1
|
Kumar S, Beyer HM, Chen M, Zurbriggen MD, Khammash M. Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope. Nat Commun 2024; 15:10469. [PMID: 39622799 PMCID: PMC11612157 DOI: 10.1038/s41467-024-54351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
In the field of tissue engineering, achieving precise spatiotemporal control over engineered cells is critical for sculpting functional 2D cell cultures into intricate morphological shapes. In this study, we engineer light-responsive mammalian cells and target them with dynamic light patterns to realize 2D cell culture patterning control. To achieve this, we developed μPatternScope (μPS), a modular framework for software-controlled projection of high-resolution light patterns onto microscope samples. μPS comprises hardware and software suite governing pattern projection and microscope maneuvers. Together with a 2D culture of the engineered cells, we utilize μPS for controlled spatiotemporal induction of apoptosis to generate desired 2D shapes. Furthermore, we introduce interactive closed-loop patterning, enabling a dynamic feedback mechanism between the measured cell culture patterns and the light illumination profiles to achieve the desired target patterning trends. Our work offers innovative tools for advanced tissue engineering applications through seamless fusion of optogenetics, optical engineering, and cybernetics.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Mingzhe Chen
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany.
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Raab CA, Wegner SV. Reversible Photoregulation of Cell-Cell Adhesions With Opto-E-cadherin. Bio Protoc 2024; 14:e4995. [PMID: 38798983 PMCID: PMC11116891 DOI: 10.21769/bioprotoc.4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark. Herein, we describe easy-to-use methods to test and characterise opto-E- cadherin cell clones for downstream experiments. Key features • This protocol describes how to implement optogenetic cell-cell adhesion molecules effectively (described here on the basis of opto-E-cadherin), while highlighting possible pitfalls. • Utilises equipment commonly found in most laboratories with high ease of use. • Phenotype screening is easy and done within a few hours (comparison of cell clusters in the dark vs. blue light in an aggregation assay). • Three different functionality assay systems are described. • After the cell line is established, all experiments can be performed within three days.
Collapse
Affiliation(s)
- Christopher A. Raab
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
6
|
Nzigou Mombo B, Bijonowski BM, Raab CA, Niland S, Brockhaus K, Müller M, Eble JA, Wegner SV. Reversible photoregulation of cell-cell adhesions with opto-E-cadherin. Nat Commun 2023; 14:6292. [PMID: 37813868 PMCID: PMC10562482 DOI: 10.1038/s41467-023-41932-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
E-cadherin-based cell-cell adhesions are dynamically and locally regulated in many essential processes, including embryogenesis, wound healing and tissue organization, with dysregulation manifesting as tumorigenesis and metastasis. However, the lack of tools that would provide control of the high spatiotemporal precision observed with E-cadherin adhesions hampers investigation of the underlying mechanisms. Here, we present an optogenetic tool, opto-E-cadherin, that allows reversible control of E-cadherin-mediated cell-cell adhesions with blue light. With opto-E-cadherin, functionally essential calcium binding is photoregulated such that cells expressing opto-E-cadherin at their surface adhere to each other in the dark but not upon illumination. Consequently, opto-E-cadherin provides remote control over multicellular aggregation, E-cadherin-associated intracellular signalling and F-actin organization in 2D and 3D cell cultures. Opto-E-cadherin also allows switching of multicellular behaviour between single and collective cell migration, as well as of cell invasiveness in vitro and in vivo. Overall, opto-E-cadherin is a powerful optogenetic tool capable of controlling cell-cell adhesions at the molecular, cellular and behavioural level that opens up perspectives for the study of dynamics and spatiotemporal control of E-cadherin in biological processes.
Collapse
Affiliation(s)
- Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Brent M Bijonowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Christopher A Raab
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Katrin Brockhaus
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Marc Müller
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, 48149, Münster, Germany.
| |
Collapse
|
7
|
Son YJ, Keum C, Kim M, Jeong G, Jin S, Hwang HW, Kim H, Lee K, Jeon H, Kim H, Pahk KJ, Jang HW, Sun JY, Han HS, Lee KH, Ok MR, Kim YC, Jeong Y. Selective Cell-Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37751467 DOI: 10.1021/acsami.3c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Collapse
Affiliation(s)
- Young Ju Son
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minsoo Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Goeen Jeong
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Messer CL, McDonald JA. Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration. Biochem Soc Trans 2023; 51:1495-1504. [PMID: 37387360 DOI: 10.1042/bst20221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four in vivo model systems in development: the Drosophila border cells, zebrafish mesendodermal cells, Drosophila follicle rotation, and Xenopus neural crest cells.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| |
Collapse
|
9
|
Sadhanasatish T, Augustin K, Windgasse L, Chrostek-Grashoff A, Rief M, Grashoff C. A molecular optomechanics approach reveals functional relevance of force transduction across talin and desmoplakin. SCIENCE ADVANCES 2023; 9:eadg3347. [PMID: 37343090 DOI: 10.1126/sciadv.adg3347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Many mechanobiological processes that govern development and tissue homeostasis are regulated on the level of individual molecular linkages, and a number of proteins experiencing piconewton-scale forces in cells have been identified. However, under which conditions these force-bearing linkages become critical for a given mechanobiological process is often still unclear. Here, we established an approach to revealing the mechanical function of intracellular molecules using molecular optomechanics. When applied to the integrin activator talin, the technique provides direct evidence that its role as a mechanical linker is indispensable for the maintenance of cell-matrix adhesions and overall cell integrity. Applying the technique to desmoplakin shows that mechanical engagement of desmosomes to intermediate filaments is expendable under homeostatic conditions yet strictly required for preserving cell-cell adhesion under stress. These results reveal a central role of talin and desmoplakin as mechanical linkers in cell adhesion structures and demonstrate that molecular optomechanics is a powerful tool to investigate the molecular details of mechanobiological processes.
Collapse
Affiliation(s)
- Tanmay Sadhanasatish
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Katharina Augustin
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Lukas Windgasse
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Anna Chrostek-Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Carsten Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| |
Collapse
|
10
|
Dudley CE, van den Goor L, Miller AL. SNAP- and Halo-tagging and dye introduction protocol for live microscopy in Xenopus embryos. STAR Protoc 2022; 3:101622. [PMID: 36035797 PMCID: PMC9405085 DOI: 10.1016/j.xpro.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Traditional fluorescent proteins exhibit limitations in brightness and photostability that hinder optimal characterization of the dynamic cellular behavior of proteins of interest. SNAP- and Halo-tagging are alternatives to traditional fluorescent protein tagging utilizing bright, stable chemical dyes, which may improve signal-to-noise ratio. However, there has been limited use of this approach in vivo in developing organisms. Here, we present a protocol for implementing SNAP- and Halo-tagging in gastrula-stage Xenopus laevis embryos for live confocal microscopy. For complete details on the use and execution of this protocol, please refer to Varadarajan et al. (2022). Preparing SNAP- and Halo-tagged pCS2+-based constructs Microinjecting SNAP- and Halo-tagged mRNAs into Xenopus embryos Introducing SNAP- and Halo-dyes in developing Xenopus embryos Visualizing SNAP- and Halo-tagged proteins with live confocal microscopy
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| | - Lotte van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
11
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
12
|
Lackner RM, O’Connell W, Zhang H, Chenoweth DM. A general strategy for the design and evaluation of heterobifunctional tools: applications to protein localization and phase separation. Chembiochem 2022; 23:e202200209. [DOI: 10.1002/cbic.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Indexed: 11/12/2022]
Affiliation(s)
| | - Will O’Connell
- Carnegie Mellon University Biological Sciences UNITED STATES
| | - Huaiying Zhang
- Carnegie Mellon University Biological Sciences UNITED STATES
| | - David M. Chenoweth
- University of Pennsylvania Chemistry 231 South 34th Street 19104-6323 Philadelphia UNITED STATES
| |
Collapse
|
13
|
Mizukami S. Development of Photoresponsive Probes to Investigate Cellular Functions. YAKUGAKU ZASSHI 2022; 142:503-511. [DOI: 10.1248/yakushi.21-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
14
|
Abstract
Developing organs are shaped, in part, by physical interaction with their environment in the embryo. In recent years, technical advances in live-cell imaging and material science have greatly expanded our understanding of the mechanical forces driving organ formation. Here, we provide a broad overview of the types of forces generated during embryonic development and then focus on a subset of organs underlying our senses: the eyes, inner ears, nose and skin. The epithelia in these organs emerge from a common origin: the ectoderm germ layer; yet, they arrive at unique and complex forms over developmental time. We discuss exciting recent animal studies that show a crucial role for mechanical forces in, for example, the thickening of sensory placodes, the coiling of the cochlea and the lengthening of hair. Finally, we discuss how microfabricated organoid systems can now provide unprecedented insights into the physical principles of human development.
Collapse
Affiliation(s)
- Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Ziegler MJ, Yserentant K, Dunsing V, Middel V, Gralak AJ, Pakari K, Bargstedt J, Kern C, Petrich A, Chiantia S, Strähle U, Herten DP, Wombacher R. Mandipropamid as a chemical inducer of proximity for in vivo applications. Nat Chem Biol 2022; 18:64-69. [PMID: 34934192 PMCID: PMC8709788 DOI: 10.1038/s41589-021-00922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
Direct control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.
Collapse
Affiliation(s)
- Michael J Ziegler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Klaus Yserentant
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute of Cardiovascular Sciences & School of Chemistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Valentin Dunsing
- Institute of Biology and Biochemistry, University of Potsdam, Potsdam, Germany
| | - Volker Middel
- Institute of Biological and Chemical Systems (IBCS)-Biological Information Processing (BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Antoni J Gralak
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Kaisa Pakari
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Christoph Kern
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Annett Petrich
- Institute of Biology and Biochemistry, University of Potsdam, Potsdam, Germany
| | - Salvatore Chiantia
- Institute of Biology and Biochemistry, University of Potsdam, Potsdam, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS)-Biological Information Processing (BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Dirk-Peter Herten
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
- Institute of Cardiovascular Sciences & School of Chemistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
16
|
Tang Y, Xie T, Wu S, Yang Q, Liu T, Li C, Liu S, Shao Z, Zhang X. Quantitative proteomics revealed the molecular characteristics of distinct types of granulated somatotroph adenomas. Endocrine 2021; 74:375-386. [PMID: 34043183 DOI: 10.1007/s12020-021-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Somatotroph adenomas are obviously heterogeneous in clinical characteristics, imaging performance, pathological diagnosis and therapeutic effect. The heterogeneity of the tumors, especially for SG and DG type adenomas, have attracted great interest in identifying the specific pathological markers and therapeutic targets of them. However, previous analyses of the molecular characteristics of the subtypes of somatotroph adenomas were performed at genomic and transcriptome level. The proteomic differences between the two subtypes of somatotroph adenomas are still unknown. METHODS Tumor samples were surgically removed from 10 sporadic pituitary somatotroph adenoma patients and grouped according to the pathological type. Tandem mass tag (TMT)-based quantitative proteomic analysis was employed to analyze the proteomic differences between SG and DG tumors. RESULTS In total, 228 differentially expressed proteins were identified between SG adenomas and DG adenomas. They were enriched mainly in extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, arrhythmogenic right ventricular cardiomyopathy and DNA replication pathways. Protein-protein interaction (PPI) network analysis indicated that Cadherin-1 and Catenin beta-1 were the most important key proteins in the differences between SG and DG adenomas. Immunohistochemistry (IHC) confirmed the expression levels of the key proteins. CONCLUSIONS This study provides large-scale proteome molecular characteristics of distinct granulation subtypes of somatotroph adenomas. Compared with DG adenomas, The differential protein of SG adenomas mostly enrich in invasive and proliferative functions and pathways at the proteomic level. Cadherin-1 and Catenin beta-1 play key roles in the different biological characteristics of the two tumor subtypes.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Silin Wu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoqiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Digital Medical Research Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Image Computing and Computer-Assisted Intervention, Shanghai, China.
| |
Collapse
|
17
|
Tobias JM, Rajic G, Viray AEG, Icka-Araki D, Frank JA. Genetically-targeted photorelease of endocannabinoids enables optical control of GPR55 in pancreatic β-cells. Chem Sci 2021; 12:13506-13512. [PMID: 34777770 PMCID: PMC8528030 DOI: 10.1039/d1sc02527a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty acid amides (FAAs) are a family of second-messenger lipids that target cannabinoid receptors, and are known mediators of glucose-stimulated insulin secretion from pancreatic β-cells. Due to the diversity observed in FAA structure and pharmacology, coupled with the expression of at least 3 different cannabinoid G protein-coupled receptors in primary and model β-cells, our understanding of their role is limited by our inability to control their actions in time and space. To investigate the mechanisms by which FAAs regulate β-cell excitability, we developed the Optically-Cleavable Targeted (OCT)-ligand approach, which combines the spatial resolution of self-labeling protein (SNAP-) tags with the temporal control of photocaged ligands. By linking a photocaged FAA to an o-benzylguanine (BG) motif, FAA signalling can be directed towards genetically-defined cellular membranes. We designed a probe to release palmitoylethanolamide (PEA), a GPR55 agonist known to stimulate glucose-stimulated insulin secretion (GSIS). When applied to β-cells, OCT-PEA revealed that plasma membrane GPR55 stimulates β-cell Ca2+ activity via phospholipase C. Moving forward, the OCT-ligand approach can be translated to other ligands and receptors, and will open up new experimental possibilities in targeted pharmacology.
Collapse
Affiliation(s)
- Janelle M Tobias
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
- Graduate Program in Physiology & Pharmacology, Oregon Health & Science University Portland OR USA
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University Portland OR USA
| | - Alexander E G Viray
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
| | - David Icka-Araki
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
- Graduate Program in Biomedical Sciences, Oregon Health & Science University Portland OR USA
| | - James A Frank
- Vollum Institute, Oregon Health & Science University Portland OR USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University Portland OR USA
| |
Collapse
|
18
|
Gupta S, Duszyc K, Verma S, Budnar S, Liang X, Gomez GA, Marcq P, Noordstra I, Yap AS. Enhanced RhoA signalling stabilizes E-cadherin in migrating epithelial monolayers. J Cell Sci 2021; 134:272015. [PMID: 34368835 DOI: 10.1242/jcs.258767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelia migrate as physically coherent populations of cells. Previous studies have revealed that mechanical stress accumulates in these cellular layers as they move. These stresses are characteristically tensile in nature and have often been inferred to arise when moving cells pull upon the cell-cell adhesions that hold them together. We now report that epithelial tension at adherens junctions between migrating cells also increases due to an increase in RhoA-mediated junctional contractility. We found that active RhoA levels were stimulated by p114 RhoGEF (also known as ARHGEF18) at the junctions between migrating MCF-7 monolayers, and this was accompanied by increased levels of actomyosin and mechanical tension. Applying a strategy to restore active RhoA specifically at adherens junctions by manipulating its scaffold, anillin, we found that this junctional RhoA signal was necessary to stabilize junctional E-cadherin (CDH1) during epithelial migration and promoted orderly collective movement. We suggest that stabilization of E-cadherin by RhoA serves to increase cell-cell adhesion to protect against the mechanical stresses of migration. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Xuan Liang
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
19
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Keisuke Arai
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Center for Quantum Information and Quantum Biology Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi 980-8577 Japan
- Graduate School of Life Sciences Tohoku University Sendai Miyagi 980-8577 Japan
| |
Collapse
|
20
|
Kowada T, Arai K, Yoshimura A, Matsui T, Kikuchi K, Mizukami S. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew Chem Int Ed Engl 2021; 60:11378-11383. [PMID: 33644979 DOI: 10.1002/anie.202016684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The photoactivatable chemically induced dimerization (photo-CID) technique for tag-fused proteins is one of the most promising methods for regulating subcellular protein translocations and protein-protein interactions. However, light-induced covalent protein dimerization in living cells has yet to be established, despite its various advantages. Herein, we developed a photoactivatable covalent protein-labeling technology by applying a caged ligand to the BL-tag system, a covalent protein labeling system that uses mutant β-lactamase. We further developed CBHD, a caged protein dimerizer, using caged BL-tag and HaloTag ligands, and achieved light-induced protein translocation from the cytoplasm to subcellular regions. In addition, this covalent photo-CID system enabled quick protein translocation to a laser-illuminated microregion. These results indicate that the covalent photo-CID system will expand the scope of CID applications in the optical manipulation of cellular functions.
Collapse
Affiliation(s)
- Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Akimasa Yoshimura
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
21
|
Bretherton RC, DeForest CA. The Art of Engineering Biomimetic Cellular Microenvironments. ACS Biomater Sci Eng 2021; 7:3997-4008. [PMID: 33523625 DOI: 10.1021/acsbiomaterials.0c01549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells and their surrounding microenvironment exist in dynamic reciprocity, where bidirectional feedback and feedforward crosstalk drives essential processes in development, homeostasis, and disease. With the ongoing explosion of customizable biomaterial innovation for dynamic cell culture, an ever-expanding suite of user-programmable scaffolds now exists to probe cell fate in response to spatiotemporally controlled biophysical and biochemical cues. Here, we highlight emerging trends in these efforts, emphasizing strategies that offer tunability over complex network mechanics, present biomolecular cues anisotropically, and harness cells as physiochemical actuators of the pericellular niche. Altogether, these material advances will lead to breakthroughs in our basic understanding of how cells interact with, integrate signals from, and influence their surrounding microenvironment.
Collapse
Affiliation(s)
- Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States.,Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States.,Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Kim S, Uroz M, Bays JL, Chen CS. Harnessing Mechanobiology for Tissue Engineering. Dev Cell 2021; 56:180-191. [PMID: 33453155 PMCID: PMC7855912 DOI: 10.1016/j.devcel.2020.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
A primary challenge in tissue engineering is to recapitulate both the structural and functional features of whole tissues and organs. In vivo, patterning of the body plan and constituent tissues emerges from the carefully orchestrated interactions between the transcriptional programs that give rise to cell types and the mechanical forces that drive the bending, twisting, and extensions critical to morphogenesis. Substantial recent progress in mechanobiology-understanding how mechanics regulate cell behaviors and what cellular machineries are responsible-raises the possibility that one can begin to use these insights to help guide the strategy and design of functional engineered tissues. In this perspective, we review and propose the development of different approaches, from providing appropriate extracellular mechanical cues to interfering with cellular mechanosensing machinery, to aid in controlling cell and tissue structure and function.
Collapse
Affiliation(s)
- Sudong Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Marina Uroz
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jennifer L Bays
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Christopher S Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Nzigou Mombo B, Bijonowski BM, Rasoulinejad S, Mueller M, Wegner SV. Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell-Cell Interactions. Adv Biol (Weinh) 2021; 5:e2000199. [PMID: 34028212 DOI: 10.1002/adbi.202000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/22/2020] [Indexed: 01/02/2023]
Abstract
The regulation of cell-cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell-cell interactions with high precision are of great interest to a better understanding of their roles and building tissue-like structures. Herein, the green light-responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell-cell interactions form and lead to cell clustering in a concentration-dependent manner. Upon green light illumination, the CarH based cell-cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell-cell interactions impact cell migration, as observed in a wound-healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell-cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell-cell interactions in biological processes.
Collapse
Affiliation(s)
- Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| | - Brent M Bijonowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| | - Samaneh Rasoulinejad
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Marc Mueller
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany.,Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
24
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Mumford TR, Roth L, Bugaj LJ. Reverse and Forward Engineering Multicellular Structures with Optogenetics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 16:61-71. [PMID: 33718689 PMCID: PMC7945718 DOI: 10.1016/j.cobme.2020.100250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how cells self-organize into functional higher-order structures is of great interest, both towards deciphering animal development, as well as for our ability to predictably build custom tissues to meet research and therapeutic needs. The proper organization of cells across length-scales results from interconnected and dynamic networks of molecules and cells. Optogenetic probes provide dynamic and tunable control over molecular events within cells, and thus represent a powerful approach to both dissect and control collective cell behaviors. Here we emphasize the breadth of the optogenetic toolkit and discuss how these methods have already been used to reverse-engineer the design rules of developing organisms. We also offer our perspective on the rich potential for optogenetics to power forward-engineering of tissue assembly towards the generation of bespoke tissues with user-defined properties.
Collapse
Affiliation(s)
- Thomas R. Mumford
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| | - Lee Roth
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| | - Lukasz J. Bugaj
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| |
Collapse
|
26
|
Saffioti NA, Cavalcanti-Adam EA, Pallarola D. Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Front Bioeng Biotechnol 2020; 8:597950. [PMID: 33262979 PMCID: PMC7685988 DOI: 10.3389/fbioe.2020.597950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate. The combination of material science and surface chemistry aided in the creation of controllable environments to study cell mechanosensing and mechanotransduction. Biologically inspired materials tailored with specific bioactive molecules, desired physical properties and tunable topography have emerged as suitable tools to study cell behavior. Among these materials, synthetic cell interfaces with built-in sensing capabilities are highly advantageous to measure biophysical and biochemical interaction between cells and their environment. In this review, we discuss the design of micro and nanostructured biomaterials engineered not only to mimic the structure, properties, and function of the cellular microenvironment, but also to obtain quantitative information on how cells sense and probe specific adhesive cues from the extracellular domain. This type of responsive biointerfaces provides a readout of mechanics, biochemistry, and electrical activity in real time allowing observation of cellular processes with molecular specificity. Specifically designed sensors based on advanced optical and electrochemical readout are discussed. We further provide an insight into the emerging role of multifunctional micro and nanosensors to control and monitor cell functions by means of material design.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| | | | - Diego Pallarola
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| |
Collapse
|
27
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|