: 38975760 PMCID: PMC11334461 DOI: 10.1128/msystems.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Gastrointestinal diseases are the most frequently reported clinical problems in captive common marmosets (Callithrix jacchus), often affecting the health and welfare of the animal and ultimately their use as a research subject. The microbiome has been shown to be intimately connected to diet and gastrointestinal health. Here, we use shotgun metagenomics and untargeted metabolomics in fecal samples of common marmosets collected before, during, and after a dietary transition from a biscuit to a gel diet. The overall health of marmosets, measured as weight recovery and reproductive outcome, improved after the diet transition. Moreover, each marmoset pair had significant shifts in the microbiome and metabolome after the diet transition. In general, we saw a decrease in Escherichia coli and Prevotella species and an increase in Bifidobacterium species. Untargeted metabolic profiles indicated that polyamine levels, specifically cadaverine and putrescine, were high after diet transition, suggesting either an increase in excretion or a decrease in intestinal reabsorption at the intestinal level. In conclusion, our data suggest that Bifidobacterium species could potentially be useful as probiotic supplements to the laboratory marmoset diet. Future studies with a larger sample size will be beneficial to show that this is consistent with the diet change. IMPORTANCE Appropriate diet and health of the common marmoset in captivity are essential both for the welfare of the animal and to improve experimental outcomes. Our study shows that a gel diet compared to a biscuit diet improves the health of a marmoset colony, is linked to increases in Bifidobacterium species, and increases the removal of molecules associated with disease. The diet transition had an influence on the molecular changes at both the pair and time point group levels, but only at the pair level for the microbial changes. It appears to be more important which genes and functions present changed rather than specific microbes. Further studies are needed to identify specific components that should be considered when choosing an appropriate diet and additional supplementary foods, as well as to validate the benefits of providing probiotics. Probiotics containing Bifidobacterium species appear to be useful as probiotic supplements to the laboratory marmoset diet, but additional work is needed to validate these findings.
Collapse
Affiliation(s)
- Cassandra Tang-Wing
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Katherine Makowski
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Daira Melendez
- Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA
| | | | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Keith Jenné
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Lekbua A, Thiruppathy D, Coker J, Weng Y, Askarian F, Kousha A, Marotz C, Hauw A, Nizet V, Zengler K. SkinCom, a synthetic skin microbial community, enables reproducible investigations of the human skin microbiome. CELL REPORTS METHODS 2024; 4:100832. [PMID: 39111313 PMCID: PMC11384088 DOI: 10.1016/j.crmeth.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Existing models of the human skin have aided our understanding of skin health and disease. However, they currently lack a microbial component, despite microbes' demonstrated connections to various skin diseases. Here, we present a robust, standardized model of the skin microbial community (SkinCom) to support in vitro and in vivo investigations. Our methods lead to the formation of an accurate, reproducible, and diverse community of aerobic and anaerobic bacteria. Subsequent testing of SkinCom on the dorsal skin of mice allowed for DNA and RNA recovery from both the applied SkinCom and the dorsal skin, highlighting its practicality for in vivo studies and -omics analyses. Furthermore, 66% of the responses to common cosmetic chemicals in vitro were in agreement with a human trial. Therefore, SkinCom represents a valuable, standardized tool for investigating microbe-metabolite interactions and facilitates the experimental design of in vivo studies targeting host-microbe relationships.
Collapse
Affiliation(s)
- Asama Lekbua
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deepan Thiruppathy
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joanna Coker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuhan Weng
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clarisse Marotz
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amber Hauw
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karsten Zengler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Schulkers Escalante K, Bai-Tong SS, Allard SM, Ecklu-Mensah G, Sanchez C, Song SJ, Gilbert J, Bode L, Dorrestein P, Knight R, Gonzalez DJ, Leibel SA, Leibel SL. The impact of breastfeeding on the preterm infant's microbiome and metabolome: a pilot study. Pediatr Res 2024:10.1038/s41390-024-03440-9. [PMID: 39138352 DOI: 10.1038/s41390-024-03440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Human milk is unquestionably beneficial for preterm infants. We investigated how the transition from tube to oral/breastfeeding impacts the preterm infants' oral and gut microbiome and metabolome. METHODS We analyzed stool, saliva, and milk samples collected from a cohort of preterm infants enrolled in the MAP Study, a prospective observational trial. The microbiome and metabolome of the samples were analyzed from 4 longitudinal sample time points, 2 during tube feeds only and 2 after the initiation of oral/breastfeeding. RESULTS We enrolled 11 mother-infant dyads (gestational age = 27.9 (23.4-32.2)) and analyzed a total of 39 stool, 44 saliva, and 43 milk samples over 4 timepoints. In saliva samples, there was a shift towards increased Streptococcus and decreased Staphylococcus after oral feeding/breastfeeding initiation (p < 0.05). Milk sample metabolites were strongly influenced by the route of feeding and milk type (p < 0.05) and represented the pathways of Vitamin E metabolism, Vitamin B12 metabolism, and Tryptophan metabolism. CONCLUSION Our analysis demonstrated that the milk and preterm infant's saliva microbiome and metabolome changed over the course of the first four to 5 months of life, coinciding with the initiation of oral/breastfeeds. IMPACT The microbiome and metabolome is altered in the infant's saliva but not their stool, and in mother's milk when feeds are transitioned from tube to oral/breastfeeding. We assessed the relationship between the gut and oral microbiome/metabolome with the milk microbiome/metabolome over a longitudinal period of time in preterm babies. Metabolites that changed in the infants saliva after the initiation of oral feeds have the potential to be used as biomarkers for disease risk.
Collapse
Affiliation(s)
| | - Shiyu S Bai-Tong
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA
| | - Sarah M Allard
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - Concepcion Sanchez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Jack Gilbert
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Pieter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sydney A Leibel
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA.
| |
Collapse
|
17
|
Jiao JY, Abdugheni R, Zhang DF, Ahmed I, Ali M, Chuvochina M, Dedysh SN, Dong X, Göker M, Hedlund BP, Hugenholtz P, Jangid K, Liu SJ, Moore ERB, Narsing Rao MP, Oren A, Rossello-Mora R, Rekadwad BN, Salam N, Shu W, Sutcliffe IC, Teo WFA, Trujillo ME, Venter SN, Whitman WB, Zhao G, Li WJ. Advancements in prokaryotic systematics and the role of Bergey's International Society for Microbial Systematicsin addressing challenges in the meta-data era. Natl Sci Rev 2024; 11:nwae168. [PMID: 39071100 PMCID: PMC11275469 DOI: 10.1093/nsr/nwae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 07/30/2024] Open
Abstract
Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, China
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 45500, Pakistan
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig D-38124, Germany
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Kamlesh Jangid
- Bioenergy Group, MACS Collection of Microorganisms, Agharkar Research Institute, Pune 411004, India
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Edward R B Moore
- Department of Infectious Disease, Institute for Biomedicine, and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40234, Sweden
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Aharon Oren
- The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles 070190, Spain
| | - Bhagwan Narayan Rekadwad
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali 140306, India
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Wee Fei Aaron Teo
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca 37008, Spain
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Guoping Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
18
|
Teichman S, Lee MD, Willis AD. Analyzing microbial evolution through gene and genome phylogenies. Biostatistics 2024; 25:786-800. [PMID: 37897441 PMCID: PMC11247178 DOI: 10.1093/biostatistics/kxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 10/30/2023] Open
Abstract
Microbiome scientists critically need modern tools to explore and analyze microbial evolution. Often this involves studying the evolution of microbial genomes as a whole. However, different genes in a single genome can be subject to different evolutionary pressures, which can result in distinct gene-level evolutionary histories. To address this challenge, we propose to treat estimated gene-level phylogenies as data objects, and present an interactive method for the analysis of a collection of gene phylogenies. We use a local linear approximation of phylogenetic tree space to visualize estimated gene trees as points in low-dimensional Euclidean space, and address important practical limitations of existing related approaches, allowing an intuitive visualization of complex data objects. We demonstrate the utility of our proposed approach through microbial data analyses, including by identifying outlying gene histories in strains of Prevotella, and by contrasting Streptococcus phylogenies estimated using different gene sets. Our method is available as an open-source R package, and assists with estimating, visualizing, and interacting with a collection of bacterial gene phylogenies.
Collapse
Affiliation(s)
- Sarah Teichman
- University of Washington Department of Statistics, Box 354322, Seattle, WA 98195-4322, USA
| | - Michael D Lee
- KBR NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035-1000
- Blue Marble Space Institute of Science, 600 1st Avenue, 1st Floor, Seattle, WA 98104, USA
| | - Amy D Willis
- University of Washington Department of Biostatistics, Hans Rosling Center for Population Health, Box 351617, Seattle, WA 98195-1617, USA
| |
Collapse
|
19
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Craft S, Kaddurah-Daouk R, Krumsiek J. Serum and CSF metabolomics analysis shows Mediterranean Ketogenic Diet mitigates risk factors of Alzheimer's disease. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:15. [PMID: 38962750 PMCID: PMC11216994 DOI: 10.1038/s44324-024-00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
| | - Alzheimer’s Gut Microbiome Project Consortium
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
- Department of Neurology, Mayo Clinic, Rochester, MN USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| |
Collapse
|
20
|
Secaira-Morocho H, Chede A, Gonzalez-de-Salceda L, Garcia-Pichel F, Zhu Q. An evolutionary optimum amid moderate heritability in prokaryotic cell size. Cell Rep 2024; 43:114268. [PMID: 38776226 DOI: 10.1016/j.celrep.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
We investigate the distribution and evolution of prokaryotic cell size based on a compilation of 5,380 species. Size spans four orders of magnitude, from 100 nm (Mycoplasma) to more than 1 cm (Thiomargarita); however, most species congregate heavily around the mean. The distribution approximates but is distinct from log normality. Comparative phylogenetics suggests that size is heritable, yet the phylogenetic signal is moderate, and the degree of heritability is independent of taxonomic scale (i.e., fractal). Evolutionary modeling indicates the presence of an optimal cell size to which most species gravitate. The size is equivalent to a coccus of 0.70 μm in diameter. Analyses of 1,361 species with sequenced genomes show that genomic traits contribute to size evolution moderately and synergistically. Given our results, scaling theory, and empirical evidence, we discuss potential drivers that may expand or shrink cells around the optimum and propose a stability landscape model for prokaryotic cell size.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Abhinav Chede
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Luis Gonzalez-de-Salceda
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
21
|
Koper K, Han SW, Kothadia R, Salamon H, Yoshikuni Y, Maeda HA. Multisubstrate specificity shaped the complex evolution of the aminotransferase family across the tree of life. Proc Natl Acad Sci U S A 2024; 121:e2405524121. [PMID: 38885378 PMCID: PMC11214133 DOI: 10.1073/pnas.2405524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Sang-Woo Han
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Biotechnology, Konkuk University, Chungju27478, South Korea
| | - Ramani Kothadia
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hugh Salamon
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan 060-8589
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo183-8538, Japan
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
22
|
Ponndara S, Kortebi M, Boccard F, Bury-Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2024. [PMID: 38922728 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginia S Lioy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Nishihara A, Tsukatani Y, Azai C, Nobu MK. Illuminating the coevolution of photosynthesis and Bacteria. Proc Natl Acad Sci U S A 2024; 121:e2322120121. [PMID: 38875151 PMCID: PMC11194577 DOI: 10.1073/pnas.2322120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
| | - Yusuke Tsukatani
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Shiga525-8577, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo112-8551, Japan
| | - Masaru K. Nobu
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| |
Collapse
|
24
|
Jiang Y, McDonald D, Perry D, Knight R, Mirarab S. Scaling DEPP phylogenetic placement to ultra-large reference trees: a tree-aware ensemble approach. Bioinformatics 2024; 40:btae361. [PMID: 38870525 PMCID: PMC11193062 DOI: 10.1093/bioinformatics/btae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
MOTIVATION Phylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify the content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone tree, making it crucial that placement methods scale to very large trees. Moreover, a new paradigm has been recently proposed to place sequences on the species tree using single-gene data. The goal is to better characterize the samples and to enable combined analyses of marker-gene (e.g., 16S rRNA gene amplicon) and genome-wide data. The recent method DEPP enables performing such analyses using metric learning. However, metric learning is hampered by a need to compute and save a quadratically growing matrix of pairwise distances during training. Thus, the training phase of DEPP does not scale to more than roughly 10 000 backbone species, a problem that we faced when trying to use our recently released Greengenes2 (GG2) reference tree containing 331 270 species. RESULTS This paper explores divide-and-conquer for training ensembles of DEPP models, culminating in a method called C-DEPP. While divide-and-conquer has been extensively used in phylogenetics, applying divide-and-conquer to data-hungry machine-learning methods needs nuance. C-DEPP uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP enables placing 20 million 16S fragments on the GG2 reference tree in 41 h of computation. AVAILABILITY AND IMPLEMENTATION The dataset and C-DEPP software are freely available at https://github.com/yueyujiang/dataset_cdepp/.
Collapse
Affiliation(s)
- Yueyu Jiang
- Electrical and Computer Engineering Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Daniel McDonald
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Daniela Perry
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Rob Knight
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| |
Collapse
|
25
|
Boden JS, Zhong J, Anderson RE, Stüeken EE. Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics. Nat Commun 2024; 15:3703. [PMID: 38697988 PMCID: PMC11066067 DOI: 10.1038/s41467-024-47914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Phosphorus plays a crucial role in controlling biological productivity, but geological estimates of phosphate concentrations in the Precambrian ocean, during life's origin and early evolution, vary over several orders of magnitude. While reduced phosphorus species may have served as alternative substrates to phosphate, their bioavailability on the early Earth remains unknown. Here, we reconstruct the phylogenomic record of life on Earth and find that phosphate transporting genes (pnas) evolved in the Paleoarchean (ca. 3.6-3.2 Ga) and are consistent with phosphate concentrations above modern levels ( > 3 µM). The first gene optimized for low phosphate levels (pstS; <1 µM) appeared around the same time or in the Mesoarchean depending on the reconstruction method. Most enzymatic pathways for metabolising reduced phosphorus emerged and expanded across the tree of life later. This includes phosphonate-catabolising CP-lyases, phosphite-oxidising pathways and hypophosphite-oxidising pathways. CP-lyases are particularly abundant in dissolved phosphate concentrations below 0.1 µM. Our results thus indicate at least local regions of declining phosphate levels through the Archean, possibly linked to phosphate-scavenging Fe(III), which may have limited productivity. However, reduced phosphorus species did not become widely used until after the Paleoproterozoic Great Oxidation Event (2.3 Ga), possibly linked to expansion of the biosphere at that time.
Collapse
Affiliation(s)
- Joanne S Boden
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom.
| | - Juntao Zhong
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rika E Anderson
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom
| |
Collapse
|
26
|
Balaban M, Jiang Y, Zhu Q, McDonald D, Knight R, Mirarab S. Generation of accurate, expandable phylogenomic trees with uDance. Nat Biotechnol 2024; 42:768-777. [PMID: 37500914 PMCID: PMC10818028 DOI: 10.1038/s41587-023-01868-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Phylogenetic trees provide a framework for organizing evolutionary histories across the tree of life and aid downstream comparative analyses such as metagenomic identification. Methods that rely on single-marker genes such as 16S rRNA have produced trees of limited accuracy with hundreds of thousands of organisms, whereas methods that use genome-wide data are not scalable to large numbers of genomes. We introduce updating trees using divide-and-conquer (uDance), a method that enables updatable genome-wide inference using a divide-and-conquer strategy that refines different parts of the tree independently and can build off of existing trees, with high accuracy and scalability. With uDance, we infer a species tree of roughly 200,000 genomes using 387 marker genes, totaling 42.5 billion amino acid residues.
Collapse
Affiliation(s)
- Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Yueyu Jiang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q, Gonzalez A, Morton JT, Nicolaou G, Parks DH, Karst SM, Albertsen M, Hugenholtz P, DeSantis T, Song SJ, Bartko A, Havulinna AS, Jousilahti P, Cheng S, Inouye M, Niiranen T, Jain M, Salomaa V, Lahti L, Mirarab S, Knight R. Greengenes2 unifies microbial data in a single reference tree. Nat Biotechnol 2024; 42:715-718. [PMID: 37500913 PMCID: PMC10818020 DOI: 10.1038/s41587-023-01845-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.
Collapse
Affiliation(s)
- Daniel McDonald
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Yueyu Jiang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kalen Cantrell
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James T Morton
- Biostatistics & Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgia Nicolaou
- Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Søren M Karst
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Todd DeSantis
- Department of Informatics, Second Genome, Brisbane, CA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Bartko
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | | | - Susan Cheng
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Teemu Niiranen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Mohit Jain
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Montecillo JAV, Billacura MP, Billacura MDG. Reclassification of Aestuariicella albida as Pseudomaricurvus albidus comb. nov. and Aestuariicella hydrocarbonica as Pseudomaricurvus hydrocarbonicus comb. nov. Based on Comparative Genomics and Molecular Synapomorphies. Curr Microbiol 2024; 81:159. [PMID: 38689166 DOI: 10.1007/s00284-024-03683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024]
Abstract
The genus Aestuariicella has been recently reclassified as a member of the family Cellvibrionaceae. However, the taxonomic position of the genus as a distinct member of the family has not been clarified. In the present study, we performed multilayered analyses anchored on genome sequences to clarify the relationship between the genera Aestuariicella and Pseudomaricurvus within the family Cellvibrionaceae. Phylogenetic analyses based on 16S rRNA gene, RNA polymerase beta subunit (RpoB) protein, and core gene sequences showed a well-supported tight cluster formed by the members of the two genera. Moreover, the analysis of the average amino acid identity (AAI) revealed that the members of the two genera shared 68.16-79.48% AAI, values which were within the range of observed AAI (≥ 67.23%) among the members of the same genus within the family Cellvibrionaceae. Members of the two genera also shared several common characteristics. Furthermore, molecular synapomorphies in a form of conserved signature indels were identified in six protein sequences that were exclusively shared by the members of the two genera. Based on the phylogenetic and molecular evidence presented here, we propose the reclassification of the species Aestuariicella albida and Aestuariicella hydrocarbonica as Pseudomaricurvus albidus comb. nov. and Pseudomaricurvus hydrocarbonicus comb. nov., respectively.
Collapse
Affiliation(s)
- Jake Adolf V Montecillo
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Merell P Billacura
- Department of Chemistry, Mindanao State University-Main Campus, 9700, Marawi, Lanao del Sur, Philippines
| | - Maria Distressa G Billacura
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, 9200, Iligan, Lanao del Norte, Philippines
| |
Collapse
|
29
|
Hao MS, Mazurkewich S, Li H, Kvammen A, Saha S, Koskela S, Inman AR, Nakajima M, Tanaka N, Nakai H, Brändén G, Bulone V, Larsbrink J, McKee LS. Structural and biochemical analysis of family 92 carbohydrate-binding modules uncovers multivalent binding to β-glucans. Nat Commun 2024; 15:3429. [PMID: 38653764 PMCID: PMC11039641 DOI: 10.1038/s41467-024-47584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to β-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Scott Mazurkewich
- Department of Life Sciences, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, 10044, Stockholm, Sweden
| | - He Li
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Alma Kvammen
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Srijani Saha
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Salla Koskela
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, 10044, Stockholm, Sweden
| | - Annie R Inman
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park Campus, Sturt Road, SA, 5042, Australia
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, 10044, Stockholm, Sweden
| | - Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
- Wallenberg Wood Science Center, Teknikringen 56-58, 10044, Stockholm, Sweden.
| |
Collapse
|
30
|
Gheorghe CE, Leigh SJ, Tofani GSS, Bastiaanssen TFS, Lyte JM, Gardellin E, Govindan A, Strain C, Martinez-Herrero S, Goodson MS, Kelley-Loughnane N, Cryan JF, Clarke G. The microbiota drives diurnal rhythms in tryptophan metabolism in the stressed gut. Cell Rep 2024; 43:114079. [PMID: 38613781 DOI: 10.1016/j.celrep.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.
Collapse
Affiliation(s)
- Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Sarah-Jane Leigh
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gabriel S S Tofani
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Elisa Gardellin
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland
| | - Ashokkumar Govindan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Sonia Martinez-Herrero
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland.
| |
Collapse
|
31
|
Griffiths JA, Yoo BB, Thuy-Boun P, Cantu VJ, Weldon KC, Challis C, Sweredoski MJ, Chan KY, Thron TM, Sharon G, Moradian A, Humphrey G, Zhu Q, Shaffer JP, Wolan DW, Dorrestein PC, Knight R, Gradinaru V, Mazmanian SK. Peripheral neuronal activation shapes the microbiome and alters gut physiology. Cell Rep 2024; 43:113953. [PMID: 38517896 PMCID: PMC11132177 DOI: 10.1016/j.celrep.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.
Collapse
Affiliation(s)
- Jessica A Griffiths
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victor J Cantu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael J Sweredoski
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken Y Chan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Taren M Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gil Sharon
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Justin P Shaffer
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Dennis W Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA; UCSD Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA; Shu Chien-Gene Lay Department of Engineering, University of California, San Diego, San Diego, CA, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
32
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
33
|
Dokoshi T, Chen Y, Cavagnero KJ, Rahman G, Hakim D, Brinton S, Schwarz H, Brown EA, O'Neill A, Nakamura Y, Li F, Salzman NH, Knight R, Gallo RL. Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice. Nat Commun 2024; 15:3009. [PMID: 38589392 PMCID: PMC11001995 DOI: 10.1038/s41467-024-47072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
The composition of the microbial community in the intestine may influence the functions of distant organs such as the brain, lung, and skin. These microbes can promote disease or have beneficial functions, leading to the hypothesis that microbes in the gut explain the co-occurrence of intestinal and skin diseases. Here, we show that the reverse can occur, and that skin directly alters the gut microbiome. Disruption of the dermis by skin wounding or the digestion of dermal hyaluronan results in increased expression in the colon of the host defense genes Reg3 and Muc2, and skin wounding changes the composition and behavior of intestinal bacteria. Enhanced expression Reg3 and Muc2 is induced in vitro by exposure to hyaluronan released by these skin interventions. The change in the colon microbiome after skin wounding is functionally important as these bacteria penetrate the intestinal epithelium and enhance colitis from dextran sodium sulfate (DSS) as seen by the ability to rescue skin associated DSS colitis with oral antibiotics, in germ-free mice, and fecal microbiome transplantation to unwounded mice from mice with skin wounds. These observations provide direct evidence of a skin-gut axis by demonstrating that damage to the skin disrupts homeostasis in intestinal host defense and alters the gut microbiome.
Collapse
Affiliation(s)
- Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Hakim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Samantha Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Hana Schwarz
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Brown
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Alan O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Yoshiyuki Nakamura
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Eme L, Tamarit D. Microbial Diversity and Open Questions about the Deep Tree of Life. Genome Biol Evol 2024; 16:evae053. [PMID: 38620144 PMCID: PMC11018274 DOI: 10.1093/gbe/evae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
In this perspective, we explore the transformative impact and inherent limitations of metagenomics and single-cell genomics on our understanding of microbial diversity and their integration into the Tree of Life. We delve into the key challenges associated with incorporating new microbial lineages into the Tree of Life through advanced phylogenomic approaches. Additionally, we shed light on enduring debates surrounding various aspects of the microbial Tree of Life, focusing on recent advances in some of its deepest nodes, such as the roots of bacteria, archaea, and eukaryotes. We also bring forth current limitations in genome recovery and phylogenomic methodology, as well as new avenues of research to uncover additional key microbial lineages and resolve the shape of the Tree of Life.
Collapse
Affiliation(s)
- Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif sur-Yvette, France
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht 3584CH, The Netherlands
| |
Collapse
|
35
|
Montecillo JAV. Comparative genomics of the genus Halioglobus reveals the genetic basis for the reclassification of Halioglobus pacificus as Parahalioglobus pacificus gen. nov. comb. nov. Int Microbiol 2024:10.1007/s10123-024-00516-8. [PMID: 38558270 DOI: 10.1007/s10123-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
The genus Halioglobus is one of the environmentally relevant members of the family Halieaceae, class Gammaproteobacteria. At present, the genus is composed of three validly published species. However, in the recent study of the family Halieaceae, the species Halioglobus pacificus was observed to branch outside of the main clade formed by the members of Halioglobus, suggesting its distinct taxonomic placement within the family. In the present study, the taxonomic placement of H. pacificus was reassessed using comparative genomics. Phylogenomic analysis revealed the paraphyletic relationship of H. pacificus with the type species of the genus Halioglobus, and further demonstrated its genus-level placement. This phylogenetic relationship was reinforced by the average nucleotide and amino acid identity values shared by H. pacificus with the members of the family Halieaceae. Moreover, the results of the pan-genome analysis, together with the phenotype data, further supported the exclusion of H. pacificus from the genus Halioglobus. Based on these findings, the species H. pacificus is thereby assigned to a new genus Parahalioglobus gen. nov. as Parahalioglobus pacificus comb. nov.
Collapse
Affiliation(s)
- Jake Adolf V Montecillo
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
36
|
Sepich-Poore GD, McDonald D, Kopylova E, Guccione C, Zhu Q, Austin G, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf JL, Song SJ, Kanbar J, Miller-Montgomery S, Heaton R, Mckay R, Patel SP, Swafford AD, Korem T, Knight R. Robustness of cancer microbiome signals over a broad range of methodological variation. Oncogene 2024; 43:1127-1148. [PMID: 38396294 PMCID: PMC10997506 DOI: 10.1038/s41388-024-02974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers independently verified or extended our findings [2-12]. Given this impact, we carefully considered concerns by Gihawi et al. [13] that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR [14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes. These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures exist in TCGA, and show they are robust to methodology.
Collapse
Affiliation(s)
- Gregory D Sepich-Poore
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Micronoma, San Diego, CA, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Clarity Genomics, Antwerp, Belgium
| | - Caitlin Guccione
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - George Austin
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carolina Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Serena Fraraccio
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Micronoma, San Diego, CA, USA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Micronoma, San Diego, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Stefan Janssen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, Gießen, Germany
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Se Jin Song
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Jad Kanbar
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandrine Miller-Montgomery
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Micronoma, San Diego, CA, USA
| | - Robert Heaton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rana Mckay
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Sandip Pravin Patel
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Şapcı AOB, Rachtman E, Mirarab S. CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing. Bioinformatics 2024; 40:btae150. [PMID: 38492564 PMCID: PMC10985673 DOI: 10.1093/bioinformatics/btae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
MOTIVATION Taxonomic classification of short reads and taxonomic profiling of metagenomic samples are well-studied yet challenging problems. The presence of species belonging to groups without close representation in a reference dataset is particularly challenging. While k-mer-based methods have performed well in terms of running time and accuracy, they tend to have reduced accuracy for such novel species. Thus, there is a growing need for methods that combine the scalability of k-mers with increased sensitivity. RESULTS Here, we show that using locality-sensitive hashing (LSH) can increase the sensitivity of the k-mer-based search. Our method, which combines LSH with several heuristics techniques including soft lowest common ancestor labeling and voting, is more accurate than alternatives in both taxonomic classification of individual reads and abundance profiling. AVAILABILITY AND IMPLEMENTATION CONSULT-II is implemented in C++, and the software, together with reference libraries, is publicly available on GitHub https://github.com/bo1929/CONSULT-II.
Collapse
Affiliation(s)
- Ali Osman Berk Şapcı
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
| | - Eleonora Rachtman
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
| | - Siavash Mirarab
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States
| |
Collapse
|
38
|
Giordano N, Gaudin M, Trottier C, Delage E, Nef C, Bowler C, Chaffron S. Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities. Nat Commun 2024; 15:2721. [PMID: 38548725 PMCID: PMC10978986 DOI: 10.1038/s41467-024-46374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity network revealed a significant number of inter-lineage associations across diverse phylogenetic distances. Identified co-active communities include species displaying smaller genomes but encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. Community metabolic modelling reveals a higher potential for interaction within co-active communities and points towards conserved metabolic cross-feedings, in particular of specific amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach suggests that genome streamlining and metabolic auxotrophies may act as joint mechanisms shaping bacterioplankton community assembly in the global ocean surface.
Collapse
Affiliation(s)
- Nils Giordano
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Camille Trottier
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France.
| |
Collapse
|
39
|
Kehlet-Delgado H, Montoya AP, Jensen KT, Wendlandt CE, Dexheimer C, Roberts M, Torres Martínez L, Friesen ML, Griffitts JS, Porter SS. The evolutionary genomics of adaptation to stress in wild rhizobium bacteria. Proc Natl Acad Sci U S A 2024; 121:e2311127121. [PMID: 38507447 PMCID: PMC10990125 DOI: 10.1073/pnas.2311127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.
Collapse
Affiliation(s)
| | | | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | | | | | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| | | | - Maren L. Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA99164
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA99164
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
40
|
Sheinman M, Arndt PF, Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history. Proc Natl Acad Sci U S A 2024; 121:e2313367121. [PMID: 38517978 PMCID: PMC10990148 DOI: 10.1073/pnas.2313367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024] Open
Abstract
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.
Collapse
Affiliation(s)
- Michael Sheinman
- Institute for Advanced Studies, Sevastopol State University, Sevastopol299053, Crimea
| | - Peter F. Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin12163, Germany
| | - Florian Massip
- Department U900, Centre for Computational Biology, Mines Paris, PSL University, Paris75006, France
- Department U900, Institut Curie, Université Paris Sciences et Lettres, Paris75005, France
- INSERM, U900, Paris75005, France
| |
Collapse
|
41
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R. Medication Use is Associated with Distinct Microbial Features in Anxiety and Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585820. [PMID: 38562901 PMCID: PMC10983923 DOI: 10.1101/2024.03.19.585820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
42
|
Martinelli F, Heinken A, Henning AK, Ulmer MA, Hensen T, González A, Arnold M, Asthana S, Budde K, Engelman CD, Estaki M, Grabe HJ, Heston MB, Johnson S, Kastenmüller G, Martino C, McDonald D, Rey FE, Kilimann I, Peters O, Wang X, Spruth EJ, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Glanz W, Buerger K, Janowitz D, Laske C, Munk MH, Spottke A, Roy N, Nauck M, Teipel S, Knight R, Kaddurah-Daouk RF, Bendlin BB, Hertel J, Thiele I. Whole-body metabolic modelling reveals microbiome and genomic interactions on reduced urine formate levels in Alzheimer's disease. Sci Rep 2024; 14:6095. [PMID: 38480804 PMCID: PMC10937638 DOI: 10.1038/s41598-024-55960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Almut Heinken
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria A Ulmer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tim Hensen
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Antonio González
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hans-Jörgen Grabe
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Margo B Heston
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Sterling Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Kilimann
- German Center of Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Olive Peters
- German Center of Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Wang
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eike Jakob Spruth
- German Center of Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Jens Wiltfang
- German Center of Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
| | - Wenzel Glanz
- German Center of Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Katharina Buerger
- German Center of Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Christoph Laske
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Stefan Teipel
- German Center of Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Johannes Hertel
- School of Medicine, University of Galway, Galway, Ireland.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany.
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland.
- The Ryan Institute, University of Galway, Galway, Ireland.
- School of Microbiology, University of Galway, Galway, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
43
|
Prentice JA, van de Weerd R, Bridges AA. Cell-lysis sensing drives biofilm formation in Vibrio cholerae. Nat Commun 2024; 15:2018. [PMID: 38443393 PMCID: PMC10914755 DOI: 10.1038/s41467-024-46399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.
Collapse
Affiliation(s)
- Jojo A Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew A Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300. [PMID: 38512750 PMCID: PMC10963913 DOI: 10.1099/ijsem.0.006300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
The field of microbial taxonomy is dynamic, aiming to provide a stable and contemporary classification system for prokaryotes. Traditionally, reliance on phenotypic characteristics limited the comprehensive understanding of microbial diversity and evolution. The introduction of molecular techniques, particularly DNA sequencing and genomics, has transformed our perception of prokaryotic diversity. In the past two decades, advancements in genome sequencing have transitioned from traditional methods to a genome-based taxonomic framework, not only to define species, but also higher taxonomic ranks. As technology and databases rapidly expand, maintaining updated standards is crucial. This work seeks to revise the 2018 guidelines for applying genome sequencing data in microbial taxonomy, adapting minimal standards and recommendations to reflect technological progress during this period.
Collapse
Affiliation(s)
- Raúl Riesco
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
45
|
Linnehan BK, Kodera SM, Allard SM, Brodie EC, Allaband C, Knight R, Lutz HL, Carroll MC, Meegan JM, Jensen ED, Gilbert JA. Evaluation of the safety and efficacy of fecal microbiota transplantations in bottlenose dolphins (Tursiops truncatus) using metagenomic sequencing. J Appl Microbiol 2024; 135:lxae026. [PMID: 38305096 PMCID: PMC10853691 DOI: 10.1093/jambio/lxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024]
Abstract
AIMS Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.
Collapse
Affiliation(s)
| | - Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Sarah M Allard
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Erin C Brodie
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Holly L Lutz
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Jennifer M Meegan
- National Marine Mammal Foundation, San Diego, CA 92106, United States
| | - Eric D Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, CA 92106, United States
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
46
|
Williams TA, Davin AA, Szánthó LL, Stamatakis A, Wahl NA, Woodcroft BJ, Soo RM, Eme L, Sheridan PO, Gubry-Rangin C, Spang A, Hugenholtz P, Szöllősi GJ. Phylogenetic reconciliation: making the most of genomes to understand microbial ecology and evolution. THE ISME JOURNAL 2024; 18:wrae129. [PMID: 39001714 PMCID: PMC11293204 DOI: 10.1093/ismejo/wrae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Adrian A Davin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Lénárd L Szánthó
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Alexandros Stamatakis
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Noah A Wahl
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul O Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gergely J Szöllősi
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
- Institute of Evolution, HUN REN Centre for Ecological Research, 1121 Budapest, Hungary
| |
Collapse
|
47
|
Birth N, Leppich N, Schirmacher J, Andreae N, Steinkamp R, Blanke M, Meinicke P. CoCoPyE: feature engineering for learning and prediction of genome quality indices. Gigascience 2024; 13:giae079. [PMID: 39452613 PMCID: PMC11503480 DOI: 10.1093/gigascience/giae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The exploration of the microbial world has been greatly advanced by the reconstruction of genomes from metagenomic sequence data. However, the rapidly increasing number of metagenome-assembled genomes has also resulted in a wide variation in data quality. It is therefore essential to quantify the achieved completeness and possible contamination of a reconstructed genome before it is used in subsequent analyses. The classical approach for the estimation of quality indices solely relies on a relatively small number of universal single-copy genes. Recent tools try to extend the genomic coverage of estimates for an increased accuracy. RESULTS We developed CoCoPyE, a fast tool based on a novel 2-stage feature extraction and transformation scheme. First, it identifies genomic markers and then refines the marker-based estimates with a machine learning approach. In our simulation studies, CoCoPyE showed a more accurate prediction of quality indices than the existing tools. While the CoCoPyE web server offers an easy way to try out the tool, the freely available Python implementation enables integration into existing genome reconstruction pipelines. CONCLUSIONS CoCoPyE provides a new approach to assess the quality of genome data. It complements and improves existing tools and may help researchers to better distinguish between low-quality draft and high-quality genome assemblies in metagenome sequencing projects.
Collapse
Affiliation(s)
- Niklas Birth
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Nicolina Leppich
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Julia Schirmacher
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Nina Andreae
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Rasmus Steinkamp
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Matthias Blanke
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Peter Meinicke
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
48
|
Zaharias P, Lemoine F, Gascuel O. Robustness of Felsenstein's Versus Transfer Bootstrap Supports With Respect to Taxon Sampling. Syst Biol 2023; 72:1280-1295. [PMID: 37756489 PMCID: PMC10939309 DOI: 10.1093/sysbio/syad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The bootstrap method is based on resampling sequence alignments and re-estimating trees. Felsenstein's bootstrap proportions (FBP) are the most common approach to assess the reliability and robustness of sequence-based phylogenies. However, when increasing taxon sampling (i.e., the number of sequences) to hundreds or thousands of taxa, FBP tend to return low support for deep branches. The transfer bootstrap expectation (TBE) has been recently suggested as an alternative to FBP. TBE is measured using a continuous transfer index in [0,1] for each bootstrap tree, instead of the binary {0,1} index used in FBP to measure the presence/absence of the branch of interest. TBE has been shown to yield higher and more informative supports while inducing a very low number of falsely supported branches. Nonetheless, it has been argued that TBE must be used with care due to sampling issues, especially in datasets with a high number of closely related taxa. In this study, we conduct multiple experiments by varying taxon sampling and comparing FBP and TBE support values on different phylogenetic depths, using empirical datasets. Our results show that the main critique of TBE stands in extreme cases with shallow branches and highly unbalanced sampling among clades, but that TBE is still robust in most cases, while FBP is inescapably negatively impacted by high taxon sampling. We suggest guidelines and good practices in TBE (and FBP) computing and interpretation.
Collapse
Affiliation(s)
- Paul Zaharias
- Institut de Systématique, Evolution, Biodiversité (ISYEB UMR7205–CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), 75005 Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Olivier Gascuel
- Institut de Systématique, Evolution, Biodiversité (ISYEB UMR7205–CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), 75005 Paris, France
| |
Collapse
|
49
|
Aliperti L, Aptekmann AA, Farfañuk G, Couso LL, Soler-Bistué A, Sánchez IE. r/K selection of GC content in prokaryotes. Environ Microbiol 2023; 25:3255-3268. [PMID: 37813828 DOI: 10.1111/1462-2920.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.
Collapse
Affiliation(s)
- Lucio Aliperti
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel A Aptekmann
- Marine and Coastal Sciences Department, Rutgers University, New Brunswick, New Jersey, USA
| | - Gonzalo Farfañuk
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana L Couso
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, CONICET, Universidad Nacional de San Martín, San Martin, Argentina
| | - Ignacio E Sánchez
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
50
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Craft S, Kaddurah-Daouk R, Krumsiek J. A Modified Mediterranean Ketogenic Diet mitigates modifiable risk factors of Alzheimer's Disease: a serum and CSF-based metabolic analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298990. [PMID: 38076824 PMCID: PMC10705656 DOI: 10.1101/2023.11.27.23298990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, 7008 Tasmania, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA
| | | | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| |
Collapse
|