1
|
Wang J, Tran-Huynh AM, Kim BJ, Chan DW, Holt MV, Fandino D, Yu X, Qi X, Wang J, Zhang W, Wu YH, Anurag M, Zhang XHF, Zhang B, Cheng C, Foulds CE, Ellis MJ. Death-associated protein kinase 3 modulates migration and invasion of triple-negative breast cancer cells. PNAS NEXUS 2024; 3:pgae401. [PMID: 39319326 PMCID: PMC11421662 DOI: 10.1093/pnasnexus/pgae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pull-down assay (KIPA), leading to the observation that death-associated protein kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple-negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with down-regulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by a mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that leucine-zipper protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a newly discovered regulator of EMT/desmosome components that promote TNBC cell migration.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anh M Tran-Huynh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoli Qi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Cesnik A, Schaffer LV, Gaur I, Jain M, Ideker T, Lundberg E. Mapping the Multiscale Proteomic Organization of Cellular and Disease Phenotypes. Annu Rev Biomed Data Sci 2024; 7:369-389. [PMID: 38748859 PMCID: PMC11343683 DOI: 10.1146/annurev-biodatasci-102423-113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.
Collapse
Affiliation(s)
- Anthony Cesnik
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Trey Ideker
- Departments of Computer Science and Engineering and Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Emma Lundberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Pathology, Stanford University, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
3
|
Simionato D, Collesei A, Miglietta F, Vandin F. ALLSTAR: Inference of ReliAble CausaL RuLes between Somatic MuTAtions and CanceR Phenotypes. Bioinformatics 2024; 40:btae449. [PMID: 39037955 PMCID: PMC11520414 DOI: 10.1093/bioinformatics/btae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 04/11/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION Recent advances in DNA sequencing technologies have allowed the detailed characterization of genomes in large cohorts of tumors, highlighting their extreme heterogeneity, with no two tumors sharing the same complement of somatic mutations. Such heterogeneity hinders our ability to identify somatic mutations important for the disease, including mutations that determine clinically relevant phenotypes (e.g., cancer subtypes). Several tools have been developed to identify somatic mutations related to cancer phenotypes. However, such tools identify correlations between somatic mutations and cancer phenotypes, with no guarantee of highlighting causal relations. RESULTS We describe ALLSTAR, a novel tool to infer reliable causal relations between somatic mutations and cancer phenotypes. ALLSTAR identifies reliable causal rules highlighting combinations of somatic mutations with the highest impact in terms of average effect on the phenotype. While we prove that the underlying computational problem is NP-hard, we develop a branch-and-bound approach that employs protein-protein interaction networks and novel bounds for pruning the search space, while properly correcting for multiple hypothesis testing. Our extensive experimental evaluation on synthetic data shows that our tool is able to identify reliable causal relations in large cancer cohorts. Moreover, the reliable causal rules identified by our tool in cancer data show that our approach identifies several somatic mutations known to be relevant for cancer phenotypes as well as novel biologically meaningful relations. AVAILABILITY AND IMPLEMENTATION Code, data, and scripts to reproduce the experiments available at https://github.com/VandinLab/ALLSTAR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dario Simionato
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo 6b, Padua, 35131, Italy
| | - Antonio Collesei
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, 35128, Italy
- Bioinformatics, Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, 35128, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, 35128, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, 35128, Italy
| | - Fabio Vandin
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo 6b, Padua, 35131, Italy
| |
Collapse
|
4
|
Patil SS, Roberts SA, Gebremedhin AH. Network analysis of driver genes in human cancers. FRONTIERS IN BIOINFORMATICS 2024; 4:1365200. [PMID: 39040139 PMCID: PMC11260686 DOI: 10.3389/fbinf.2024.1365200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Cancer is a heterogeneous disease that results from genetic alteration of cell cycle and proliferation controls. Identifying mutations that drive cancer, understanding cancer type specificities, and delineating how driver mutations interact with each other to establish disease is vital for identifying therapeutic vulnerabilities. Such cancer specific patterns and gene co-occurrences can be identified by studying tumor genome sequences, and networks have proven effective in uncovering relationships between sequences. We present two network-based approaches to identify driver gene patterns among tumor samples. The first approach relies on analysis using the Directed Weighted All Nearest Neighbors (DiWANN) model, which is a variant of sequence similarity network, and the second approach uses bipartite network analysis. A data reduction framework was implemented to extract the minimal relevant information for the sequence similarity network analysis, where a transformed reference sequence is generated for constructing the driver gene network. This data reduction process combined with the efficiency of the DiWANN network model, greatly lowered the computational cost (in terms of execution time and memory usage) of generating the networks enabling us to work at a much larger scale than previously possible. The DiWANN network helped us identify cancer types in which samples were more closely connected to each other suggesting they are less heterogeneous and potentially susceptible to a common drug. The bipartite network analysis provided insight into gene associations and co-occurrences. We identified genes that were broadly mutated in multiple cancer types and mutations exclusive to only a few. Additionally, weighted one-mode gene projections of the bipartite networks revealed a pattern of occurrence of driver genes in different cancers. Our study demonstrates that network-based approaches can be an effective tool in cancer genomics. The analysis identifies co-occurring and exclusive driver genes and mutations for specific cancer types, providing a better understanding of the driver genes that lead to tumor initiation and evolution.
Collapse
Affiliation(s)
- Shruti S. Patil
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| | - Steven A. Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
- UVM’s Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, United States
| | - Assefaw H. Gebremedhin
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Deng C, Li HD, Zhang LS, Liu Y, Li Y, Wang J. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks. Bioinformatics 2024; 40:i511-i520. [PMID: 38940121 PMCID: PMC11211849 DOI: 10.1093/bioinformatics/btae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for discovering cancer genes but remains to be fully exploited. RESULTS Here, we present the DIsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based computational method that integrates the knowledge from multiple types of annotated gene sets to predict cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets. Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes. AVAILABILITY AND IMPLEMENTATION DISHyper is freely available for download at https://github.com/genemine/DISHyper.
Collapse
Affiliation(s)
- Chao Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Li-Shen Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yiwei Liu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, United States
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| |
Collapse
|
6
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
7
|
Tóbiás R, Diouf ML, Cozijn FMJ, Ubachs W, Császár AG. All paths lead to hubs in the spectroscopic networks of water isotopologues H 216O and H 218O. Commun Chem 2024; 7:34. [PMID: 38365971 PMCID: PMC10873357 DOI: 10.1038/s42004-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024] Open
Abstract
Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H216O and H218O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H216O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.
Collapse
Affiliation(s)
- Roland Tóbiás
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and HUN-REN-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Meissa L Diouf
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Frank M J Cozijn
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Wim Ubachs
- Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and HUN-REN-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary.
| |
Collapse
|
8
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Ouyang H, Wu S, Li W, Grey MJ, Wu W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor-suppressor function mediated by p190A RhoGAP. Cell Rep 2023; 42:113486. [PMID: 37995182 PMCID: PMC10809936 DOI: 10.1016/j.celrep.2023.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
ARHGAP35, which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that interaction of p190A with the tight-junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate large tumor-suppressor (LATS) kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation, and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor-suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which, despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Shuang Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wangji Li
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Grey
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenchao Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Triantafyllidis CP, Barberis A, Hartley F, Cuervo AM, Gjerga E, Charlton P, van Bijsterveldt L, Rodriguez JS, Buffa FM. A machine learning and directed network optimization approach to uncover TP53 regulatory patterns. iScience 2023; 26:108291. [PMID: 38047081 PMCID: PMC10692668 DOI: 10.1016/j.isci.2023.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53from transcriptomic data, and directed regulatory networks to reconstruct the effect of mutations on the transcipt levels of TP53 targets. Using data from established databases (Cancer Cell Line Encyclopedia, The Cancer Genome Atlas), machine learning could predict the mutation status, but not resolve different mutations. On the contrary, directed network optimization allowed to infer the TP53 regulatory profile across: (1) mutations, (2) irradiation in lung cancer, and (3) hypoxia in breast cancer, and we could observe differential regulatory profiles dictated by (1) mutation type, (2) deleterious consequences of the mutation, (3) known hotspots, (4) protein changes, (5) stress condition (irradiation/hypoxia). This is an important first step toward using regulatory networks for the characterization of the functional consequences of mutations, and could be extended to other perturbations, with implications for drug design and precision medicine.
Collapse
Affiliation(s)
- Charalampos P. Triantafyllidis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alessandro Barberis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ana Miar Cuervo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Philip Charlton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Julio Saez Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Francesca M. Buffa
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Computing Sciences, BIDSA, Bocconi University, Milan, Italy
| |
Collapse
|
11
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Fawaz A, Ferraresi A, Isidoro C. Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making. J Pers Med 2023; 13:1590. [PMID: 38003905 PMCID: PMC10672164 DOI: 10.3390/jpm13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the second major cause of disease-related death worldwide, and its accurate early diagnosis and therapeutic intervention are fundamental for saving the patient's life. Cancer, as a complex and heterogeneous disorder, results from the disruption and alteration of a wide variety of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient that could have an impact on the prognosis and patient's response to the therapy. The integration of all these data relies on gathering of several experts and may require considerable time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision. Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid and accurate analysis and integration of patient's big data, and support the physician in making diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from possible diagnostic and prognostic errors in the interpretation of images or biochemical-clinical data. Here, we first describe the methods used by systems biology for combining AI with omics and then discuss the potential, challenges, limitations, and critical issues in using AI in cancer research.
Collapse
Affiliation(s)
| | | | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (A.F.); (A.F.)
| |
Collapse
|
13
|
Hernández Sánchez LF, Burger B, Castro Campos RA, Johansson S, Njølstad PR, Barsnes H, Vaudel M. Extending protein interaction networks using proteoforms and small molecules. Bioinformatics 2023; 39:btad598. [PMID: 37756698 PMCID: PMC10564616 DOI: 10.1093/bioinformatics/btad598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
MOTIVATION Biological network analysis for high-throughput biomedical data interpretation relies heavily on topological characteristics. Networks are commonly composed of nodes representing genes or proteins that are connected by edges when interacting. In this study, we use the rich information available in the Reactome pathway database to build biological networks accounting for small molecules and proteoforms modeled using protein isoforms and post-translational modifications to study the topological changes induced by this refinement of the network representation. RESULTS We find that improving the interactome modeling increases the number of nodes and interactions, but that isoform and post-translational modification annotation is still limited compared to what can be expected biologically. We also note that small molecule information can distort the topology of the network due to the high connectedness of these molecules, which does not necessarily represent the reality of biology. However, by restricting the connections of small molecules to the context of biochemical reactions, we find that these improve the overall connectedness of the network and reduce the prevalence of isolated components and nodes. Overall, changing the representation of the network alters the prevalence of articulation points and bridges globally but also within and across pathways. Hence, some molecules can gain or lose in biological importance depending on the level of detail of the representation of the biological system, which might in turn impact network-based studies of diseases or druggability. AVAILABILITY AND IMPLEMENTATION Networks are constructed based on data publicly available in the Reactome Pathway knowledgebase: reactome.org.
Collapse
Affiliation(s)
- Luis Francisco Hernández Sánchez
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen 5020, Norway
- Department of Medical Genetics, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5020, Norway
| | - Bram Burger
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen 5020, Norway
- Department of Medical Genetics, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5020, Norway
- Department of Biomedicine, Proteomics Unit, University of Bergen, Bergen 5020, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, Bergen 5020, Norway
| | | | - Stefan Johansson
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen 5020, Norway
- Department of Medical Genetics, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5020, Norway
| | - Pål Rasmus Njølstad
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen 5020, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen 5020, Norway
| | - Harald Barsnes
- Department of Biomedicine, Proteomics Unit, University of Bergen, Bergen 5020, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, Bergen 5020, Norway
| | - Marc Vaudel
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen 5020, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, Bergen 5020, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo 0213, Norway
| |
Collapse
|
14
|
Yang L, Chen R, Melendy T, Goodison S, Sun Y. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein-Protein Interaction Networks. Cancers (Basel) 2023; 15:4090. [PMID: 37627118 PMCID: PMC10452419 DOI: 10.3390/cancers15164090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The identification of cancer driver genes and key molecular pathways has been the focus of large-scale cancer genome studies. Network-based methods detect significantly perturbed subnetworks as putative cancer pathways by incorporating genomics data with the topological information of PPI networks. However, commonly used PPI networks have distinct topological structures, making the results of the same method vary widely when applied to different networks. Furthermore, emerging context-specific PPI networks often have incomplete topological structures, which pose serious challenges for existing subnetwork detection algorithms. METHODS In this paper, we propose a novel method, referred to as MultiFDRnet, to address the above issues. The basic idea is to model a set of PPI networks as a multiplex network to preserve the topological structure of individual networks, while introducing dependencies among them, and, then, to detect significantly perturbed subnetworks on the modeled multiplex network using all the structural information simultaneously. RESULTS To illustrate the effectiveness of the proposed approach, an extensive benchmark analysis was conducted on both simulated and real cancer data. The experimental results showed that the proposed method is able to detect significantly perturbed subnetworks jointly supported by multiple PPI networks and to identify novel modular structures in context-specific PPI networks.
Collapse
Affiliation(s)
- Le Yang
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14203, USA; (L.Y.); (R.C.); (T.M.)
| | - Runpu Chen
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14203, USA; (L.Y.); (R.C.); (T.M.)
| | - Thomas Melendy
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14203, USA; (L.Y.); (R.C.); (T.M.)
| | - Steve Goodison
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Yijun Sun
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14203, USA; (L.Y.); (R.C.); (T.M.)
- Department of Computer Science and Engineering, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Ouyang H, Li W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor suppressor function mediated by p190A RhoGAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541483. [PMID: 37292741 PMCID: PMC10245842 DOI: 10.1101/2023.05.22.541483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ARHGAP35 , which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that a novel interaction of p190A with the tight junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate LATS kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
|
16
|
Torkildsen CF, Thomsen LCV, Sande RK, Krakstad C, Stefansson I, Lamark EK, Knappskog S, Bjørge L. Molecular and phenotypic characteristics influencing the degree of cytoreduction in high-grade serous ovarian carcinomas. Cancer Med 2023. [PMID: 37191035 DOI: 10.1002/cam4.6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the deadliest ovarian cancer subtype, and survival relates to initial cytoreductive surgical treatment. The existing tools for surgical outcome prediction remain inadequate for anticipating the outcomes of the complex relationship between tumour biology, clinical phenotypes, co-morbidity and surgical skills. In this genotype-phenotype association study, we combine phenotypic markers with targeted DNA sequencing to discover novel biomarkers to guide the surgical management of primary HGSOC. METHODS Primary tumour tissue samples (n = 97) and matched blood from a phenotypically well-characterised treatment-naïve HGSOC patient cohort were analysed by targeted massive parallel DNA sequencing (next generation sequencing [NGS]) of a panel of 360 cancer-related genes. Association analyses were performed on phenotypic traits related to complete cytoreductive surgery, while logistic regression analysis was applied for the predictive model. RESULTS The positive influence of complete cytoreductive surgery (R0) on overall survival was confirmed (p = 0.003). Before surgery, low volumes of ascitic fluid, lower CA125 levels, higher platelet counts and relatively lower clinical stage at diagnosis were all indicators, alone and combined, for complete cytoreduction (R0). Mutations in either the chromatin remodelling SWI_SNF (p = 0.036) pathway or the histone H3K4 methylation pathway (p = 0.034) correlated with R0. The R0 group also demonstrated higher tumour mutational burden levels (p = 0.028). A predictive model was developed by combining two phenotypes and the mutational status of five genes and one genetic pathway, enabling the prediction of surgical outcomes in 87.6% of the cases in this cohort. CONCLUSION Inclusion of molecular biomarkers adds value to the pre-operative stratification of HGSOC patients. A potential preoperative risk stratification model combining phenotypic traits and single-gene mutational status is suggested, but the set-up needs to be validated in larger cohorts.
Collapse
Affiliation(s)
- Cecilie Fredvik Torkildsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ragnar Kvie Sande
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ingunn Stefansson
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eva Karin Lamark
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Patterson A, Elbasir A, Tian B, Auslander N. Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers (Basel) 2023; 15:1958. [PMID: 37046619 PMCID: PMC10093138 DOI: 10.3390/cancers15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Since the rise of next-generation sequencing technologies, the catalogue of mutations in cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape and extract meaningful insights, numerous computational approaches have been developed over the last two decades. In this review, we survey the current leading computational methods to derive intricate mutational patterns in the context of clinical relevance. We begin with mutation signatures, explaining first how mutation signatures were developed and then examining the utility of studies using mutation signatures to correlate environmental effects on the cancer genome. Next, we examine current clinical research that employs mutation signatures and discuss the potential use cases and challenges of mutation signatures in clinical decision-making. We then examine computational studies developing tools to investigate complex patterns of mutations beyond the context of mutational signatures. We survey methods to identify cancer-driver genes, from single-driver studies to pathway and network analyses. In addition, we review methods inferring complex combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction, including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further discuss the main limitations preventing widespread clinical integration of computational tools for the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges using recent advances in machine learning.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Bin Tian
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Gonzalez A, Leon DA, Perera Y, Perez R. On the gene expression landscape of cancer. PLoS One 2023; 18:e0277786. [PMID: 36802377 PMCID: PMC9942972 DOI: 10.1371/journal.pone.0277786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 02/23/2023] Open
Abstract
Kauffman picture of normal and tumor states as attractors in an abstract state space is used in order to interpret gene expression data for 15 cancer localizations obtained from The Cancer Genome Atlas. A principal component analysis of this data unveils the following qualitative aspects about tumors: 1) The state of a tissue in gene expression space can be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic characteristics. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
Collapse
Affiliation(s)
- Augusto Gonzalez
- University of Electronic Sciences and Technology of China, Chengdu, People Republic of China
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
| | - Dario A. Leon
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| | - Yasser Perera
- China-Cuba Biotechnology Joint Innovation Center, Yongzhou, People Republic of China
- Center of Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rolando Perez
- University of Electronic Sciences and Technology of China, Chengdu, People Republic of China
- Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
19
|
Mesa-Rodríguez A, Gonzalez A, Estevez-Rams E, Valdes-Sosa PA. Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1744. [PMID: 36554151 PMCID: PMC9777913 DOI: 10.3390/e24121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The availability of massive gene expression data has been challenging in terms of how to cure, process, and extract useful information. Here, we describe the use of entropic measures as discriminating criteria in cancer using the whole data set of gene expression levels. These methods were applied in classifying samples between tumor and normal type for 13 types of tumors with a high success ratio. Using gene expression, ordered by pathways, results in complexity-entropy diagrams. The map allows the clustering of the tumor and normal types samples, with a high success rate for nine of the thirteen, studied cancer types. Further analysis using information distance also shows good discriminating behavior, but, more importantly, allows for discriminating between cancer types. Together, our results allow the classification of tissues without the need to identify relevant genes or impose a particular cancer model. The used procedure can be extended to classification problems beyond the reported results.
Collapse
Affiliation(s)
- Ania Mesa-Rodríguez
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Sciences and Technology of China, Chengdu 610054, China
- Facultad de Matemática, Universidad de La Habana, San Lazaro y L, La Habana 10400, Cuba
| | - Augusto Gonzalez
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Sciences and Technology of China, Chengdu 610054, China
- Instituto de Cibernética, Matemática y Física, La Habana 10400, Cuba
| | - Ernesto Estevez-Rams
- Facultad de Física, Instituto de Ciencias y Tecnología de Materiales (IMRE), Universidad de La Habana, San Lazaro y L, La Habana 10400, Cuba
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Sciences and Technology of China, Chengdu 610054, China
- Centro de Neurociencias, BioCubaFarma, La Habana 10400, Cuba
| |
Collapse
|
20
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
21
|
Lheureux S. Multi-omics Uncovering Different Faces of Clear Cell Ovarian Cancer. Clin Cancer Res 2022; 28:4838-4839. [PMID: 36094332 DOI: 10.1158/1078-0432.ccr-22-2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 01/24/2023]
Abstract
The diagnosis of clear cell ovarian cancer relies on expert histopathology review. Further characterization from deep genomic and transcriptomic analyses can identify different subgroups. International collaboration is required to define the clinical impact and therapy opportunities in these specific subclassifications. See related article by Bolton et al., p. 4947.
Collapse
Affiliation(s)
- Stephanie Lheureux
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Jiang P, Sinha S, Aldape K, Hannenhalli S, Sahinalp C, Ruppin E. Big data in basic and translational cancer research. Nat Rev Cancer 2022; 22:625-639. [PMID: 36064595 PMCID: PMC9443637 DOI: 10.1038/s41568-022-00502-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Historically, the primary focus of cancer research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen the rapid accumulation of large-scale cancer omics data catalysed by breakthroughs in high-throughput technologies. This fast data growth has given rise to an evolving concept of 'big data' in cancer, whose analysis demands large computational resources and can potentially bring novel insights into essential questions. Indeed, the combination of big data, bioinformatics and artificial intelligence has led to notable advances in our basic understanding of cancer biology and to translational advancements. Further advances will require a concerted effort among data scientists, clinicians, biologists and policymakers. Here, we review the current state of the art and future challenges for harnessing big data to advance cancer research and treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Ocsenas O, Reimand J. Chromatin accessibility of primary human cancers ties regional mutational processes and signatures with tissues of origin. PLoS Comput Biol 2022; 18:e1010393. [PMID: 35947558 PMCID: PMC9365152 DOI: 10.1371/journal.pcbi.1010393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Somatic mutations in cancer genomes are associated with DNA replication timing (RT) and chromatin accessibility (CA), however these observations are based on normal tissues and cell lines while primary cancer epigenomes remain uncharacterised. Here we use machine learning to model megabase-scale mutation burden in 2,500 whole cancer genomes and 17 cancer types via a compendium of 900 CA and RT profiles covering primary cancers, normal tissues, and cell lines. CA profiles of primary cancers, rather than those of normal tissues, are most predictive of regional mutagenesis in most cancer types. Feature prioritisation shows that the epigenomes of matching cancer types and organ systems are often the strongest predictors of regional mutation burden, highlighting disease-specific associations of mutational processes. The genomic distributions of mutational signatures are also shaped by the epigenomes of matched cancer and tissue types, with SBS5/40, carcinogenic and unknown signatures most accurately predicted by our models. In contrast, fewer associations of RT and regional mutagenesis are found. Lastly, the models highlight genomic regions with overrepresented mutations that dramatically exceed epigenome-derived expectations and show a pan-cancer convergence to genes and pathways involved in development and oncogenesis, indicating the potential of this approach for coding and non-coding driver discovery. The association of regional mutational processes with the epigenomes of primary cancers suggests that the landscape of passenger mutations is predominantly shaped by the epigenomes of cancer cells after oncogenic transformation.
Collapse
Affiliation(s)
- Oliver Ocsenas
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
24
|
Petrov I, Alexeyenko A. Individualized discovery of rare cancer drivers in global network context. eLife 2022; 11:74010. [PMID: 35593700 PMCID: PMC9159755 DOI: 10.7554/elife.74010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Late advances in genome sequencing expanded the space of known cancer driver genes several-fold. However, most of this surge was based on computational analysis of somatic mutation frequencies and/or their impact on the protein function. On the contrary, experimental research necessarily accounted for functional context of mutations interacting with other genes and conferring cancer phenotypes. Eventually, just such results become ‘hard currency’ of cancer biology. The new method, NEAdriver employs knowledge accumulated thus far in the form of global interaction network and functionally annotated pathways in order to recover known and predict novel driver genes. The driver discovery was individualized by accounting for mutations’ co-occurrence in each tumour genome – as an alternative to summarizing information over the whole cancer patient cohorts. For each somatic genome change, probabilistic estimates from two lanes of network analysis were combined into joint likelihoods of being a driver. Thus, ability to detect previously unnoticed candidate driver events emerged from combining individual genomic context with network perspective. The procedure was applied to 10 largest cancer cohorts followed by evaluating error rates against previous cancer gene sets. The discovered driver combinations were shown to be informative on cancer outcome. This revealed driver genes with individually sparse mutation patterns that would not be detectable by other computational methods and related to cancer biology domains poorly covered by previous analyses. In particular, recurrent mutations of collagen, laminin, and integrin genes were observed in the adenocarcinoma and glioblastoma cancers. Considering constellation patterns of candidate drivers in individual cancer genomes opens a novel avenue for personalized cancer medicine.
Collapse
Affiliation(s)
- Iurii Petrov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,Evi-networks, enskild konsultföretag, Huddinge, Sweden
| |
Collapse
|
25
|
Catozzi S, Ternet C, Gourrege A, Wynne K, Oliviero G, Kiel C. Reconstruction and analysis of a large-scale binary Ras-effector signaling network. Cell Commun Signal 2022; 20:24. [PMID: 35246154 PMCID: PMC8896392 DOI: 10.1186/s12964-022-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the literature, how other effectors signal downstream of Ras is often still enigmatic. METHODS A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector proteins (converging onto 12 effector classes) using public pathway and protein-protein interaction (PPI) databases. The output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcellular localizations, and their cellular functions. RESULTS The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increasingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes have previously been associated to a respective effector pathway, with the remaining providing insights into novel and unexplored functions of specific effector pathways. CONCLUSIONS Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the network boundaries. It constitutes a 'reference interactome' and can be contextualized for specific conditions, e.g. different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating systems properties, such as input-output relationships, crosstalk, and pathway redundancy. Video Abstract.
Collapse
Affiliation(s)
- Simona Catozzi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Camille Ternet
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alize Gourrege
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
26
|
Strybol PP, Larmuseau M, de Schaetzen van Brienen L, Van den Bulcke T, Marchal K. Extracting functional insights from loss-of-function screens using deep link prediction. CELL REPORTS METHODS 2022; 2:100171. [PMID: 35474966 PMCID: PMC9017186 DOI: 10.1016/j.crmeth.2022.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
We present deep link prediction (DLP), a method for the interpretation of loss-of-function screens. Our approach uses representation-based link prediction to reprioritize phenotypic readouts by integrating screening experiments with gene-gene interaction networks. We validate on 2 different loss-of-function technologies, RNAi and CRISPR, using datasets obtained from DepMap. Extensive benchmarking shows that DLP-DeepWalk outperforms other methods in recovering cell-specific dependencies, achieving an average precision well above 90% across 7 different cancer types and on both RNAi and CRISPR data. We show that the genes ranked highest by DLP-DeepWalk are appreciably more enriched in drug targets compared to the ranking based on original screening scores. Interestingly, this enrichment is more pronounced on RNAi data compared to CRISPR data, consistent with the greater inherent noise of RNAi screens. Finally, we demonstrate how DLP-DeepWalk can infer the molecular mechanism through which putative targets trigger cell line mortality.
Collapse
Affiliation(s)
- Pieter-Paul Strybol
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, IDLab, imec, iGent Toren, 9000 Gent, Belgium
| | - Maarten Larmuseau
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, IDLab, imec, iGent Toren, 9000 Gent, Belgium
| | - Louise de Schaetzen van Brienen
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, IDLab, imec, iGent Toren, 9000 Gent, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, IDLab, imec, iGent Toren, 9000 Gent, Belgium
| |
Collapse
|
27
|
Raimondi F, Burkhart JG, Betts MJ, Russell RB, Wu G. Leveraging biochemical reactions to unravel functional impacts of cancer somatic variants affecting protein interaction interfaces. F1000Res 2021; 10:1111. [PMID: 36569594 PMCID: PMC9755755 DOI: 10.12688/f1000research.74395.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 07/26/2023] Open
Abstract
Background: Considering protein mutations in their biological context is essential for understanding their functional impact, interpretation of high-dimensional datasets and development of effective targeted therapies in personalized medicine. Methods: We combined the curated knowledge of biochemical reactions from Reactome with the analysis of interaction-mediating 3D interfaces from Mechismo. In addition, we provided a software tool for users to explore and browse the analysis results in a multi-scale perspective starting from pathways and reactions to protein-protein interactions and protein 3D structures. Results: We analyzed somatic mutations from TCGA, revealing several significantly impacted reactions and pathways in specific cancer types. We found examples of genes not yet listed as oncodrivers, whose rare mutations were predicted to affect cancer processes similarly to known oncodrivers. Some identified processes lack any known oncodrivers, which suggests potentially new cancer-related processes (e.g. complement cascade reactions). Furthermore, we found that mutations perturbing certain processes are significantly associated with distinct phenotypes (i.e. survival time) in specific cancer types (e.g. PIK3CA centered pathways in LGG and UCEC cancer types), suggesting the translational potential of our approach for patient stratification. Our analysis also uncovered several druggable processes (e.g. GPCR signalling pathways) containing enriched reactions, providing support for new off-label therapeutic options. Conclusions: In summary, we have established a multi-scale approach to study genetic variants based on protein-protein interaction 3D structures. Our approach is different from previously published studies in its focus on biochemical reactions and can be applied to other data types (e.g. post-translational modifications) collected for many types of disease.
Collapse
Affiliation(s)
| | - Joshua G. Burkhart
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew J. Betts
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Robert B. Russell
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
28
|
Raimondi F, Burkhart JG, Betts MJ, Russell RB, Wu G. Leveraging biochemical reactions to unravel functional impacts of cancer somatic variants affecting protein interaction interfaces. F1000Res 2021; 10:1111. [PMID: 36569594 PMCID: PMC9755755 DOI: 10.12688/f1000research.74395.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Considering protein mutations in their biological context is essential for understanding their functional impact, interpretation of high-dimensional datasets and development of effective targeted therapies in personalized medicine. Methods: We combined the curated knowledge of biochemical reactions from Reactome with the analysis of interaction-mediating 3D interfaces from Mechismo. In addition, we provided a software tool for users to explore and browse the analysis results in a multi-scale perspective starting from pathways and reactions to protein-protein interactions and protein 3D structures. Results: We analyzed somatic mutations from TCGA, revealing several significantly impacted reactions and pathways in specific cancer types. We found examples of genes not yet listed as oncodrivers, whose rare mutations were predicted to affect cancer processes similarly to known oncodrivers. Some identified processes lack any known oncodrivers, which suggests potentially new cancer-related processes (e.g. complement cascade reactions). Furthermore, we found that mutations perturbing certain processes are significantly associated with distinct phenotypes (i.e. survival time) in specific cancer types (e.g. PIK3CA centered pathways in LGG and UCEC cancer types), suggesting the translational potential of our approach for patient stratification. Our analysis also uncovered several druggable processes (e.g. GPCR signalling pathways) containing enriched reactions, providing support for new off-label therapeutic options. Conclusions: In summary, we have established a multi-scale approach to study genetic variants based on protein-protein interaction 3D structures. Our approach is different from previously published studies in its focus on biochemical reactions and can be applied to other data types (e.g. post-translational modifications) collected for many types of disease.
Collapse
Affiliation(s)
| | - Joshua G. Burkhart
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew J. Betts
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Robert B. Russell
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
29
|
Raimondi F, Burkhart JG, Betts MJ, Russell RB, Wu G. Leveraging biochemical reactions to unravel functional impacts of cancer somatic variants affecting protein interaction interfaces. F1000Res 2021; 10:1111. [PMID: 36569594 PMCID: PMC9755755 DOI: 10.12688/f1000research.74395.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 07/26/2023] Open
Abstract
Background: Considering protein mutations in their biological context is essential for understanding their functional impact, interpretation of high-dimensional datasets and development of effective targeted therapies in personalized medicine. Methods: We combined the curated knowledge of biochemical reactions from Reactome with the analysis of interaction-mediating 3D interfaces from Mechismo. In addition, we provided a software tool for users to explore and browse the analysis results in a multi-scale perspective starting from pathways and reactions to protein-protein interactions and protein 3D structures. Results: We analyzed somatic mutations from TCGA, revealing several significantly impacted reactions and pathways in specific cancer types. We found examples of genes not yet listed as oncodrivers, whose rare mutations were predicted to affect cancer processes similarly to known oncodrivers. Some identified processes lack any known oncodrivers, which suggests potentially new cancer-related processes (e.g. complement cascade reactions). Furthermore, we found that mutations perturbing certain processes are significantly associated with distinct phenotypes (i.e. survival time) in specific cancer types (e.g. PIK3CA centered pathways in LGG and UCEC cancer types), suggesting the translational potential of our approach for patient stratification. Our analysis also uncovered several druggable processes (e.g. GPCR signalling pathways) containing enriched reactions, providing support for new off-label therapeutic options. Conclusions: In summary, we have established a multi-scale approach to study genetic variants based on protein-protein interaction 3D structures. Our approach is different from previously published studies in its focus on biochemical reactions and can be applied to other data types (e.g. post-translational modifications) collected for many types of disease.
Collapse
Affiliation(s)
| | - Joshua G. Burkhart
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew J. Betts
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Robert B. Russell
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
de Schaetzen van Brienen L, Miclotte G, Larmuseau M, Van den Eynden J, Marchal K. Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic. Cancers (Basel) 2021; 13:5291. [PMID: 34771455 PMCID: PMC8582433 DOI: 10.3390/cancers13215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most known driver genes of metastatic prostate cancer are frequently mutated. To dig into the long tail of rarely mutated drivers, we performed network-based driver identification on the Hartwig Medical Foundation metastatic prostate cancer data set (HMF cohort). Hereto, we developed GoNetic, a method based on probabilistic pathfinding, to identify recurrently mutated subnetworks. In contrast to most state-of-the-art network-based methods, GoNetic can leverage sample-specific mutational information and the weights of the underlying prior network. When applied to the HMF cohort, GoNetic successfully recovered known primary and metastatic drivers of prostate cancer that are frequently mutated in the HMF cohort (TP53, RB1, and CTNNB1). In addition, the identified subnetworks contain frequently mutated genes, reflect processes related to metastatic prostate cancer, and contain rarely mutated driver candidates. To further validate these rarely mutated genes, we assessed whether the identified genes were more mutated in metastatic than in primary samples using an independent cohort. Then we evaluated their association with tumor evolution and with the lymph node status of the patients. This resulted in forwarding several novel putative driver genes for metastatic prostate cancer, some of which might be prognostic for disease evolution.
Collapse
Affiliation(s)
- Louise de Schaetzen van Brienen
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium; (L.d.S.v.B.); (G.M.); (M.L.)
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University-IMEC, 9052 Ghent, Belgium
| | - Giles Miclotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium; (L.d.S.v.B.); (G.M.); (M.L.)
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University-IMEC, 9052 Ghent, Belgium
| | - Maarten Larmuseau
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium; (L.d.S.v.B.); (G.M.); (M.L.)
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University-IMEC, 9052 Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium; (L.d.S.v.B.); (G.M.); (M.L.)
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University-IMEC, 9052 Ghent, Belgium
| |
Collapse
|
31
|
Huang K, Xiao C, Glass LM, Critchlow CW, Gibson G, Sun J. Machine learning applications for therapeutic tasks with genomics data. PATTERNS (NEW YORK, N.Y.) 2021; 2:100328. [PMID: 34693370 PMCID: PMC8515011 DOI: 10.1016/j.patter.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thanks to the increasing availability of genomics and other biomedical data, many machine learning algorithms have been proposed for a wide range of therapeutic discovery and development tasks. In this survey, we review the literature on machine learning applications for genomics through the lens of therapeutic development. We investigate the interplay among genomics, compounds, proteins, electronic health records, cellular images, and clinical texts. We identify 22 machine learning in genomics applications that span the whole therapeutics pipeline, from discovering novel targets, personalizing medicine, developing gene-editing tools, all the way to facilitating clinical trials and post-market studies. We also pinpoint seven key challenges in this field with potentials for expansion and impact. This survey examines recent research at the intersection of machine learning, genomics, and therapeutic development.
Collapse
Affiliation(s)
- Kexin Huang
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Cao Xiao
- Amplitude, San Francisco, CA 94105, USA
| | - Lucas M. Glass
- Analytics Center of Excellence, IQVIA, Cambridge, MA 02139, USA
| | | | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jimeng Sun
- Computer Science Department and Carle's Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
32
|
Alcalá-Corona SA, Sandoval-Motta S, Espinal-Enríquez J, Hernández-Lemus E. Modularity in Biological Networks. Front Genet 2021; 12:701331. [PMID: 34594357 PMCID: PMC8477004 DOI: 10.3389/fgene.2021.701331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
Network modeling, from the ecological to the molecular scale has become an essential tool for studying the structure, dynamics and complex behavior of living systems. Graph representations of the relationships between biological components open up a wide variety of methods for discovering the mechanistic and functional properties of biological systems. Many biological networks are organized into a modular structure, so methods to discover such modules are essential if we are to understand the biological system as a whole. However, most of the methods used in biology to this end, have a limited applicability, as they are very specific to the system they were developed for. Conversely, from the statistical physics and network science perspective, graph modularity has been theoretically studied and several methods of a very general nature have been developed. It is our perspective that in particular for the modularity detection problem, biology and theoretical physics/network science are less connected than they should. The central goal of this review is to provide the necessary background and present the most applicable and pertinent methods for community detection in a way that motivates their further usage in biological research.
Collapse
Affiliation(s)
- Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Santiago Sandoval-Motta
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,National Council on Science and Technology, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
33
|
Swaney DL, Ramms DJ, Wang Z, Park J, Goto Y, Soucheray M, Bhola N, Kim K, Zheng F, Zeng Y, McGregor M, Herrington KA, O'Keefe R, Jin N, VanLandingham NK, Foussard H, Von Dollen J, Bouhaddou M, Jimenez-Morales D, Obernier K, Kreisberg JF, Kim M, Johnson DE, Jura N, Grandis JR, Gutkind JS, Ideker T, Krogan NJ. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science 2021; 374:eabf2911. [PMID: 34591642 DOI: 10.1126/science.abf2911] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Dana J Ramms
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Department of Pharmacology, University of California San Diego, La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Zhiyong Wang
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yusuke Goto
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Neil Bhola
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Kyumin Kim
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yan Zeng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics Center for Advanced Light Microscopy at UCSF, University of California San Francisco, San Francisco, CA, USA
| | - Rachel O'Keefe
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nan Jin
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nathan K VanLandingham
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - John Von Dollen
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Minkyu Kim
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Daniel E Johnson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer R Grandis
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - J Silvio Gutkind
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Department of Pharmacology, University of California San Diego, La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science, University of California San Diego, La Jolla, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| |
Collapse
|
34
|
Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, Soucheray M, McGregor MJ, O'Leary P, Wolf D, Stevenson E, Foo TK, Mitchell D, Herrington KA, Muñoz DP, Tutuncuoglu B, Chen KH, Zheng F, Kreisberg JF, Diolaiti ME, Gordan JD, Coppé JP, Swaney DL, Xia B, van 't Veer L, Ashworth A, Ideker T, Krogan NJ. A protein interaction landscape of breast cancer. Science 2021; 374:eabf3066. [PMID: 34591612 PMCID: PMC9040556 DOI: 10.1126/science.abf3066] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kyumin Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Ajda Rojc
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Patrick O'Leary
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Denise Wolf
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dominique Mitchell
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics, Center for Advanced Light Microscopy, University of California, San Francisco, CA, USA
| | - Denise P Muñoz
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Morgan E Diolaiti
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - John D Gordan
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura van 't Veer
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alan Ashworth
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| |
Collapse
|
35
|
Zheng F, Kelly MR, Ramms DJ, Heintschel ML, Tao K, Tutuncuoglu B, Lee JJ, Ono K, Foussard H, Chen M, Herrington KA, Silva E, Liu S, Chen J, Churas C, Wilson N, Kratz A, Pillich RT, Patel DN, Park J, Kuenzi B, Yu MK, Licon K, Pratt D, Kreisberg JF, Kim M, Swaney DL, Nan X, Fraley SI, Gutkind JS, Krogan NJ, Ideker T. Interpretation of cancer mutations using a multiscale map of protein systems. Science 2021; 374:eabf3067. [PMID: 34591613 PMCID: PMC9126298 DOI: 10.1126/science.abf3067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges—how to comprehensively map such systems and how to identify which are under mutational selection—have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.
Collapse
Affiliation(s)
- Fan Zheng
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Marcus R. Kelly
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dana J. Ramms
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marissa L. Heintschel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Tao
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Beril Tutuncuoglu
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - John J. Lee
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keiichiro Ono
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Helene Foussard
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kari A. Herrington
- Department of Biochemistry and Biophysics Center for Advanced Light Microscopy at UCSF, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erica Silva
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophie Liu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher Churas
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wilson
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anton Kratz
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Rudolf T. Pillich
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Devin N. Patel
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Jisoo Park
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Brent Kuenzi
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Michael K. Yu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dexter Pratt
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason F. Kreisberg
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Minkyu Kim
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L. Swaney
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nevan J. Krogan
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| |
Collapse
|
36
|
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021; 373:1474-1479. [PMID: 34554797 DOI: 10.1126/science.abh1645] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2010, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore 138672, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
37
|
Camargo AC, Remoli B, Portela LM, Fioretto MN, Chuffa LG, Moreno CS, Justulin LA. Transcriptomic landscape of male and female reproductive cancers: Similar pathways and molecular signatures predicting response to endocrine therapy. Mol Cell Endocrinol 2021; 535:111393. [PMID: 34245846 DOI: 10.1016/j.mce.2021.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Reproductive cancers in both genders represent serious health problems, whose incidence has significantly risen over the past decades. Although considerable differences among reproductive cancers exist, we aimed to identify similar signaling pathways and key molecular oncomarkers shared among six human reproductive cancers that can advance the current knowledge of cancer biology to propose new strategies for more effective therapies. Using a computational analysis approach, here we uncover aberrant miRNAs-mRNAs networks shared in six reproductive tumor types, and identify common molecular mechanisms strictly associated with cancer promotion and aggressiveness. Based on the fact that estrogenic and androgenic signaling pathways were most active in prostate and breast cancers, we further demonstrated that both androgen and estrogen deprivation therapy are capable of regulating the expression of the same key molecular sensors associated with endoplasmic reticulum dysfunction and cell cycle in these cancers. Overall, our data reveal a potential mechanistic framework of cellular processes that are shared among reproductive cancers, and particularly, highlight the importance of hormonal deprivation in breast and prostate cancers and potentially new biomarkers of response to these therapeutic approaches.
Collapse
Affiliation(s)
- Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil
| | - Beatriz Remoli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil
| | - Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil
| | - Mateus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil
| | - Luiz Ga Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, São Paulo, Brazil.
| |
Collapse
|
38
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
39
|
Chen F, Wendl MC, Wyczalkowski MA, Bailey MH, Li Y, Ding L. Moving pan-cancer studies from basic research toward the clinic. NATURE CANCER 2021; 2:879-890. [PMID: 35121865 DOI: 10.1038/s43018-021-00250-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Although all cancers share common hallmarks, we have long realized that there is no silver-bullet treatment for the disease. Many clinical oncologists specialize in a single cancer type, based predominantly on the tissue of origin. With advances brought by genetics and cancer genomic research, we now know that cancers are profoundly different, both in origins and in genetic alterations. At the same time, commonalities such as key driver mutations, altered pathways, mutational, immune and microbial signatures and other areas (many revealed by pan-cancer studies) point to the intriguing possibility of targeting common traits across diverse cancer types with the same therapeutic strategies. Studies designed to delineate differences and similarities across cancer types are thus critical in discerning the basic dynamics of oncogenesis, as well as informing diagnoses, prognoses and therapies. We anticipate growing emphases on the development and application of therapies targeting underlying commonalities of different cancer types, while tailoring to the unique tissue environment and intrinsic molecular fingerprints of each cancer type and subtype. Here we summarize the facets of pan-cancer research and how they are pushing progress toward personalized medicine.
Collapse
Affiliation(s)
- Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew H Bailey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
40
|
Giunta S. Decoding human cancer with whole genome sequencing: a review of PCAWG Project studies published in February 2020. Cancer Metastasis Rev 2021; 40:909-924. [PMID: 34097189 PMCID: PMC8180541 DOI: 10.1007/s10555-021-09969-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Cancer is underlined by genetic changes. In an unprecedented international effort, the Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) sequenced the tumors of over two thousand five hundred patients across 38 different cancer types, as well as the corresponding healthy tissue, with the aim of identifying genome-wide mutations exclusively found in cancer and uncovering new genetic changes that drive tumor formation. What set this project apart from earlier efforts is the use of whole genome sequencing (WGS) that enabled to explore alterations beyond the coding DNA, into cancer's non-coding genome. WGS of the entire cohort allowed to tease apart driving mutations that initiate and support carcinogenesis from passenger mutations that do not play an overt role in the disease. At least one causative mutation was found in 95% of all cancers, with many tumors showing an average of 5 driver mutations. The PCAWG Project also assessed the transcriptional output altered in cancer and rebuilt the evolutionary history of each tumor showing that initial driver mutations can occur years if not decades prior to a diagnosis. Here, I provide a concise review of the Pan-Cancer Project papers published on February 2020, along with key computational tools and the digital framework generated as part of the project. This represents an historic effort by hundreds of international collaborators, which provides a comprehensive understanding of cancer genetics, with publicly available data and resources representing a treasure trove of information to advance cancer research for years to come.
Collapse
Affiliation(s)
- Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy.
- The Rockefeller University, 1230 York Avenue, New York, NY, USA.
| |
Collapse
|
41
|
Tanaka I, Furukawa T, Morise M. The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence. Cancer Cell Int 2021; 21:454. [PMID: 34446006 PMCID: PMC8393743 DOI: 10.1186/s12935-021-02165-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehensive analysis of omics data, such as genome, transcriptome, proteome, metabolome, and interactome, is a crucial technique for elucidating the complex mechanism of cancer onset and progression. Recently, a variety of new findings have been reported based on multi-omics analysis in combination with various clinical information. However, integrated analysis of multi-omics data is extremely labor intensive, making the development of new analysis technology indispensable. Artificial intelligence (AI), which has been under development in recent years, is quickly becoming an effective approach to reduce the labor involved in analyzing large amounts of complex data and to obtain valuable information that is often overlooked in manual analysis and experiments. The use of AI, such as machine learning approaches and deep learning systems, allows for the efficient analysis of massive omics data combined with accurate clinical information and can lead to comprehensive predictive models that will be desirable for further developing individual treatment strategies of immunotherapy and molecular target therapy. Here, we aim to review the potential of AI in the integrated analysis of omics data and clinical information with a special focus on recent advances in the discovery of new biomarkers and the future direction of personalized medicine in non-small lung cancer.
Collapse
Affiliation(s)
- Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Taiki Furukawa
- Center for Healthcare Information Technology (C-HiT), Nagoya University, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
42
|
Rea J, Carissimo A, Trisciuoglio D, Illi B, Picard D, Remke M, Laneve P, Caffarelli E. Identification and Functional Characterization of Novel MYC-Regulated Long Noncoding RNAs in Group 3 Medulloblastoma. Cancers (Basel) 2021; 13:cancers13153853. [PMID: 34359754 PMCID: PMC8345409 DOI: 10.3390/cancers13153853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Medulloblastoma is the most common malignant pediatric brain tumor, which accounts for approximately 20% of all childhood brain tumors. To date, no pharmacological approaches are decisive in the treatment of this cancer, while the secondary effects of conventional therapies as chemotherapy, radiotherapy or surgical interventions heavily affect the quality of life of patients. This requires the rapid development of alternative molecular therapies, which are the future challenge of personalized medicine. In this context, we addressed our research towards the most aggressive form of Medulloblastoma to identify novel genes responsible for its onset and/or progression. We discovered three newly implicated genes, for which we highlighted a contribution in the control of cancer cell features. Deepening into the Medulloblastoma biology, this study represents a further step forward for the development of molecular therapies in the era of precision oncology. Abstract The impact of protein-coding genes on cancer onset and progression is a well-established paradigm in molecular oncology. Nevertheless, unveiling the contribution of the noncoding genes—including long noncoding RNAs (lncRNAs)—to tumorigenesis represents a great challenge for personalized medicine, since they (i) constitute the majority of the human genome, (ii) are essential and flexible regulators of gene expression and (iii) present all types of genomic alterations described for protein-coding genes. LncRNAs have been increasingly associated with cancer, their highly tissue- and cancer type-specific expression making them attractive candidates as both biomarkers and therapeutic targets. Medulloblastoma is one of the most common malignant pediatric brain tumors. Group 3 is the most aggressive subgroup, showing the highest rate of metastasis at diagnosis. Transcriptomics and reverse genetics approaches were combined to identify lncRNAs implicated in Group 3 Medulloblastoma biology. Here we present the first collection of lncRNAs dependent on the activity of the MYC oncogene, the major driver gene of Group 3 Medulloblastoma. We assessed the expression profile of selected lncRNAs in Group 3 primary tumors and functionally characterized these species. Overall, our data demonstrate the direct involvement of three lncRNAs in Medulloblastoma cancer cell phenotypes.
Collapse
Affiliation(s)
- Jessica Rea
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (D.T.); (B.I.)
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (D.T.); (B.I.)
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (D.P.); (M.R.)
- Department of Neuropathology, Faculty of Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium Neuro-Oncogenomics Cancer Research (DKTK), Partner Site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (D.P.); (M.R.)
- Department of Neuropathology, Faculty of Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium Neuro-Oncogenomics Cancer Research (DKTK), Partner Site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Pietro Laneve
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (D.T.); (B.I.)
- Correspondence: (P.L.); (E.C.); Tel.: +39-06-49912205 (P.L.); +39-06-49912201 (E.C.)
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy; (D.T.); (B.I.)
- Correspondence: (P.L.); (E.C.); Tel.: +39-06-49912205 (P.L.); +39-06-49912201 (E.C.)
| |
Collapse
|
43
|
Park Y, Heider D, Hauschild AC. Integrative Analysis of Next-Generation Sequencing for Next-Generation Cancer Research toward Artificial Intelligence. Cancers (Basel) 2021; 13:3148. [PMID: 34202427 PMCID: PMC8269018 DOI: 10.3390/cancers13133148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
The rapid improvement of next-generation sequencing (NGS) technologies and their application in large-scale cohorts in cancer research led to common challenges of big data. It opened a new research area incorporating systems biology and machine learning. As large-scale NGS data accumulated, sophisticated data analysis methods became indispensable. In addition, NGS data have been integrated with systems biology to build better predictive models to determine the characteristics of tumors and tumor subtypes. Therefore, various machine learning algorithms were introduced to identify underlying biological mechanisms. In this work, we review novel technologies developed for NGS data analysis, and we describe how these computational methodologies integrate systems biology and omics data. Subsequently, we discuss how deep neural networks outperform other approaches, the potential of graph neural networks (GNN) in systems biology, and the limitations in NGS biomedical research. To reflect on the various challenges and corresponding computational solutions, we will discuss the following three topics: (i) molecular characteristics, (ii) tumor heterogeneity, and (iii) drug discovery. We conclude that machine learning and network-based approaches can add valuable insights and build highly accurate models. However, a well-informed choice of learning algorithm and biological network information is crucial for the success of each specific research question.
Collapse
Affiliation(s)
- Youngjun Park
- Department of Mathematics and Computer Science, Philipps-University of Marburg, 35032 Marburg, Germany; (Y.P.); (D.H.)
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps-University of Marburg, 35032 Marburg, Germany; (Y.P.); (D.H.)
| | - Anne-Christin Hauschild
- Department of Mathematics and Computer Science, Philipps-University of Marburg, 35032 Marburg, Germany; (Y.P.); (D.H.)
- Department of Medical Informatics, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
44
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
45
|
Chen Y, Xu R, Ruze R, Yang J, Wang H, Song J, You L, Wang C, Zhao Y. Construction of a prognostic model with histone modification-related genes and identification of potential drugs in pancreatic cancer. Cancer Cell Int 2021; 21:291. [PMID: 34090418 PMCID: PMC8178883 DOI: 10.1186/s12935-021-01928-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. An effective prediction model is urgently needed for the accurate assessment of patients’ prognosis to assist clinical decision-making. Methods Gene expression data and clinicopathological data of the samples were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier (KM) survival analysis and survival point graph in training set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to identify potential small molecular drugs as the risk model-related treatments for PC patients. Results Four histone modification-related genes were identified to establish the risk signature, including CBX8, CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in treating PC patients. Conclusions Based on a histone modification-related gene signature, our model can serve as a reliable prognosis assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs were also identified with significant potentiality in treating PC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01928-6.
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jinshou Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| |
Collapse
|
46
|
Lee CA, Abd-Rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes. Genome Biol 2021; 22:133. [PMID: 33941236 PMCID: PMC8091793 DOI: 10.1186/s13059-021-02318-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mechanisms with functional and genetic determinants remain poorly understood. Results We characterise the mutational landscape of 1.3 million gene-regulatory and chromatin architectural elements in 2419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We develop RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. Increased mutation frequency in TSSs associates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identify ~ 10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of mutagenesis. We detect site-specific mutational signature enrichments, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. Candidate drivers of localised mutagenesis are also apparent: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutagenesis in pancreatic cancer. Conclusions Our method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver gene discovery. The functional and genetic correlates of mutational processes suggest mechanistic hypotheses for future studies.
Collapse
Affiliation(s)
- Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Krassowski M, Pellegrina D, Mee MW, Fradet-Turcotte A, Bhat M, Reimand J. ActiveDriverDB: Interpreting Genetic Variation in Human and Cancer Genomes Using Post-translational Modification Sites and Signaling Networks (2021 Update). Front Cell Dev Biol 2021; 9:626821. [PMID: 33834021 PMCID: PMC8021862 DOI: 10.3389/fcell.2021.626821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Deciphering the functional impact of genetic variation is required to understand phenotypic diversity and the molecular mechanisms of inherited disease and cancer. While millions of genetic variants are now mapped in genome sequencing projects, distinguishing functional variants remains a major challenge. Protein-coding variation can be interpreted using post-translational modification (PTM) sites that are core components of cellular signaling networks controlling molecular processes and pathways. ActiveDriverDB is an interactive proteo-genomics database that uses more than 260,000 experimentally detected PTM sites to predict the functional impact of genetic variation in disease, cancer and the human population. Using machine learning tools, we prioritize proteins and pathways with enriched PTM-specific amino acid substitutions that potentially rewire signaling networks via induced or disrupted short linear motifs of kinase binding. We then map these effects to site-specific protein interaction networks and drug targets. In the 2021 update, we increased the PTM datasets by nearly 50%, included glycosylation, sumoylation and succinylation as new types of PTMs, and updated the workflows to interpret inherited disease mutations. We added a recent phosphoproteomics dataset reflecting the cellular response to SARS-CoV-2 to predict the impact of human genetic variation on COVID-19 infection and disease course. Overall, we estimate that 16-21% of known amino acid substitutions affect PTM sites among pathogenic disease mutations, somatic mutations in cancer genomes and germline variants in the human population. These data underline the potential of interpreting genetic variation through the lens of PTMs and signaling networks. The open-source database is freely available at www.ActiveDriverDB.org.
Collapse
Affiliation(s)
- Michal Krassowski
- Nuffield Department of Women’s and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Miles W. Mee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amelie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Universite Laval, Quebec, QC, Canada
- Oncology Division, Centre Hospitalier Universitaire (CHU) de Quebec-Universite Laval Research Center, Quebec, QC, Canada
| | - Mamatha Bhat
- Multiorgan Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Yetsko K, Farrell JA, Blackburn NB, Whitmore L, Stammnitz MR, Whilde J, Eastman CB, Ramia DR, Thomas R, Krstic A, Linser P, Creer S, Carvalho G, Devlin MA, Nahvi N, Leandro AC, deMaar TW, Burkhalter B, Murchison EP, Schnitzler C, Duffy DJ. Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Commun Biol 2021; 4:152. [PMID: 33526843 PMCID: PMC7851172 DOI: 10.1038/s42003-021-01656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.
Collapse
Affiliation(s)
- Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicholas B Blackburn
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, USA
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
49
|
O'Leary KA, Rugowski DE, Shea MP, Sullivan R, Moser AR, Schuler LA. Prolactin synergizes with canonical Wnt signals to drive development of ER+ mammary tumors via activation of the Notch pathway. Cancer Lett 2021; 503:231-239. [PMID: 33472091 DOI: 10.1016/j.canlet.2021.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Prolactin (PRL) cooperates with other factors to orchestrate mammary development and lactation, and is epidemiologically linked to higher risk for breast cancer. However, how PRL collaborates with oncogenes to foster tumorigenesis and influence breast cancer phenotype is not well understood. To understand its interactions with canonical Wnt signals, which elevate mammary stem cell activity, we crossed heterozygous NRL-PRL mice with ApcMin/+ mice and treated pubertal females with a single dose of mutagen. PRL in the context of ApcMin/+ fueled a dramatic increase in tumor incidence in nulliparous mice, compared to ApcMin/+ alone. Although carcinomas in both NRL-PRL/ApcMin/+ and ApcMin/+ females acquired a mutation in the remaining wildtype Apc allele and expressed abundant β-catenin, PRL-promoted tumors displayed higher levels of Notch-driven target genes and Notch-dependent cancer stem cell activity, compared to β-catenin-driven activity in ApcMin/+ tumors. This PRL-induced shift to dominant Notch signals was evident in preneoplastic epithelial hyperplasias at 120 days of age. In NRL-PRL/ApcMin/+ females, rapidly proliferating hyperplasias, characterized by β-catenin at cell junctions and high NOTCH1 expression, contrasted with slower growing lesions with nuclear β-catenin in ApcMin/+ females. These studies demonstrate that PRL can powerfully modulate the incidence and phenotype of mammary tumors, shedding light on mechanisms whereby PRL elevates risk of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Amy R Moser
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
50
|
Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis. Cells 2021; 10:cells10010094. [PMID: 33430387 PMCID: PMC7827494 DOI: 10.3390/cells10010094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a critical player in embryogenesis but also plays various roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions, amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream Notch-activated genes have by now been described for most human cancer types. Yet, it often remains unclear what may be the functional impact of these changes for tumor biology, initiation, and progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity, angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers, which are in the center of this review. Notch further supports the “stemness” of cancer cells and helps define the stem cell niche for their long-term survival, by integrating the interaction between cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk with other signaling pathways and its roles in cell fate and trans-differentiation processes such as epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may tip the balance between tumor suppression and promotion, differentiation and invasion. Here we not only review the literature, but also explore genomic databases with a specific focus on Notch signatures, and how they relate to different stages in tumor development. Altered Notch signaling hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues, contributing to failed therapies, poor patient outcome, and loss of lives.
Collapse
|