1
|
Zhong C, Wang W, Yao Y, Lian S, Xie X, Xu J, He S, Luo L, Ye Z, Zhang J, Huang M, Wang G, Wang Y, Lu Y, Fu C. TGF-β secreted by cancer cells-platelets interaction activates cancer metastasis potential by inducing metabolic reprogramming and bioenergetic adaptation. J Cancer 2025; 16:1310-1323. [PMID: 39895802 PMCID: PMC11786022 DOI: 10.7150/jca.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Metastasis is the leading cause of cancer-related deaths and poses a treatment challenge. Although studies have shown the importance of epithelial-mesenchymal transition (EMT) and metabolic reprogramming during cancer metastasis, the link between EMT and metabolic reprogramming, as well as the underlying molecular mechanisms by which both mediate cancer cell invasion and metastasis have not been elucidated. Here, we observed that interactions between platelets and cancer cells promote the secretion of TGF-β, thereby initiating EMT, promoting the invasion, and altering the metastatic and metabolic potential of colon cancer cells. TGF-β activates the AKT signaling pathway to enhance HK1 and HK2 expression in cancer cells, leading to increased glucose consumption, ATP production, and precise modulation of cell cycle distribution. In an energy-deficient model induced by oxidative phosphorylation (OXPHOS) inhibition with oligomycin A, TGF-β-induced highly metastatic HCT116 (H-HCT116) cells adapt by upregulating HK expression and glycolytic metabolism, while concurrently decreasing cell proliferation to conserve energy for survival. Mechanistically, H-HCT116 cells regulate cell division rates by downregulating CDK2, CDK4, and Cyclin D1 protein expression and upregulating p21 expression. Furthermore, H-HCT116 cells display enhanced motility, which is linked to increased mitochondrial metabolic activity. These findings indicated that cancer cells-platelets interaction secreted TGF-β activates cancer metastasis potential by inducing metabolic reprogramming and bioenergetic adaptation. The present study provides new insights into the adaptive strategies of highly metastatic cancer cells under adverse conditions and indicates that targeting glycolysis and metabolic reprogramming could serve as a viable approach to prevent cancer metastasis.
Collapse
Affiliation(s)
- Chunlian Zhong
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Weiyu Wang
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medical, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yinyin Yao
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medical, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shu Lian
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaodong Xie
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Judan Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shanshan He
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medical, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lin Luo
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - ZhouZhou Ye
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jiajie Zhang
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medical, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guihua Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, China
| | - Yusheng Lu
- Fuzhou Institute of Oceanography, Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medical, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
2
|
Wang J, Zhao F, Zhang Q, Sun Z, Xiahou Z, Wang C, Liu Y, Yu Z. Unveiling the NEFH+ malignant cell subtype: Insights from single-cell RNA sequencing in prostate cancer progression and tumor microenvironment interactions. Front Immunol 2024; 15:1517679. [PMID: 39759507 PMCID: PMC11695424 DOI: 10.3389/fimmu.2024.1517679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Background Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors. The incidence rate of PCa ranks third, following breast cancer and lung cancer. Patients diagnosed with high-grade PCa frequently present with existing or developing metastases, complicating their treatment and resulting in poorer prognoses, particularly for those with bone metastases. Utilizing single-cell RNA sequencing (scRNA-seq), we identified specific malignant cell subtypes that are closely linked to high-grade PCa. By investigating the mechanisms that govern interactions within the tumor microenvironment (TME), we aim to offer new theoretical insights that can enhance the prevention, diagnosis, and treatment of PCa, ultimately striving to improve patient outcomes and quality of life. Methods Data on scRNA-seq was obtained from the GEO database. The gene ontology and gene set enrichment analysis were employed to analyze differential expression genes. Using inferCNV analysis to identify malignant epithelial cells. We subsequently employed Monocle, Cytotrace, and Slingshot packages to infer subtype differentiation trajectories. The cellular communication between malignant cell subtypes and other cells was predicted using the CellChat package. Furthermore, we employed pySCENIC to analyze and identify the regulatory networks of transcription factors (TFs) in malignant cell subtypes. The MDA PCa 2b and VCap cell lines were employed to validate the analysis results through cellular functional experiments. In addition, a risk scoring model was developed to assess the variation in clinical characteristics, prognosis, immune infiltration, immune checkpoint, and drug sensitivity. Results A malignant cell subtype in PCa with high expression of NEFH was identified through scRNA-seq analysis. This subtype was situated at the differentiation terminal, exhibited a higher level of malignancy, and exhibited characteristics that were more prone to advanced tumor lesions. In addition, our research underscored the intricate interactions that exist within the TME, particularly the interaction between PTN secreted by this subtype and fibroblasts via the NCL receptor. This interaction may be closely associated with cancer-associated fibroblasts and tumor progression. Subsequently, we determined that the NEFH+ malignant cell subtype was significantly correlated with the TF IRX4. This TF is linked to a worse prognosis in PCa and may affect disease progression by regulating gene transcription. Our conclusions were additionally verified through cellular experiments. Furthermore, the prognostic model we developed demonstrated satisfactory predictive performance, with gene sets from the high NmRS group facilitating tumor progression and deterioration. The analysis of immune infiltration was instrumental in the development of clinical intervention strategies and patient prognosis. Conclusion By examining the cellular heterogeneity of a unique NEFH+ malignant cell subtype within the PCa microenvironment, we were able to disclose their reciprocal interaction with disease progression. This offers a novel viewpoint on the diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, The Second People’s Hospital of Meishan City, Meishan, Sichuan, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fu Zhao
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiang Zhang
- Department of Urology, The Second People’s Hospital of Meishan City, Meishan, Sichuan, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Changzhong Wang
- Department of Urology, The First People’s Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Yan Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zongze Yu
- Department of Urology, The Second People’s Hospital of Meishan City, Meishan, Sichuan, China
| |
Collapse
|
3
|
Xiong Z, Zhuang RL, Yu SL, Xie ZX, Peng SR, Li ZA, Li BH, Xie JJ, Li YN, Li KW, Huang H. Cancer-associated fibroblasts regulate mitochondrial metabolism and inhibit chemosensitivity via ANGPTL4-IQGAP1 axis in prostate cancer. J Adv Res 2024:S2090-1232(24)00559-9. [PMID: 39647634 DOI: 10.1016/j.jare.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) are a critical component of the tumor microenvironment, being implicated in enhancing tumor growth and fostering drug resistance. Nonetheless, the mechanisms underlying their function in prostate cancer (PCa) remain incompletely understood, which is essential for devising effective therapeutic strategies. OBJECTIVES The main objective of this study was to explore the mechanisms by which CAFs mediate PCa growth and chemoresistance. METHODS We validated through data analysis and experimentation that CAFs significantly impact PCa cell proliferation and chemoresistance. Subsequently, we conducted a comprehensive proteomic analysis of the conditioned media from CAFs and PCa cells and identified angiopoietin-like protein 4 (ANGPTL4) as a key factor. We employed ELISA and multiplex immunofluorescence assays, all of which indicated that ANGPTL4 was primarily secreted by CAFs.Next, we conducted metabolomics analysis, GST pull-down assays, Co-IP, and other experiments to explore the specific molecular mechanisms of ANGPTL4 and its precise effects on PCa cells. Through drug screening, we identified Quercetin 3-O-(6'-galactopyranosyl)-β-D-galactopyranoside (QGGP) as an effective inhibitor of CAFs function. Finally, we thoroughly assessed the therapeutic potential of QGGP both as a monotherapy and in combination with docetaxel in PCa cells. RESULTS We discovered that the extracrine factor ANGPTL4 is primarily expressed in CAFs in PCa. When ANGPTL4 binds to IQ motif-containing GTPase-activating protein 1 (IQGAP1) on the PCa cell membrane, it activates the Raf-MEK-ERK-PGC1α axis, promoting mitochondrial biogenesis and OXPHOS metabolism, and thereby facilitating PCa growth and chemoresistance. Furthermore, virtual and functional screening strategies identified QGGP as a specific inhibitor of IQGAP1 that promotes its degradation. Combined with docetaxel treatment, QGGP can reverse the effects of CAFs and improve the responsiveness of PCa to chemotherapy. CONCLUSIONS This study uncovers a paracrine mechanism of chemoresistance in PCa and proposes that targeting the stroma could be a therapeutic choice.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui-Lin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shun-Li Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhao-Xiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shi-Rong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ze-An Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bing-Heng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun-Jia Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yi-Ning Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| | - Kai-Wen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| |
Collapse
|
4
|
Sánchez-Castillo A, Savelkouls KG, Baldini A, Hounjet J, Sonveaux P, Verstraete P, De Keersmaecker K, Dewaele B, Björkblom B, Melin B, Wu WY, Sjöberg RL, Rouschop KMA, Broen MPG, Vooijs M, Kampen KR. Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas. Oncogenesis 2024; 13:39. [PMID: 39537592 PMCID: PMC11561346 DOI: 10.1038/s41389-024-00540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Alessandra Baldini
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
| | - Paulien Verstraete
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, Laboratory for Genetics of Malignant Disorders, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | | | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Wendy Y Wu
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Kasper M A Rouschop
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
5
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. PSA, an outdated biomarker for prostate cancer: In search of a more specific biomarker, citrate takes the spotlight. J Steroid Biochem Mol Biol 2024; 243:106588. [PMID: 39025336 DOI: 10.1016/j.jsbmb.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The prevailing biomarker employed for prostate cancer (PCa) screening and diagnosis is the prostate-specific antigen (PSA). Despite excellent sensitivity, PSA lacks specificity, leading to false positives, unnecessary biopsies and overdiagnosis. Consequently, PSA is increasingly less used by clinicians, thus underscoring the imperative for the identification of new biomarkers. An emerging biomarker in this context is citrate, a molecule secreted by the normal prostate, which has been shown to be inversely correlated with PCa. Here, we discuss about PSA and its usage for PCa diagnosis, its lack of specificity, and the various conditions that can affect its levels. We then provide our vision about what we think would be a valuable addition to our PCa diagnosis toolkit, citrate. We describe the unique citrate metabolic program in the prostate and how this profile is reprogrammed during carcinogenesis. Finally, we summarize the evidence that supports the usage of citrate as a biomarker for PCa diagnosis, as it can be measured in various patient samples and be analyzed by several methods. The unique relationship between citrate and PCa, combined with the stability of citrate levels in other prostate-related conditions and the simplicity of its detection, further accentuates its potential as a biomarker.
Collapse
Affiliation(s)
- Lucas Galey
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, QC, Canada; VITAM Research Centre for Sustainable Health, Québec, QC, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Department of surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada.
| |
Collapse
|
6
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
7
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Jiang H, Liu M, Deng Y, Zhang C, Dai L, Zhu B, Ou Y, Zhu Y, Hu C, Yang L, Li J, Bai Y, Yang D. Identification of prostate cancer bone metastasis related genes and potential therapy targets by bioinformatics and in vitro experiments. J Cell Mol Med 2024; 28:e18511. [PMID: 39098992 PMCID: PMC11298316 DOI: 10.1111/jcmm.18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The aetiology of bone metastasis in prostate cancer (PCa) remains unclear. This study aims to identify hub genes involved in this process. We utilized machine learning, GO, KEGG, GSEA, Single-cell analysis, ROC methods to identify hub genes for bone metastasis in PCa using the TCGA and GEO databases. Potential drugs targeting these genes were identified. We validated these results using 16 specimens from patients with PCa and analysed the relationship between the hub genes and clinical features. The impact of APOC1 on PCa was assessed through in vitro experiments. Seven hub genes with AUC values of 0.727-0.926 were identified. APOC1, CFH, NUSAP1 and LGALS1 were highly expressed in bone metastasis tissues, while NR4A2, ADRB2 and ZNF331 exhibited an opposite trend. Immunohistochemistry further confirmed these results. The oxidative phosphorylation pathway was significantly enriched by the identified genes. Aflatoxin B1, benzo(a)pyrene, cyclosporine were identified as potential drugs. APOC1 expression was correlated with clinical features of PCa metastasis. Silencing APOC1 significantly inhibited PCa cell proliferation, clonality, and migration in vitro. This study identified 7 hub genes that potentially facilitate bone metastasis in PCa through mitochondrial metabolic reprogramming. APOC1 emerged as a promising therapeutic target and prognostic marker for PCa with bone metastasis.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yingfei Deng
- Pathology‐DepartmentThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chongjian Zhang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Longguo Dai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Bingyu Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yitian Ou
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chen Hu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Libo Yang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Jun Li
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yu Bai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Delin Yang
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
9
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
10
|
Han B, Zhen F, Sun Y, Sun B, Wang HY, Liu W, Huang J, Liang X, Wang YR, Chen XS, Li SJ, Hu J. Tumor suppressor KEAP1 promotes HSPA9 degradation, controlling mitochondrial biogenesis in breast cancer. Cell Rep 2024; 43:114507. [PMID: 39003742 DOI: 10.1016/j.celrep.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Yue Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China
| | - Hong-Yi Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Wei Liu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Jian Huang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China
| | - Ya-Ru Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xue-Song Chen
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province 150001, China.
| | - Shui-Jie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
11
|
Bidgood CL, Philp LK, Rockstroh A, Lehman M, Nelson CC, Sadowski MC, Gunter JH. Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer. Cell Death Dis 2024; 15:513. [PMID: 39025852 PMCID: PMC11258138 DOI: 10.1038/s41419-024-06893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.
Collapse
Affiliation(s)
- Charles L Bidgood
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| | - Lisa K Philp
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Anja Rockstroh
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Melanie Lehman
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
- University of British Columbia, Vancouver Prostate Centre, Department of Urologic Sciences, Vancouver, BC, Canada
| | - Colleen C Nelson
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Martin C Sadowski
- University of Bern, Institute for Tissue Medicine and Pathology, Bern, Switzerland
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Morse PT, Wan J, Arroum T, Herroon MK, Kalpage HA, Bazylianska V, Lee I, Heath EI, Podgorski I, Hüttemann M. Prostate Cancer-Specific Lysine 53 Acetylation of Cytochrome c Drives Metabolic Reprogramming and Protects from Apoptosis in Intact Cells. Biomolecules 2024; 14:695. [PMID: 38927098 PMCID: PMC11201891 DOI: 10.3390/biom14060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Cytochrome c (Cytc) is important for both mitochondrial respiration and apoptosis, both of which are altered in cancer cells that switch to Warburg metabolism and manage to evade apoptosis. We earlier reported that lysine 53 (K53) of Cytc is acetylated in prostate cancer. K53 is conserved in mammals that is known to be essential for binding to cytochrome c oxidase and apoptosis protease activating factor-1 (Apaf-1). Here we report the effects of this acetylation on the main functions of cytochrome c by expressing acetylmimetic K53Q in cytochrome c double knockout cells. Other cytochrome c variants analyzed were wild-type, K53R as a control that maintains the positive charge, and K53I, which is present in some non-mammalian species. Intact cells expressing K53Q cytochrome c showed 49% decreased mitochondrial respiration and a concomitant increase in glycolytic activity (Warburg effect). Furthermore, mitochondrial membrane potential was decreased, correlating with notably reduced basal mitochondrial superoxide levels and decreased cell death upon challenge with H2O2 or staurosporine. To test for markers of cancer aggressiveness and invasiveness, cells were grown in 3D spheroid culture. K53Q cytochrome c-expressing cells showed profoundly increased protrusions compared to WT, suggesting increased invasiveness. We propose that K53 acetylation of cytochrome c is an adaptive response that mediates prostate cancer metabolic reprogramming and evasion of apoptosis, which are two hallmarks of cancer, to better promote tumor survival and metastasis.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | | | - Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Republic of Korea;
| | - Elisabeth I. Heath
- Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Rossetto IMU, Santos FR, da Silva HM, Minatel E, Mesquitta M, Salvador MJ, Montico F, Cagnon VHA. Tempol effect on oxidative and mitochondrial markers in preclinical models for prostate cancer. Toxicol Res (Camb) 2024; 13:tfae056. [PMID: 38623092 PMCID: PMC11015989 DOI: 10.1093/toxres/tfae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Background Tempol is a redox-cycling nitroxide considered a potent antioxidant. The present study investigated the tempol effects on oxidative stress and mitochondrial markers on prostate cancer (PCa). Methods PC-3 and LnCaP cells were exposed to tempol. Cell viability test, western blot and Amplex Red analyses were performed. In vivo, five experimental groups evaluated tempol effects in the early (CT12 and TPL12 groups) and late stages (CT20, TPL20-I, and TLP20-II) of PCa development. The TPL groups were treated with 50 or 100 mg/kg tempol doses. Control groups received water as the vehicle. The ventral lobe of the prostate and the blood were collected and submitted to western blotting or enzymatic activity analyses. Results In vitro, tempol decreased cell viability and differentially altered the H2O2 content for PC-3 and LNCaP. Tempol increased SOD2 levels in both cell lines and did not alter Catalase protein levels. In vivo, tempol increased SOD2 levels in the early stage and did not change Catalase levels in the different PCa stages. Systemically, tempol decreased SOD2 levels in the late-stage and improved redox status in the early and late stages, which was confirmed by reduced LDH in tempol groups. Alterations on energetic metabolism and oxidative phosphorylation were observed in TRAMP model. Conclusion Tempol can be considered a beneficial therapy for PCa treatment considering its antioxidant and low toxicity properties, however the PCa progression must be evaluated to get successful therapy.
Collapse
Affiliation(s)
- Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Felipe Rabelo Santos
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Heloina Mariano da Silva
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Mariana Mesquitta
- Department of Plant Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Marcos José Salvador
- Department of Plant Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Fábio Montico
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St., Campinas, SP 13083862, Brazil
| |
Collapse
|
14
|
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, He P, Zhang Q, Sun Y, Sun Z, Ti C, Chen Y, Yi Z, Liu M. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS CENTRAL SCIENCE 2024; 10:579-594. [PMID: 38559310 PMCID: PMC10979493 DOI: 10.1021/acscentsci.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.
Collapse
Affiliation(s)
- Huang Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Aiwu Bian
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Ying Miao
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiangnan Ye
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiahui Li
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Peng He
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Qiansen Zhang
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yue Sun
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhenliang Sun
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chaowen Ti
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yihua Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhengfang Yi
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Mingyao Liu
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| |
Collapse
|
15
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
16
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight 2023; 8:e169868. [PMID: 37971875 PMCID: PMC10807718 DOI: 10.1172/jci.insight.169868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type-specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by 2 orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sam R. Denmeade
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chi V. Dang
- Department of Oncology and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zhang Y, Lao W, Yang K, Kong X, Li Y, Yu X, Wang X, Liu Y, Li Z, Deng Y, Nie S, Bi C, Wu C, Zhai A. SUV39H1 is a novel biomarker targeting oxidative phosphorylation in hepatitis B virus-associated hepatocellular carcinoma. BMC Cancer 2023; 23:1159. [PMID: 38017386 PMCID: PMC10683103 DOI: 10.1186/s12885-023-11633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND As a histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) plays an important role in the occurrence and development of cancer. To explore the mechanism and biological function of SUV39H1 in hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) can gain an insight into the pathogenesis of HBV-HCC. METHODS The effect of HBV infection on SUV39H1 in hepatoma cells was detected. CCK-8, colony growth assay and wound healing assay were used to assess the proliferation and migration of HBV-positive hepatoma cells. RNA sequencing (RNA-seq) was applied to find differential genes and enriched pathways. The serum SUV39H1 level in HBV-HCC patients was detected and its correlation with clinical indicators was analyzed. RESULTS SUV39H1 was increased by HBV infection and promoted the proliferation and migration of hepatoma cells. SUV39H1 could upregulate the expression of mitochondrial oxidative phosphorylation (OXPHOS) pathway-related genes. OXPHOS pathway inhibitors could reduce the capacity of proliferation and migration of hepatoma cells after overexpressing SUV39H1. Serum SUV39H1 levels were higher in chronic hepatitis B (CHB) patients than in healthy controls and higher in HBV-HCC patients than in CHB patients. In the diagnosis of HCC, the predictive value of SUV39H1 combined with alpha-fetoprotein (AFP) was better than that of AFP alone. CONCLUSION SUV39H1 is regulated by HBV infection and promotes the proliferation and migration of hepatoma cells by targeting OXPHOS pathway. It indicates that SUV39H1 may be a new biomarker of the diagnosis of HCC.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xin Yu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xumeng Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuping Nie
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
18
|
Boykov IN, Montgomery MM, Hagen JT, Aruleba RT, McLaughlin KL, Coalson HS, Nelson MA, Pereyra AS, Ellis JM, Zeczycki TN, Vohra NA, Tan SF, Cabot MC, Fisher-Wellman KH. Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Sci Rep 2023; 13:16742. [PMID: 37798427 PMCID: PMC10556099 DOI: 10.1038/s41598-023-43963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Targeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.
Collapse
Affiliation(s)
- Ilya N Boykov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Raphael T Aruleba
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Margaret A Nelson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
20
|
Smullen M, Olson MN, Murray LF, Suresh M, Yan G, Dawes P, Barton NJ, Mason JN, Zhang Y, Fernandez-Fontaine AA, Church GM, Mastroeni D, Wang Q, Lim ET, Chan Y, Readhead B. Modeling of mitochondrial genetic polymorphisms reveals induction of heteroplasmy by pleiotropic disease locus 10398A>G. Sci Rep 2023; 13:10405. [PMID: 37369829 DOI: 10.1038/s41598-023-37541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial (MT) dysfunction has been associated with several neurodegenerative diseases including Alzheimer's disease (AD). While MT-copy number differences have been implicated in AD, the effect of MT heteroplasmy on AD has not been well characterized. Here, we analyzed over 1800 whole genome sequencing data from four AD cohorts in seven different tissue types to determine the extent of MT heteroplasmy present. While MT heteroplasmy was present throughout the entire MT genome for blood samples, we detected MT heteroplasmy only within the MT control region for brain samples. We observed that an MT variant 10398A>G (rs2853826) was significantly associated with overall MT heteroplasmy in brain tissue while also being linked with the largest number of distinct disease phenotypes of all annotated MT variants in MitoMap. Using gene-expression data from our brain samples, our modeling discovered several gene networks involved in mitochondrial respiratory chain and Complex I function associated with 10398A>G. The variant was also found to be an expression quantitative trait loci (eQTL) for the gene MT-ND3. We further characterized the effect of 10398A>G by phenotyping a population of lymphoblastoid cell-lines (LCLs) with and without the variant allele. Examination of RNA sequence data from these LCLs reveal that 10398A>G was an eQTL for MT-ND4. We also observed in LCLs that 10398A>G was significantly associated with overall MT heteroplasmy within the MT control region, confirming the initial findings observed in post-mortem brain tissue. These results provide novel evidence linking MT SNPs with MT heteroplasmy and open novel avenues for the investigation of pathomechanisms that are driven by this pleiotropic disease associated loci.
Collapse
Affiliation(s)
- Molly Smullen
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meagan N Olson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Liam F Murray
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Madhusoodhanan Suresh
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guang Yan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nathaniel J Barton
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jivanna N Mason
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yucheng Zhang
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Aria A Fernandez-Fontaine
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Elaine T Lim
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
21
|
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, Santos JH, Rizvi I. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers (Basel) 2023; 15:2564. [PMID: 37174030 PMCID: PMC10177605 DOI: 10.3390/cancers15092564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
| | - Vesna A. Chappell
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tina Thuy Nguyen Hoang
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, Huerta Uribe A, Shokry E, Young AL, Lilla S, Kim M, Park T, Manchon J, Rodríguez-Antona C, Walters RC, Springett RJ, Blaza JN, Zanivan S, Sumpton D, Roberts EW, Reznik E, Gammage PA. Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533091. [PMID: 36993533 PMCID: PMC10055208 DOI: 10.1101/2023.03.21.533091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented1. While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages1-3, whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology4 we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
Collapse
Affiliation(s)
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Engy Shokry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J.L. Manchon
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
| | - Crístina Rodríguez-Antona
- Centro Nacional de Investigaciones Oncológicas(CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Madrid, Spain
| | - Rowan C. Walters
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Roger J. Springett
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - James N. Blaza
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | | | - Edward W. Roberts
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Payam A. Gammage
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
23
|
Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia A, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529259. [PMID: 36865273 PMCID: PMC9979994 DOI: 10.1101/2023.02.20.529259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tatianna C. Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulin Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark C. Markowski
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sam R. Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J. Pienta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chi V Dang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Hang PZ, Ge FQ, Zhang MR, Li QH, Yu HQ, Song YC, Guo DD, Zhao J, Zhu H. BDNF mimetic 7,8-dihydroxyflavone rescues rotenone-induced cytotoxicity in cardiomyocytes by ameliorating mitochondrial dysfunction. Free Radic Biol Med 2023; 198:83-91. [PMID: 36764626 DOI: 10.1016/j.freeradbiomed.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The relationship between mitochondrial dysfunction and cardiovascular disease pathogenesis is well recognized. 7,8-Dihydroxyflavone (7,8-DHF), a mimetic of brain-derived neurotrophic factor, inhibits mitochondrial impairments and improves cardiac function. However, the regulatory role of 7,8-DHF in the mitochondrial function of cardiomyocytes is not fully understood. To investigate the potential mito-protective effects of 7,8-DHF in cardiomyocytes, we treated H9c2 or HL-1 cells with the mitochondrial respiratory complex I inhibitor rotenone (Rot) as an in vitro model of mitochondrial dysfunction. We found that 7,8-DHF effectively eliminated various concentrations of Rot-induced cell death and reduced lactate dehydrogenase release. 7,8-DHF significantly improved mitochondrial membrane potential and inhibited mitochondrial reactive oxygen species. Moreover, 7,8-DHF decreased routine and leak respiration, restored protein levels of mitochondrial complex I-IV, and increased ATP production in Rot-treated H9c2 cells. The protective role of 7,8-DHF in Rot-induced damage was validated in HL-1 cells. Nuclear phosphorylation protein expression of signal transducer and activator of transcription 3 (STAT3) was significantly increased by 7,8-DHF. The present study suggests that 7,8-DHF rescues Rot-induced cytotoxicity by inhibiting mitochondrial dysfunction and promoting nuclear translocation of p-STAT3 in cardiomyocytes, thus nominating 7,8-DHF as a new pharmacological candidate agent against mitochondrial dysfunction in cardiac diseases.
Collapse
Affiliation(s)
- Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Man-Ru Zhang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qi-Hang Li
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Hua-Qing Yu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yu-Chen Song
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Dan-Dan Guo
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhao
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
25
|
Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, Mueller DM, Earp HS, Mahajan NP. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023; 19:1000-1025. [PMID: 35895804 PMCID: PMC9980697 DOI: 10.1080/15548627.2022.2103961] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
The challenge of rapid macromolecular synthesis enforces the energy-hungry cancer cell mitochondria to switch their metabolic phenotypes, accomplished by activation of oncogenic tyrosine kinases. Precisely how kinase activity is directly exploited by cancer cell mitochondria to meet high-energy demand, remains to be deciphered. Here we show that a non-receptor tyrosine kinase, TNK2/ACK1 (tyrosine kinase non receptor 2), phosphorylated ATP5F1A (ATP synthase F1 subunit alpha) at Tyr243 and Tyr246 (Tyr200 and 203 in the mature protein, respectively) that not only increased the stability of complex V, but also increased mitochondrial energy output in cancer cells. Further, phospho-ATP5F1A (p-Y-ATP5F1A) prevented its binding to its physiological inhibitor, ATP5IF1 (ATP synthase inhibitory factor subunit 1), causing sustained mitochondrial activity to promote cancer cell growth. TNK2 inhibitor, (R)-9b reversed this process and induced mitophagy-based autophagy to mitigate prostate tumor growth while sparing normal prostate cells. Further, depletion of p-Y-ATP5F1A was needed for (R)-9b-mediated mitophagic response and tumor growth. Moreover, Tnk2 transgenic mice displayed increased p-Y-ATP5F1A and loss of mitophagy and exhibited formation of prostatic intraepithelial neoplasia (PINs). Consistent with these data, a marked increase in p-Y-ATP5F1A was seen as prostate cancer progressed to the malignant stage. Overall, this study uncovered the molecular intricacy of tyrosine kinase-mediated mitochondrial energy regulation as a distinct cancer cell mitochondrial vulnerability and provided evidence that TNK2 inhibitors can act as "mitocans" to induce cancer-specific mitophagy.Abbreviations: ATP5F1A: ATP synthase F1 subunit alpha; ATP5IF1: ATP synthase inhibitory factor subunit 1; CRPC: castration-resistant prostate cancer; DNM1L: dynamin 1 like; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; Mut-ATP5F1A: Y243,246A mutant of ATP5F1A; OXPHOS: oxidative phosphorylation; PC: prostate cancer; PINK1: PTEN induced kinase 1; p-Y-ATP5F1A: phosphorylated tyrosine 243 and 246 on ATP5F1A; TNK2/ACK1: tyrosine kinase non receptor 2; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Mithila Sawant
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology & Immunology Washington University, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University, St. Louis, MO, USA
| | - Robert W. Sprung
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
| | - Mailyn Terrado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M. Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Nupam P. Mahajan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
- Siteman Cancer Center Washington University, St. Louis, MO, USA
| |
Collapse
|
26
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
27
|
Zhu L, Jia W, Wan X, Zhuang P, Ma G, Jiao J, Zhang Y. Advancing metabolic networks and mapping updated urinary metabolic fingerprints after exposure to typical carcinogenic heterocyclic aromatic amines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120936. [PMID: 36572270 DOI: 10.1016/j.envpol.2022.120936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Heterocyclic aromatic amines (HAAs) were not only present in cooked foods and cigarette smoke, but also measured in airborne particles and diesel-exhaust particles. Typical HAAs have been reported to induce carcinogenicity and metabolic disturbances, but how these hazardous compounds interfere with metabolic networks by regulating metabolic pathways and fingerprinting signature metabolites as biomarkers remains ambiguous. We developed an advanced strategy that adopted chemical isotope labeling ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry for urinary nontargeted metabolomics analysis to gain new insight into in vivo physiological responses stimulated by exposure to typical HAAs. Rats were orally administered with a single dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (1 and 10 mg/kg bw) and their D3-isotopic compounds, respectively, and urine samples were then continuously collected within 36 h. Metabolomics data were acquired and processed by classical multivariate statistical analysis, while urinary metabolites were further identified and characterized according to mass spectrometric fragmentation rules, time- and dose-dependent profiles, and calibration of synthesized standards. We monitored 23 and 37 urinary metabolites as the biotransformation products of PhIP and MeIQx, respectively, and first identified demethylated metabolites of PhIP, tentatively named 2-amino-6-phenylimidazo[4,5-b]pyridine, and dihydroxylation products of classical HAAs as short-term biomarkers of exposure to further unravel the metabolic networks. In addition, our findings revealed that both HAAs significantly disturb histidine metabolism, arginine and proline metabolism, tryptophan metabolism, pyrimidine metabolism, tricarboxylic acid cycle, etc. Furthermore, we found that histamine, methionine, alanine, and 4-guanidinobutanoic acid could be considered potential characteristic biomarkers for the oncogenicity or carcinogenicity of both PhIP and MeIQx and screened their specific key pivotal metabolites. The current metabolomics approach is applicable in mapping updated urinary metabolic fingerprints and identifying potential specific biomarkers for HAAs-induced early tumorigenesis.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guicen Ma
- Tea Quality and Supervision Testing Center, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
28
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
29
|
Giannikou K, Martin KR, Abdel-Azim AG, Pamir KJ, Hougard TR, Bagwe S, Tang Y, MacKeigan JP, Kwiatkowski DJ, Henske EP, Lam HC. Spectrum of germline and somatic mitochondrial DNA variants in Tuberous Sclerosis Complex. Front Genet 2023; 13:917993. [PMID: 36793390 PMCID: PMC9923026 DOI: 10.3389/fgene.2022.917993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by loss of function variants in either TSC1 or TSC2 and is characterized by broad phenotypic heterogeneity. Currently, there is limited knowledge regarding the role of the mitochondrial genome (mtDNA) in TSC pathogenesis. In this study, we aimed to determine the prevalence and spectrum of germline and somatic mtDNA variants in TSC and identify potential disease modifiers. Analysis of mtDNA amplicon massively parallel sequencing (aMPS) data, off-target mtDNA from whole-exome sequencing (WES), and/or qPCR, revealed mtDNA alterations in 270 diverse tissues (139 TSC-associated tumors and 131 normal tissue samples) from 199 patients and six healthy individuals. Correlation of clinical features to mtDNA variants and haplogroup analysis was done in 102 buccal swabs (age: 20-71 years). No correlation was found between clinical features and either mtDNA variants or haplogroups. No pathogenic variants were identified in the buccal swab samples. Using in silico analysis, we identified three predicted pathogenic variants in tumor samples: MT-ND4 (m.11742G>A, p. Cys328Tyr, VAF: 43%, kidney angiomyolipoma), MT-CYB (m.14775T>C, p. Leu10Pro, VAF: 43%, LAM abdominal tumor) and MT-CYB (m.15555C>T, p. Pro270Leu, VAF: 7%, renal cell carcinoma). Large deletions of the mitochondrial genome were not detected. Analysis of tumors from 23 patients with corresponding normal tissue did not reveal any recurrent tumor-associated somatic variants. The mtDNA/gDNA ratio between tumors and corresponding normal tissue was also unchanged. Overall, our findings demonstrate that the mitochondrial genome is highly stable across tissues and within TSC-associated tumors.
Collapse
Affiliation(s)
- Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Division of Hematology/Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Katie R. Martin
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ahmad G. Abdel-Azim
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaila J. Pamir
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas R. Hougard
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Shefali Bagwe
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Yan Tang
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey P. MacKeigan
- Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - David J. Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elizabeth P. Henske
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hilaire C. Lam
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Murali R, Dey A, Vellingiri B, Ganesan R. Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites 2023; 13:183. [PMID: 36837801 PMCID: PMC9962346 DOI: 10.3390/metabo13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) is the common cause of death in men. The pathophysiological factors contributing to PCa are not well known. PCa cells gain a protective mechanism via abnormal lipid signaling and metabolism. PCa cells modify their metabolism in response to an excessive intake of nutrients to facilitate advancement. Metabolic syndrome (MetS) is inextricably linked to the carcinogenic progression of PCa, which heightens the severity of the disease. It is hypothesized that changes in the metabolism of the mitochondria contribute to the onset of PCa. The studies of particular alterations in the progress of PCa are best accomplished by examining the metabolome of prostate tissue. Due to the inconsistent findings written initially, additional epidemiological research is required to identify whether or not MetS is an aspect of PCa. There is a correlation between several risk factors and the progression of PCa, one of which is MetS. The metabolic symbiosis between PCa cells and the tumor milieu and how this type of crosstalk may aid in the development of PCa is portrayed in this work. This review focuses on in-depth analysis and evaluation of the metabolic changes that occur within PCa, and also aims to assess the effect of metabolic abnormalities on the aggressiveness status and metabolism of PCa.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
31
|
A Novel Four Mitochondrial Respiration-Related Signature for Predicting Biochemical Recurrence of Prostate Cancer. J Clin Med 2023; 12:jcm12020654. [PMID: 36675580 PMCID: PMC9866444 DOI: 10.3390/jcm12020654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The biochemical recurrence (BCR) of patients with prostate cancer (PCa) after radical prostatectomy is high, and mitochondrial respiration is reported to be associated with the metabolism in PCa development. This study aimed to establish a mitochondrial respiratory gene-based risk model to predict the BCR of PCa. RNA sequencing data of PCa were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and mitochondrial respiratory-related genes (MRGs) were sourced via GeneCards. The differentially expressed mitochondrial respiratory and BCR-related genes (DE-MR-BCRGs) were acquired through overlapping BCR-related differentially expressed genes (BCR-DEGs) and differentially expressed MRGs (DE-MRGs) between PCa samples and controls. Further, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were performed to construct a DE-MRGs-based risk model. Then, a nomogram was established by analyzing the independent prognostic factor of five clinical features and risk scores. Moreover, Gene Set Enrichment Analysis (GSEA), tumor microenvironment, and drug susceptibility analyses were employed between high- and low-risk groups of PCa patients with BCR. Finally, qRT-PCR was utilized to validate the expression of prognostic genes. We identified 11 DE-MR-BCRGs by overlapping 132 DE-MRGs and 13 BCR-DEGs and constructed a risk model consisting of 4 genes (APOE, DNAH8, EME2, and KIF5A). Furthermore, we established an accurate nomogram, including a risk score and a Gleason score, for the BCR prediction of PCa patients. The GSEA result suggested the risk model was related to the PPAR signaling pathway, the cholesterol catabolic process, the organic hydroxy compound biosynthetic process, the small molecule catabolic process, and the steroid catabolic process. Simultaneously, we found six immune cell types relevant to the risk model: resting memory CD4+ T cells, monocytes, resting mast cells, activated memory CD4+ T cells, regulatory T cells (Tregs), and macrophages M2. Moreover, the risk model could affect the IC50 of 12 cancer drugs, including Lapatinib, Bicalutamide, and Embelin. Finally, qRT-PCR showed that APOE, EME2, and DNAH8 were highly expressed in PCa, while KIF5A was downregulated in PCa. Collectively, a mitochondrial respiratory gene-based nomogram including four genes and one clinical feature was established for BCR prediction in patients with PCa, which could provide novel strategies for further studies.
Collapse
|
32
|
Kim M, Mahmood M, Reznik E, Gammage PA. Mitochondrial DNA is a major source of driver mutations in cancer. Trends Cancer 2022; 8:1046-1059. [PMID: 36041967 PMCID: PMC9671861 DOI: 10.1016/j.trecan.2022.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are among the most common genetic events in all tumors and directly impact metabolic homeostasis. Despite the central role mitochondria play in energy metabolism and cellular physiology, the role of mutations in the mitochondrial genomes of tumors has been contentious. Until recently, genomic and functional studies of mtDNA variants were impeded by a lack of adequate tumor mtDNA sequencing data and available methods for mitochondrial genome engineering. These barriers and a conceptual fog surrounding the functional impact of mtDNA mutations in tumors have begun to lift, revealing a path to understanding the role of this essential metabolic genome in cancer initiation and progression. Here we discuss the history, recent developments, and challenges that remain for mitochondrial oncogenetics as the impact of a major new class of cancer-associated mutations is unveiled.
Collapse
Affiliation(s)
- Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
33
|
Ahn HS, Yeom J, Jeong H, Park WY, Ku JY, Kang BJ, Kim KH, Lee CH, Song S, Bae SS, Kim K, Ha HK. Comparative Analysis of Proteomes and Phosphoproteomes in Patients with Prostate Cancer Using Different Surgical Conditions. World J Mens Health 2022; 40:608-617. [PMID: 35021302 PMCID: PMC9482863 DOI: 10.5534/wjmh.210165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To establish the standard of procedure in preparing benign and cancerous prostate tissues and evaluate the quality of proteomics and phosphoproteomics during transurethral resection of the prostate (TUR-P) with different surgical conditions. Materials and Methods TUR-P tissue samples from three patients, two diagnosed with prostate cancer and one with benign prostatic hyperplasia, were each analyzed under three different conditions, based on differences in energy values, tissue locations, and surgical techniques. Global- and phosphorylated proteomic profiles of prostate tissues were analyzed by liquid chromatography-tandem mass spectrometry. Results A total of 6,019 global proteins and 4,280 phosphorylated peptides were identified in the nine tissues. The quantitative distributions of proteins and phosphorylation in tissues from the same patient were not affected by changes in the surgical conditions, but indirect relative comparisons differed among patients. Phosphorylation levels, especially of proteins involved in the androgen receptor pathway, important in prostate cancer, were preserved in each patient. Conclusions Proteomic profiles of prostate tissue collected by TUR-P were not significantly affected by energy levels, tissue location, or surgical technique. In addition, since protein denaturation of samples through TUR-P is rarely confirmed in this study, we think that it will be an important guide for tissue samples in castration resistant prostate cancer patients, where it is difficult to obtain tissue. This result is the first report about proteomic and phosphoproteomic results with TUR-P samples in prostate cancer and will be theoretical basis in protein analysis research with prostate cancer tissues.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, Korea
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Young Park
- Department of Pathology, Seegene Medical Foundation, Seoul, Korea
| | - Ja Yoon Ku
- Department of Urology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, Busan, Korea
| | - Byeong Jin Kang
- Department of Urology, College of Medicine, Pusan National University, Busan, Korea
| | - Kyung Hwan Kim
- Department of Urology, College of Medicine, Pusan National University, Busan, Korea
| | - Chan Ho Lee
- Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sangheon Song
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Sun Sik Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Busan, Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, Korea.,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, Asan Medical Center, Seoul, Korea.
| | - Hong Koo Ha
- Department of Urology, College of Medicine, Pusan National University, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
34
|
Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol 2022; 149:2259-2270. [PMID: 36151426 PMCID: PMC10097763 DOI: 10.1007/s00432-022-04371-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour's bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa's metabolism during tumourigenesis and progression highlighting glutamine's role in PCa.
Collapse
|
35
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
36
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
37
|
Xu F, Shi J, Qin X, Zheng Z, Chen M, Lin Z, Ye J, Li M. Hormone-Glutamine Metabolism: A Critical Regulatory Axis in Endocrine-Related Cancers. Int J Mol Sci 2022; 23:ijms231710086. [PMID: 36077501 PMCID: PMC9456462 DOI: 10.3390/ijms231710086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The endocrine-related cancers and hormones are undoubtedly highly interconnected. How hormones support or repress tumor induction and progression has been extensively profiled. Furthermore, advances in understanding the role of glutamine metabolism in mediating tumorigenesis and development, coupled with these in-depth studies on hormone (e.g., estrogen, progesterone, androgen, prostaglandin, thyroid hormone, and insulin) regulation of glutamine metabolism, have led us to think about the relationship between these three factors, which remains to be elucidated. Accordingly, in this review, we present an updated overview of glutamine metabolism traits and its influence on endocrine oncology, as well as its upstream hormonal regulation. More importantly, this hormone/glutamine metabolism axis may help in the discovery of novel therapeutic strategies for endocrine-related cancer.
Collapse
Affiliation(s)
- Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Xueyun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Jiangfeng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
38
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
39
|
Torres-Quesada O, Doerrier C, Strich S, Gnaiger E, Stefan E. Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers (Basel) 2022; 14:3917. [PMID: 36010911 PMCID: PMC9405899 DOI: 10.3390/cancers14163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Two-dimensional cell cultures are established models in research for studying and perturbing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer using standard cell culture media. Although they have been used for decades, their formulations do not mimic the composition of the human cell environment. In this study, we analyzed the impact of a newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioenergetics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration. Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-dependent side effect of this drug highlights that the selection of the cell culture medium influences the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physiological composition for analyzing bioenergetic profiles and to take it into account for assigning drug efficacies in the cell culture model of choice.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | | - Sophie Strich
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
40
|
Kim J, Park A, Hwang J, Zhao X, Kwak J, Kim HW, Ku M, Yang J, Kim TI, Jeong KS, Choi U, Lee H, Shin SJ. KS10076, a chelator for redox-active metal ions, induces ROS-mediated STAT3 degradation in autophagic cell death and eliminates ALDH1 + stem cells. Cell Rep 2022; 40:111077. [PMID: 35858554 DOI: 10.1016/j.celrep.2022.111077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
Redox-active metal ions are pivotal for rapid metabolism, proliferation, and aggression across cancer types, and this presents metal chelation as an attractive cancer cell-targeting strategy. Here, we identify a metal chelator, KS10076, as a potent anti-cancer drug candidate. A metal-bound KS10076 complex with redox potential for generating hydrogen peroxide and superoxide anions induces intracellular reactive oxygen species (ROS). The elevation of ROS by KS10076 promotes the destabilization of signal transducer and activator of transcription 3, removes aldehyde dehydrogenase isoform 1-positive cancer stem cells, and subsequently induces autophagic cell death. Bioinformatic analysis of KS10076 susceptibility in pan-cancer cells shows that KS10076 potentially targets cancer cells with increased mitochondrial function. Furthermore, patient-derived organoid models demonstrate that KS10076 efficiently represses cancer cells with active KRAS, and fluorouracil resistance, which suggests clinical advantages.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Areum Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jieon Hwang
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Xianghua Zhao
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyun Woo Kim
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Uyeong Choi
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyuk Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sang Joon Shin
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
42
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
43
|
Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Exp Cell Res 2022; 415:113138. [DOI: 10.1016/j.yexcr.2022.113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
44
|
Frégeau-Proulx L, Lacouture A, Berthiaume L, Weidmann C, Harvey M, Gonthier K, Pelletier JF, Neveu B, Jobin C, Bastien D, Bergeron A, Fradet Y, Lacombe L, Laverdière I, Atallah C, Pouliot F, Audet-Walsh É. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol Metab 2022; 62:101516. [PMID: 35598879 PMCID: PMC9168698 DOI: 10.1016/j.molmet.2022.101516] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Objective The prostate is metabolically unique: it produces high levels of citrate for secretion via a truncated tricarboxylic acid (TCA) cycle to maintain male fertility. In prostate cancer (PCa), this phenotype is reprogrammed, making it an interesting therapeutic target. However, how the truncated prostate TCA cycle works is still not completely understood. Methods We optimized targeted metabolomics in mouse and human organoid models in ex vivo primary culture. We then used stable isotope tracer analyses to identify the pathways that fuel citrate synthesis. Results First, mouse and human organoids were shown to recapitulate the unique citrate-secretory program of the prostate, thus representing a novel model that reproduces this unusual metabolic profile. Using stable isotope tracer analysis, several key nutrients were shown to allow the completion of the prostate TCA cycle, revealing a much more complex metabolic profile than originally anticipated. Indeed, along with the known pathway of aspartate replenishing oxaloacetate, glutamine was shown to fuel citrate synthesis through both glutaminolysis and reductive carboxylation in a GLS1-dependent manner. In human organoids, aspartate entered the TCA cycle at the malate entry point, upstream of oxaloacetate. Our results demonstrate that the citrate-secretory phenotype of prostate organoids is supported by the known aspartate–oxaloacetate–citrate pathway, but also by at least three additional pathways: glutaminolysis, reductive carboxylation, and aspartate–malate conversion. Conclusions Our results add a significant new dimension to the prostate citrate-secretory phenotype, with at least four distinct pathways being involved in citrate synthesis. Better understanding this distinctive citrate metabolic program will have applications in both male fertility as well as in the development of novel targeted anti-metabolic therapies for PCa. Targeted metabolomics and stable isotope tracer analysis were optimized in mouse and human prostate organoids. Organoids recapitulate the unique citrate-secretory phenotype of the prostate. Glutamine fuels citrate synthesis for secretion by glutaminolysis and reductive carboxylation. Aspartate enters the TCA cycle at different entry points in mouse and human prostate organoids for citrate production. We revealed a much more complex TCA cycle in the prostate than originally anticipated.
Collapse
Affiliation(s)
- Lilianne Frégeau-Proulx
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Mario Harvey
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Kevin Gonthier
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jean-François Pelletier
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Bertrand Neveu
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Cynthia Jobin
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Dominic Bastien
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Alain Bergeron
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Faculty of Pharmacy, Université Laval, Québec, QC, Canada; Department of Pharmacy, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Chantal Atallah
- Department of Pathology, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
45
|
Sachdeva A, Hart CA, Carey CD, Vincent AE, Greaves LC, Heer R, Oliveira P, Brown MD, Clarke NW, Turnbull DM. Automated quantitative high-throughput multiplex immunofluorescence pipeline to evaluate OXPHOS defects in formalin-fixed human prostate tissue. Sci Rep 2022; 12:6660. [PMID: 35459777 PMCID: PMC9033818 DOI: 10.1038/s41598-022-10588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Advances in multiplex immunofluorescence (mIF) and digital image analysis has enabled simultaneous assessment of protein defects in electron transport chain components. However, current manual methodology is time consuming and labour intensive. Therefore, we developed an automated high-throughput mIF workflow for quantitative single-cell level assessment of formalin fixed paraffin embedded tissue (FFPE), leveraging tyramide signal amplification on a Ventana Ultra platform coupled with automated multispectral imaging on a Vectra 3 platform. Utilising this protocol, we assessed the mitochondrial oxidative phosphorylation (OXPHOS) protein alterations in a cohort of benign and malignant prostate samples. Mitochondrial OXPHOS plays a critical role in cell metabolism, and OXPHOS perturbation is implicated in carcinogenesis. Marked inter-patient, intra-patient and spatial cellular heterogeneity in OXPHOS protein abundance was observed. We noted frequent Complex IV loss in benign prostate tissue and Complex I loss in age matched prostate cancer tissues. Malignant regions within prostate cancer samples more frequently contained cells with low Complex I & IV and high mitochondrial mass in comparison to benign-adjacent regions. This methodology can now be applied more widely to study the frequency and distribution of OXPHOS alterations in formalin-fixed tissues, and their impact on long-term clinical outcomes.
Collapse
Affiliation(s)
- Ashwin Sachdeva
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK.
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK.
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Claire A Hart
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
| | - Christopher D Carey
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- NovoPath, Cellular Pathology, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Michael D Brown
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
| | - Noel W Clarke
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
46
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
47
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
48
|
Solimando AG, Kalogirou C, Krebs M. Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer - Narrowing the Gap Between Bench and Bedside. Front Immunol 2022; 13:842038. [PMID: 35222436 PMCID: PMC8866833 DOI: 10.3389/fimmu.2022.842038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been extensively investigated as a promising druggable biological process. Nonetheless, targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC despite promising preclinical and early clinical data. This discrepancy prompted a literature review highlighting the tumor heterogeneity and biological context of Prostate Cancer (PCa). Narrowing the gap between the bench and bedside appears critical for developing novel therapeutic strategies. Searching clinicaltrials.gov for studies examining angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several other compounds with known anti-angiogenic properties - such as Metformin or Curcumin - are currently investigated. In general, angiogenesis-targeting strategies in PCa include biomarker-guided treatment stratification - as well as combinatorial approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial anti-angiogenic effect - due to PSMA´s abundant expression in tumor vasculature.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine "G. Baccelli", University of Bari Medical School, Bari, Italy.,Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Krebs
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
Kamada S, Takeiwa T, Ikeda K, Horie K, Inoue S. Emerging Roles of COX7RP and Mitochondrial Oxidative Phosphorylation in Breast Cancer. Front Cell Dev Biol 2022; 10:717881. [PMID: 35178385 PMCID: PMC8844363 DOI: 10.3389/fcell.2022.717881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic alterations are critical events in cancers, which often contribute to tumor pathophysiology. While aerobic glycolysis is a known characteristic of cancer-related metabolism, recent studies have shed light on mitochondria-related metabolic pathways in cancer biology, including oxidative phosphorylation (OXPHOS), amino acid and lipid metabolism, nucleic acid metabolism, and redox regulation. Breast cancer is the most common cancer in women; thus, elucidation of breast cancer-related metabolic alteration will help to develop cancer drugs for many patients. We here aim to define the contribution of mitochondrial metabolism to breast cancer biology. The relevance of OXPHOS in breast cancer has been recently defined by the discovery of COX7RP, which promotes mitochondrial respiratory supercomplex assembly and glutamine metabolism: the latter is also shown to promote nucleic acid and fatty acid biosynthesis as well as ROS defense regulation. In this context, the estrogen-related receptor (ERR) family nuclear receptors and collaborating coactivators peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) are essential transcriptional regulators for both energy production and cancer-related metabolism. Summarizing recent findings of mitochondrial metabolism in breast cancer, this review will aim to provide a clue for the development of alternative clinical management by modulating the activities of responsible molecules involved in disease-specific metabolic alterations.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
50
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|