1
|
Wen H, Wang D, Bi Y. Processing Language Partly Shares Neural Genetic Basis with Processing Tools and Body Parts. eNeuro 2024; 11:ENEURO.0138-24.2024. [PMID: 38886065 PMCID: PMC11298957 DOI: 10.1523/eneuro.0138-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Language is an evolutionarily salient faculty for humans that relies on a distributed brain network spanning across frontal, temporal, parietal, and subcortical regions. To understand whether the complex language network shares common or distinct genetic mechanisms, we examined the relationships between the genetic effects underlying the brain responses to language and a set of object domains that have been suggested to coevolve with language: tools, faces (indicating social), and body parts (indicating social and gesturing). Analyzing the twin datasets released by the Human Connectome Project that had functional magnetic resonance imaging data from human twin subjects (monozygotic and dizygotic) undergoing language and working memory tasks contrasting multiple object domains (198 females and 144 males for the language task; 192 females and 142 males for the working memory task), we identified a set of cortical regions in the frontal and temporal cortices and subcortical regions whose activity to language was significantly genetically influenced. The heterogeneity of the genetic effects among these language clusters was corroborated by significant differences of the human gene expression profiles (Allen Human Brain Atlas dataset). Among them, the bilateral basal ganglia (mainly dorsal caudate) exhibited a common genetic basis for language, tool, and body part processing, and the right superior temporal gyrus exhibited a common genetic basis for language and tool processing across multiple types of analyses. These results uncovered the heterogeneous genetic patterns of language neural processes, shedding light on the evolution of language and its shared origins with tools and bodily functions.
Collapse
Affiliation(s)
- Haojie Wen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Dahui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
2
|
Lesinger K, Rosenthal G, Pierce K, Courchesne E, Dinstein I, Avidan G. Functional connectivity of the human face network exhibits right hemispheric lateralization from infancy to adulthood. Sci Rep 2023; 13:20831. [PMID: 38012206 PMCID: PMC10682179 DOI: 10.1038/s41598-023-47581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Adults typically exhibit right hemispheric dominance in the processing of faces. In this cross-sectional study, we investigated age-dependent changes in face processing lateralization from infancy to adulthood (1-48 years old; N = 194). We co-registered anatomical and resting state functional Magnetic Resonance Imaging (fMRI) scans of toddlers, children, adolescents, and adults into a common space and examined functional connectivity across the face, as well as place, and object-selective regions identified in adults. As expected, functional connectivity between core face-selective regions was stronger in the right compared to the left hemisphere in adults. Most importantly, the same lateralization was evident in all other age groups (infants, children, adolescents) and appeared only in face-selective regions, and not in place or object-selective regions. These findings suggest that the physiological development of face-selective brain areas may differ from that of object and place-selective areas. Specifically, the functional connectivity of the core-face selective regions exhibits rightward lateralization from infancy, years before these areas develop mature face-selective responses.
Collapse
Affiliation(s)
- Keren Lesinger
- Department of Psychology, Ben-Gurion University of the Negev, POB 653, 8410501, Beer Sheva, Israel
| | - Gideon Rosenthal
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, POB 653, 8410501, Beer Sheva, Israel
| | - Karen Pierce
- Department of Neurosciences, University of California, San Diego, USA
| | - Eric Courchesne
- Department of Neurosciences, University of California, San Diego, USA
| | - Ilan Dinstein
- Department of Psychology, Ben-Gurion University of the Negev, POB 653, 8410501, Beer Sheva, Israel
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the Negev, POB 653, 8410501, Beer Sheva, Israel.
| |
Collapse
|
3
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
4
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
5
|
Troiani V, Snyder W, Kozick S, Patti MA, Beiler D. Variability and concordance of sulcal patterns in the orbitofrontal cortex: A twin study. Psychiatry Res Neuroimaging 2022; 324:111492. [PMID: 35597228 DOI: 10.1016/j.pscychresns.2022.111492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Sulcogyral patterns have been identified in the orbitofrontal cortex (OFC) based on the continuity of the medial and lateral orbital sulci. Pattern types are named according to their frequency in the population, with Type I present in ∼60%, Type II in ∼25%, Type III in ∼10%, and Type IV in ∼5%. Previous work has demonstrated that psychiatric conditions with high estimated heritability (e.g. schizophrenia, bipolar disorder) are associated with reduced frequency of Type I patterns, but the general heritability of the OFC sulcogyral patterns is unknown. We examined concordance of OFC patterns in 304 monozygotic (MZ) twins relative to 172 dizygotic (DZ) twins using structural magnetic resonance imaging data. We find that the frequency of pattern types within MZ and DZ twins are similar and bilateral concordance rates across all pattern types in DZ twins were 14% and 21% for MZ twins. Results from follow-up analyses confirm that continuity in the rostral-caudal direction is an important source of variability within the OFC, and subtype analyses indicate that variability is present in other sulci that are not represented by overall OFC pattern type. Overall, these results suggest that OFC sulcogyral patterns may reflect important variance that is not genetic in origin.
Collapse
Affiliation(s)
- Vanessa Troiani
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States.
| | - Will Snyder
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Shane Kozick
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Marisa A Patti
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Donielle Beiler
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| |
Collapse
|
6
|
Rosén J, Kastrati G, Kuja-Halkola R, Larsson H, Åhs F. A neuroimaging study of interpersonal distance in identical and fraternal twins. Hum Brain Mapp 2022; 43:3508-3523. [PMID: 35417056 PMCID: PMC9248319 DOI: 10.1002/hbm.25864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Keeping appropriate interpersonal distance is an evolutionary conserved behavior that can be adapted based on learning. Detailed knowledge on how interpersonal space is represented in the brain and whether such representation is genetically influenced is lacking. We measured brain function using functional magnetic resonance imaging in 294 twins (71 monozygotic, 76 dizygotic pairs) performing a distance task where neural responses to human figures were compared to cylindrical blocks. Proximal viewing distance of human figures was compared to cylinders facilitated responses in the occipital face area (OFA) and the superficial part of the amygdala, which is consistent with these areas playing a role in monitoring interpersonal distance. Using the classic twin method, we observed a genetic influence on interpersonal distance related activation in the OFA, but not in the amygdala. Results suggest that genetic factors may influence interpersonal distance monitoring via the OFA whereas the amygdala may play a role in experience‐dependent adjustments of interpersonal distance.
Collapse
Affiliation(s)
- Jörgen Rosén
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| | - Granit Kastrati
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
7
|
Behrmann M, Avidan G. Face perception: computational insights from phylogeny. Trends Cogn Sci 2022; 26:350-363. [PMID: 35232662 DOI: 10.1016/j.tics.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Studies of face perception in primates elucidate the psychological and neural mechanisms that support this critical and complex ability. Recent progress in characterizing face perception across species, for example in insects and reptiles, has highlighted the ubiquity over phylogeny of this key ability for social interactions and survival. Here, we review the competence in face perception across species and the types of computation that support this behavior. We conclude that the computational complexity of face perception evinced by a species is not related to phylogenetic status and is, instead, largely a product of environmental context and social and adaptive pressures. Integrating findings across evolutionary data permits the derivation of computational principles that shed further light on primate face perception.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Galia Avidan
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Mahon BZ. Domain-specific connectivity drives the organization of object knowledge in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:221-244. [PMID: 35964974 PMCID: PMC11498098 DOI: 10.1016/b978-0-12-823493-8.00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of this chapter is to review neuropsychological and functional MRI findings that inform a theory of the causes of functional specialization for semantic categories within occipito-temporal cortex-the ventral visual processing pathway. The occipito-temporal pathway supports visual object processing and recognition. The theoretical framework that drives this review considers visual object recognition through the lens of how "downstream" systems interact with the outputs of visual recognition processes. Those downstream processes include conceptual interpretation, grasping and object use, navigating and orienting in an environment, physical reasoning about the world, and inferring future actions and the inner mental states of agents. The core argument of this chapter is that innately constrained connectivity between occipito-temporal areas and other regions of the brain is the basis for the emergence of neural specificity for a limited number of semantic domains in the brain.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Spatially Adjacent Regions in Posterior Cingulate Cortex Represent Familiar Faces at Different Levels of Complexity. J Neurosci 2021; 41:9807-9826. [PMID: 34670848 PMCID: PMC8612644 DOI: 10.1523/jneurosci.1580-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extensive research has shown that perceptual information of faces is processed in a network of hierarchically-organized areas within ventral temporal cortex. For familiar and famous faces, perceptual processing of faces is normally accompanied by extraction of semantic knowledge about the social status of persons. Semantic processing of familiar faces could entail progressive stages of information abstraction. However, the cortical mechanisms supporting multistage processing of familiar faces have not been characterized. Here, using an event-related fMRI experiment, familiar faces from four celebrity groups (actors, singers, politicians, and football players) and unfamiliar faces were presented to the human subjects (both males and females) while they were engaged in a face categorization task. We systematically explored the cortical representations for faces, familiar faces, subcategories of familiar faces, and familiar face identities using whole-brain univariate analysis, searchlight-based multivariate pattern analysis (MVPA), and functional connectivity analysis. Convergent evidence from all these analyses revealed a set of overlapping regions within posterior cingulate cortex (PCC) that contained decodable fMRI responses for representing different levels of semantic knowledge about familiar faces. Our results suggest a multistage pathway in PCC for processing semantic information of faces, analogous to the multistage pathway in ventral temporal cortex for processing perceptual information of faces.SIGNIFICANCE STATEMENT Recognizing familiar faces is an important component of social communications. Previous research has shown that a distributed network of brain areas is involved in processing the semantic information of familiar faces. However, it is not clear how different levels of semantic information are represented in the brain. Here, we evaluated the multivariate response patterns across the entire cortex to discover the areas that contain information for familiar faces, subcategories of familiar faces, and identities of familiar faces. The searchlight maps revealed that different levels of semantic information are represented in topographically adjacent areas within posterior cingulate cortex (PCC). The results suggest that semantic processing of faces is mediated through progressive stages of information abstraction in PCC.
Collapse
|
10
|
Grotheer M, Yeatman J, Grill-Spector K. White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 2021; 227:117669. [PMID: 33359351 PMCID: PMC8416179 DOI: 10.1016/j.neuroimage.2020.117669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 01/30/2023] Open
Abstract
Reading-related responses in the lateral ventral temporal cortex (VTC) show a consistent spatial layout across individuals, which is puzzling, since reading skills are acquired during childhood. Here, we tested the hypothesis that white matter fascicles and gray matter microstructure predict the location of reading-related responses in lateral VTC. We obtained functional (fMRI), diffusion (dMRI), and quantitative (qMRI) magnetic resonance imaging data in 30 adults. fMRI was used to map reading-related responses by contrasting responses in a reading task with those in adding and color tasks; dMRI was used to identify the brain's fascicles and to map their endpoint densities in lateral VTC; qMRI was used to measure proton relaxation time (T1), which depends on cortical tissue microstructure. We fit linear models that predict reading-related responses in lateral VTC from endpoint density and T1 and used leave-one-subject-out cross-validation to assess prediction accuracy. Using a subset of our participants (N=10, feature selection set), we find that i) endpoint densities of the arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), and vertical occipital fasciculus (VOF) are significant predictors of reading-related responses, and ii) cortical T1 of lateral VTC further improves the predictions of the fascicle model. In the remaining participants (N=20, validation set), we show that a linear model that includes T1, AF, ILF and VOF significantly predicts i) the map of reading-related responses across lateral VTC and ii) the location of the visual word form area, a region critical for reading. Overall, our data-driven approach reveals that the AF, ILF, VOF and cortical microstructure have a consistent spatial relationship with an individual's reading-related responses in lateral VTC.
Collapse
Affiliation(s)
- Mareike Grotheer
- Psychology Department, Stanford University, Stanford, CA 94305, USA..
| | - Jason Yeatman
- Psychology Department, Stanford University, Stanford, CA 94305, USA.; Graduate School of Education, Stanford University, Stanford, CA 94305, USA.; Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.; Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
| | - Kalanit Grill-Spector
- Psychology Department, Stanford University, Stanford, CA 94305, USA.; Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
| |
Collapse
|
11
|
Nakai R, Azuma T, Nakaso Y, Sawa S, Demura T. Development of a dynamic imaging method for gravitropism in pea sprouts using clinical magnetic resonance imaging system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:437-442. [PMID: 33850431 PMCID: PMC8034701 DOI: 10.5511/plantbiotechnology.20.1020a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 05/17/2023]
Abstract
Although magnetic resonance imaging (MRI) is a useful technique, only a few studies have investigated the dynamic behavior of small subjects using MRI owing to constraints such as experimental space and signal amount. In this study, to acquire high-resolution continuous three-dimensional gravitropism data of pea (Pisum sativum) sprouts, we developed a small-bore MRI signal receiver coil that can be used in a clinical MRI and adjusted the imaging sequence. It was expected that such an arrangement would improve signal sensitivity and improve the signal-to-noise ratio (SNR) of the acquired image. All MRI experiments were performed using a 3.0-T clinical MRI scanner. An SNR comparison using an agarose gel phantom to confirm the improved performance of the small-bore receiver coil and an imaging experiment of pea sprouts exhibiting gravitropism were performed. The SNRs of the images acquired with a standard 32-channel head coil and the new small-bore receiver coil were 5.23±0.90 and 57.75±12.53, respectively. The SNR of the images recorded using the new coil was approximately 11-fold higher than that of the standard coil. In addition, when the accuracy of MR imaging that captures the movement of pea sprout was verified, the difference in position information from the optical image was found to be small and could be used for measurements. These results of this study enable the application of a clinical MRI system for dynamic plant MRI. We believe that this study is a significant first step in the development of plant MRI technique.
Collapse
Affiliation(s)
- Ryusuke Nakai
- Kokoro Research Center, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Azuma
- Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yosuke Nakaso
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-0862, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
12
|
Natu VS, Arcaro MJ, Barnett MA, Gomez J, Livingstone M, Grill-Spector K, Weiner KS. Sulcal Depth in the Medial Ventral Temporal Cortex Predicts the Location of a Place-Selective Region in Macaques, Children, and Adults. Cereb Cortex 2020; 31:48-61. [PMID: 32954410 DOI: 10.1093/cercor/bhaa203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
The evolution and development of anatomical-functional relationships in the cerebral cortex is of major interest in neuroscience. Here, we leveraged the fact that a functional region selective for visual scenes is located within a sulcus in the medial ventral temporal cortex (VTC) in both humans and macaques to examine the relationship between sulcal depth and place selectivity in the medial VTC across species and age groups. To do so, we acquired anatomical and functional magnetic resonance imaging scans in 9 macaques, 26 human children, and 28 human adults. Our results revealed a strong structural-functional coupling between sulcal depth and place selectivity across age groups and species in which selectivity was strongest near the deepest sulcal point (the sulcal pit). Interestingly, this coupling between sulcal depth and place selectivity strengthens from childhood to adulthood in humans. Morphological analyses suggest that the stabilization of sulcal-functional coupling in adulthood may be due to sulcal deepening and areal expansion with age as well as developmental differences in cortical curvature at the pial, but not the white matter surfaces. Our results implicate sulcal features as functional landmarks in high-level visual cortex and highlight that sulcal-functional relationships in the medial VTC are preserved between macaques and humans despite differences in cortical folding.
Collapse
Affiliation(s)
- Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Michael J Arcaro
- Department of Neurobiology, Harvard Medical School, MA 02115, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Barnett
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Gomez
- Department of Psychology, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|