1
|
Han J, Matsumoto T, Yamada R, Ogino H. Reshaping the substrate-binding pocket of acyl-ACP reductase to enhance the production of sustainable aviation fuel in Escherichia coli. Biotechnol Bioeng 2025; 122:211-222. [PMID: 39413001 DOI: 10.1002/bit.28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
To reduce carbon emissions and address environmental concerns, the aviation industry is exploring the use of sustainable aviation fuel (SAF) as an alternative to traditional fossil fuels. In this context, bio-alkane is considered a potentially high-value solution. The present study focuses on the enzymes acyl-acyl carrier protein [ACP] reductase (AAR) and aldehyde-deformylating oxygenase (ADO), which are crucial enzymes for alka(e)ne biosynthesis. By using protein engineering techniques, including semi-rational design and site-directed mutagenesis, we aimed to enhance the substrate specificity of AAR and improve alkane production efficiency. The co-expression of a modified AAR (Y26G/Q40M mutant) with wild-type ADO in Escherichia coli significantly increased alka(e)ne production from 28.92 mg/L to 167.30 mg/L, thus notably demonstrating a 36-fold increase in alkane yield. This research highlights the potential of protein engineering in optimizing SAF production, thereby contributing to the development of more sustainable and efficient SAF production methods and promoting greener air travel.
Collapse
Affiliation(s)
- Jiahu Han
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Han J, Matsumoto T, Yamada R, Ogino H. Introducing glutamic acid residues to acyl-ACP reductase to enhance alka(e)ne production in Escherichia coli: Computer-aided design and subsequent experimental validation. Biochem Biophys Res Commun 2024; 745:151237. [PMID: 39732118 DOI: 10.1016/j.bbrc.2024.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E. coli holds great promise for the production of alka(e)nes, which are a valuable bio-based alternative to fossil fuels. However, its effectiveness is significantly limited by its low solubility and stability. The aim of this study is to enhance the solubility and stability of AAR to improve the production of alka(e)nes in E. coli. In this study, an integrated computational approach was employed for combining solubility prediction, aggregation propensity prediction, structural modeling, and molecular dynamics (MD) simulations. This multi-faceted approach provides new insights and tools for enzyme engineering. Through this approach, the C-terminus of AAR was identified as the sole significant hydrophobic patch and aggregation-prone regions (APR). Three strategies were evaluated experimentally: direct deletion of these hydrophobic residues; substitution of these residues with negatively charged amino acids, such as glutamic acid (Glu) or aspartic acid (Asp); and the introduction of additional negatively charged amino acids at the C-terminus to shield the hydrophobic patches. The results showed that AAR mutants with additional Glu residues at the C-terminus exhibited improved performance. Specifically, the AAR-E3 mutant, containing three consecutive Glu residues, demonstrated significantly enhanced solubility and stability, with alka(e)ne production (159.25 mg/L) being 6.3 times higher than that of the wild-type AAR (25.37 mg/L). Subsequent computational modeling and molecular dynamics simulations further validated the experimental findings. This study highlights the potential of enzyme engineering to significantly enhance biofuel production efficiency.
Collapse
Affiliation(s)
- Jiahu Han
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
3
|
Wen Z, Xu Z, Zhang L, Xue Y, Wang H, Jian L, Ma J, Liu Z, Yang H, Huang S, Kang X, Zhou Y, Zhang B. XYLAN O-ACETYLTRANSFERASE 6 promotes xylan synthesis by forming a complex with IRX10 and governs wall formation in rice. THE PLANT CELL 2024; 37:koae322. [PMID: 39663842 DOI: 10.1093/plcell/koae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Xylan, a pivotal polymer with diversified structures, is indispensable for cell wall integrity and contributes to plant growth and biomass recalcitrance. Xylan is synthesized by multienzyme complexes named xylan synthase complexes (XSCs). However, the biochemical mechanism of XSCs and the functions of core components within XSC remain unclear. Here, we report that rice (Oryza sativa) XYLAN O-ACETYLTRANSFERASE 6 (XOAT6) and the xylan synthase IRREGULAR XYLEM10 (IRX10) represent core components of the XSC, acting together to biosynthesize acetyl-xylans. Co-fractionation mass spectrometry and protein-protein interaction analyses revealed that IRX10 and XOAT6 physically interact within XSC, corroborated by similar xylan defects in xoat6 and irx10 mutants. Biochemical assays showed that XOAT6 is an O-acetyltransferase of the xylan backbone and facilitates chain polymerization catalyzed by IRX10. Fluorescence correlation spectroscopy further visualized the xylooligomer polymerization process at a single-molecule level. Solid-state NMR analysis, electron microscopy observations, and nanoindentation examinations identified the altered xylan conformation, disorganized cellulosic structure, and increased wall rigidity and cellulose accessibility in the mutants, leading to brittleness and improved saccharification efficiency. Our findings provide insights into the assembly of XSCs and xylan biosynthesis and offer a framework for tailoring xylans to improve crop traits and biomass.
Collapse
Affiliation(s)
- Zhao Wen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Lanjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hang Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Jian
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianing Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuolin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohui Huang
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yihua Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Huang H, Wang Y, Yang P, Zhao H, Jenks MA, Lü S, Yang X. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1619-1634. [PMID: 38456566 DOI: 10.1111/tpj.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
5
|
Prout L, Hailes HC, Ward JM. Natural transaminase fusions for biocatalysis. RSC Adv 2024; 14:4264-4273. [PMID: 38298934 PMCID: PMC10829540 DOI: 10.1039/d3ra07081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Biocatalytic approaches are used widely for the synthesis of amines from abundant or low cost starting materials. This is a fast-developing field where novel enzymes and enzyme combinations emerge quickly to enable the production of new and complex compounds. Natural multifunctional enzymes represent a part of multi-step biosynthetic pathways that ensure a one-way flux of reactants. In vivo, they confer a selective advantage via increased reaction rates and chemical stability or prevention of toxicity from reactive intermediates. Here we report the identification and analysis of a natural transaminase fusion, PP_2782, from Pseudomonas putida KT2440, as well as three of its thermophilic homologs from Thermaerobacter marianensis, Thermaerobacter subterraneus, and Thermincola ferriacetica. Both the fusions and their truncated transaminase-only derivatives showed good activity with unsubstituted aliphatic and aromatic aldehydes and amines, as well as with a range of α-keto acids, and l-alanine, l-glutamate, and l-glutamine. Through structural similarity, the fused domain was recognised as the acyl-[acyl-carrier-protein] reductase that affects reductive chain release. These natural transaminase fusions could have a great potential for industrial applications.
Collapse
Affiliation(s)
- Luba Prout
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
6
|
Kim YS, Baek H, Yun HS, Lee JH, Lee KI, Kim HS, Yoon HS. The Prokaryotic Microalga Limnothrix redekei KNUA012 to Improve Aldehyde Decarbonylase Expression for Use as a Biological Resource. Pol J Microbiol 2023; 72:307-317. [PMID: 37725893 PMCID: PMC10561079 DOI: 10.33073/pjm-2023-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 09/21/2023] Open
Abstract
The prokaryotic microalga Limnothrix redekei KNUA012 isolated from a freshwater bloom sample from Lake Hapcheon, Hapcheon-gun, South Korea, was investigated for its potential as a biofuel feedstock. Microalgae produce straight-chain alkanes/alkenes from acyl carrier protein-linked fatty acyls via aldehyde decarbonylase (AD; EC 1.2.1.3), which can convert aldehyde intermediates into various biofuel precursors, such as alkanes and free fatty acids. In L. redekei KNUA012, long-chain ADs can convert fatty aldehyde intermediates into alkanes. After heterologous AD expression in Escherichia coli (pET28-AD), we identified an AD in L. redekei KNUA012 that can synthesize various alkanes, such as pentadecane (C15H32), 8-heptadecene (C17H34), and heptadecane (C17H36). These alkanes can be directly used as fuels without transesterification. Biodiesel constituents including dodecanoic acid (C13H26O2), tetradecanoic acid (C15H30O2), 9-hexa decenoic acid (C17H32O2), palmitoleic acid (C17H32O2), hexadecanoic acid (C17H34O2), 9-octadecenoic acid (C19H36O2), and octadecanoic acid (C19H38O2) are produced by L. redekei KNUA012 as the major fatty acids. Our findings suggest that Korean domestic L. redekei KNUA012 is a promising resource for microalgae-based biofuels and biofuel feedstock.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, Republic of Korea
| | - Haeri Baek
- Water Quality Research Institute Daegu Metropolitan City, Daegu, Republic of Korea
| | - Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hak Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-In Lee
- Biotechnology Industrialization Center, Dongshin University, Naju, Republic of Korea
| | - Han-Soon Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Han J, Asano K, Matsumoto T, Yamada R, Ogino H. Engineering acyl-ACP reductase with fusion tags enhances alka(e)ne synthesis in Escherichia coli. Enzyme Microb Technol 2023; 168:110262. [PMID: 37224590 DOI: 10.1016/j.enzmictec.2023.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Alka(e)nes are high-value chemicals with a potentially broad range of industrial applications because of their following advantages: (1) chemical and structural resemblance to petroleum hydrocarbons and (2) higher energy density and hydrophobicity than those of other biofuels. The low yield of bio-alka(e)nes, however, hinders their commercial application. The activity and solubility of acyl carrier protein (ACP) reductase (AAR) affect alka(e)ne biosynthesis in cyanobacteria. The enhancement of the activity and concentration of soluble AAR through genetic and process engineering can improve bio-alka(e)ne yield. Although fusion tags are used to enhance the expression or solubility of recombinant proteins, their effectiveness in improving the production of bio-alka(e)nes has not yet been reported. Fusion tags can be used to improve the amount or activity of soluble AAR in Escherichia coli and to increase the yield of alka(e)nes in E. coli cells co-expressing aldehyde deformylating oxygenase (ADO). Hence, in the present study, histidine (His6/His12), thioredoxin (Trx), maltose-binding protein (MBP), and N-utilization substance (NusA) were used as AAR fusion tags. The strain expressing SeAAR with His12 tag and NpADO showed a 7.2-fold higher yield of alka(e)nes than the strain expressing AAR without fusion tag and NpADO. The highest titer of alka(e)nes (194.78 mg/L) was achieved with the His12 tag.
Collapse
Affiliation(s)
- Jiahu Han
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Koki Asano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
8
|
Chen D, Xu S, Li S, Tao S, Li L, Chen S, Wu L. Directly Evolved AlkS-Based Biosensor Platform for Monitoring and High-Throughput Screening of Alkane Production. ACS Synth Biol 2023; 12:832-841. [PMID: 36779413 DOI: 10.1021/acssynbio.2c00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Biosynthetic alkane using acyl-ACP aldehyde reductase (AAR) and aldehyde-deformylating oxygenase (ADO) from cyanobacteria is considered a promising alternative for the production of biofuels and chemical feedstocks. However, the lack of suitable screening methods to improve the catalytic efficiency of AAR and ADO has hindered further improvements in alkane production. Herein, a novel alkane biosensor was developed based on transcriptional factor AlkS by directed evolution, which shows sensitive dynamic response curves for exogenous long-chain alkanes as well as in situ monitoring of endogenously produced alkanes. The evolved biosensor enables high-throughput screening of alkane-producing strains from the AAR and ADO mutant library, which led to a 13-fold increase in the production of long-chain alkanes, including a 22-fold increase of C15. This study is the first to improve the alkane production through biosensors, which provides a good reference for the establishment of microbial cell factories for alkane production.
Collapse
Affiliation(s)
- Dongdong Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shunlan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shipin Tao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Luzhi Li
- School of Biology, Food and Environment, Hefei University, Hefei 230041, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Treesukkasem N, Buttranon S, Intasian P, Jaroensuk J, Maenpuen S, Sucharitakul J, Lawan N, Chaiyen P, Wongnate T. Unusual aldehyde reductase activity for the production of full-length fatty alcohol by cyanobacterial aldehyde deformylating oxygenase. Arch Biochem Biophys 2023; 734:109498. [PMID: 36572346 DOI: 10.1016/j.abb.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes the deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. In contrast to ADO's native activity, which requires electrons from the Fd/FNR electron transfer complex, ADO's aldehyde reduction activity requires only NAD(P)H. Our results demonstrated that the yield of alcohol products could be affected by oxygen concentration and the type of aldehyde. Under strictly anaerobic conditions, yields of octanol were up to 31%. Moreover, metal cofactors are not involved in the aldehyde reductase activity of PmADO because the yields of alcohols obtained from apoenzyme and holoenzyme treated with various metals were similar under anaerobic conditions. In addition, PmADO prefers medium-chain aldehydes, specifically octanal (kcat/Km around 15 × 10-3 μM-1min-1). The findings herein highlight a new activity of PmADO, which may be applied as a biocatalyst for the industrial synthesis of fatty alcohols.
Collapse
Affiliation(s)
- Nidar Treesukkasem
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10300, Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| |
Collapse
|
10
|
Hayashi Y, Arai M. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb Cell Fact 2022; 21:256. [PMID: 36503511 PMCID: PMC9743570 DOI: 10.1186/s12934-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.
Collapse
Affiliation(s)
- Yuuki Hayashi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XEnvironmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 Japan
| | - Munehito Arai
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| |
Collapse
|
11
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
12
|
Richardson SM, Marchetti PM, Herrera MA, Campopiano DJ. Coupled Natural Fusion Enzymes in a Novel Biocatalytic Cascade Convert Fatty Acids to Amines. ACS Catal 2022; 12:12701-12710. [PMID: 36313522 PMCID: PMC9594044 DOI: 10.1021/acscatal.2c02954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Indexed: 11/28/2022]
Abstract
![]()
Tambjamine YP1 is a pyrrole-containing natural product.
Analysis
of the enzymes encoded in the Pseudoalteromonas tunicata “tam” biosynthetic gene cluster (BGC)
identified a unique di-domain biocatalyst (PtTamH).
Sequence and bioinformatic analysis predicts that PtTamH comprises an N-terminal, pyridoxal 5′-phosphate (PLP)-dependent
transaminase (TA) domain fused to a NADH-dependent C-terminal thioester
reductase (TR) domain. Spectroscopic and chemical analysis revealed
that the TA domain binds PLP, utilizes l-Glu as an amine
donor, accepts a range of fatty aldehydes (C7–C14 with a preference for C12), and produces the
corresponding amines. The previously characterized PtTamA from the “tam” BGC is an ATP-dependent, di-domain
enzyme comprising a class I adenylation domain fused to an acyl carrier
protein (ACP). Since recombinant PtTamA catalyzes
the activation and thioesterification of C12 acid to the holo-ACP domain, we hypothesized that C12 ACP
is the natural substrate for PtTamH. PtTamA and PtTamH were successfully coupled together
in a biocatalytic cascade that converts fatty acids (FAs) to amines
in one pot. Moreover, a structural model of PtTamH
provides insights into how the TA and TR domains are organized. This
work not only characterizes the formation of the tambjamine YP1 tail
but also suggests that PtTamA and PtTamH could be useful biocatalysts for FA to amine functional group
conversion.
Collapse
Affiliation(s)
- Shona M. Richardson
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Piera M. Marchetti
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Michael A. Herrera
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Dominic J. Campopiano
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| |
Collapse
|
13
|
Parveen H, Yazdani SS. Insights into cyanobacterial alkane biosynthesis. J Ind Microbiol Biotechnol 2022; 49:kuab075. [PMID: 34718648 PMCID: PMC9118987 DOI: 10.1093/jimb/kuab075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022]
Abstract
Alkanes are high-energy molecules that are compatible with enduring liquid fuel infrastructures, which make them highly suitable for being next-generation biofuels. Though biological production of alkanes has been reported in various microorganisms, the reports citing photosynthetic cyanobacteria as natural producers have been the most consistent for the long-chain alkanes and alkenes (C15-C19). However, the production of alkane in cyanobacteria is low, leading to its extraction being uneconomical for commercial purposes. In order to make alkane production economically feasible from cyanobacteria, the titre and yield need to be increased by several orders of magnitude. In the recent past, efforts have been made to enhance alkane production, although with a little gain in yield, leaving space for much improvement. Genetic manipulation in cyanobacteria is considered challenging, but recent advancements in genetic engineering tools may assist in manipulating the genome in order to enhance alkane production. Further, advancement in a basic understanding of metabolic pathways and gene functioning will guide future research for harvesting the potential of these tiny photosynthetically efficient factories. In this review, our focus would be to highlight the current knowledge available on cyanobacterial alkane production, and the potential aspects of developing cyanobacterium as an economical source of biofuel. Further insights into different metabolic pathways and hosts explored so far, and possible challenges in scaling up the production of alkanes will also be discussed.
Collapse
Affiliation(s)
- Humaira Parveen
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
14
|
Iqbal T, Chakraborty S, Murugan S, Das D. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chem Asian J 2022; 17:e202200105. [PMID: 35319822 DOI: 10.1002/asia.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Waning resources, massive energy consumption, everdeepening global warming crisis, and climate change have raised grave concerns regarding continued dependence on fossil fuels as the predominant source of energy and generated tremendous interest for developing biofuels, which are renewable. Hydrocarbon-based 'drop-in' biofuels can be a proper substitute for fossil fuels such as gasoline or jet fuel. In Nature, hydrocarbons are produced by diverse organisms such as insects, plants, bacteria, and cyanobacteria. Metalloenzymes play a crucial role in hydrocarbons biosynthesis, and the past decade has witnessed discoveries of a number of metalloenzymes catalyzing hydrocarbon biosynthesis from fatty acids and their derivatives employing unprecedented mechanisms. These discoveries elucidated the enigma related to the divergent chemistries involved in the catalytic mechanisms of these metalloenzymes. There is substantial diversity in the structure, mode of action, cofactor requirement, and substrate scope among these metalloenzymes. Detailed structural analysis along with mutational studies of some of these enzymes have contributed significantly to identifying the key amino acid residues that dictate substrate specificity and catalytic intricacy. In this Review, we discuss the metalloenzymes that catalyze fatty acid-derived hydrocarbon biosynthesis in various organisms, emphasizing the active site architecture, catalytic mechanism, cofactor requirements, and substrate specificity of these enzymes. Understanding such details is essential for successfully implementing these enzymes in emergent biofuel research through protein engineering and synthetic biology approaches.
Collapse
Affiliation(s)
- Tabish Iqbal
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | | | - Subhashini Murugan
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | - Debasis Das
- Indian Institute of Science, Inorganic and Physical Chemistry, CV Raman Rd, 560012, Bangalore, INDIA
| |
Collapse
|
15
|
Wang H, Yang H, Wen Z, Gao C, Gao Y, Tian Y, Xu Z, Liu X, Persson S, Zhang B, Zhou Y. Xylan-based nanocompartments orchestrate plant vessel wall patterning. NATURE PLANTS 2022; 8:295-306. [PMID: 35318447 DOI: 10.1038/s41477-022-01113-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoclustering of biomacromolecules allows cells to efficiently orchestrate biological processes. The plant cell wall is a highly organized polysaccharide network but is heterogeneous in chemistry and structure. However, polysaccharide-based nanocompartments remain ill-defined. Here, we identify a xylan-rich nanodomain at pit borders of xylem vessels. We show that these nanocompartments maintain distinct wall patterns by anchoring cellulosic nanofibrils at the pit borders, critically supporting vessel robustness, water transport and leaf transpiration. The nanocompartments are produced by the activity of IRREGULAR XYLEM (IRX)10 and its homologues, which we show are de novo xylan synthases. Our study hence outlines a mechanism of how xylans are synthesized, how they assemble into nanocompartments and how the nanocompartments sustain cell wall pit patterning to support efficient water transport throughout the plant body.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Wen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Staffan Persson
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Diamanti R, Srinivas V, Johansson A, Nordström A, Griese JJ, Lebrette H, Högbom M. Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase. FEBS Lett 2022; 596:1600-1610. [PMID: 35175627 PMCID: PMC9314684 DOI: 10.1002/1873-3468.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
R2‐like ligand‐binding oxidase (R2lox) is a ferritin‐like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross‐link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry‐based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.
Collapse
Affiliation(s)
- Riccardo Diamanti
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
17
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
18
|
Biophysical and structural studies reveal marginal stability of a crucial hydrocarbon biosynthetic enzyme acyl ACP reductase. Sci Rep 2021; 11:12045. [PMID: 34103559 PMCID: PMC8187606 DOI: 10.1038/s41598-021-91232-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Acyl-ACP reductase (AAR) is one of the two key cyanobacterial enzymes along with aldehyde deformylating oxygenase (ADO) involved in the synthesis of long-chain alkanes, a drop-in biofuel. The enzyme is prone to aggregation when expressed in Escherichia coli, leading to varying alkane levels. The present work attempts to investigate the crucial structural aspects of AAR protein associated with its stability and folding. Characterization by dynamic light scattering experiment and intact mass spectrometry revealed that recombinantly expressed AAR in E. coli existed in multiple-sized protein particles due to diverse lipidation. Interestingly, while thermal- and urea-based denaturation of AAR showed 2-state unfolding transition in circular dichroism and intrinsic fluorescent spectroscopy, the unfolding process of AAR was a 3-state pathway in GdnHCl solution suggesting that the protein milieu plays a significant role in dictating its folding. Apparent standard free energy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\Delta {\text{G}}_{{{\text{NU}}}}^{{{\text{H}}_{2} {\text{O}}}} } \right)$$\end{document}ΔGNUH2O of ~ 4.5 kcal/mol for the steady-state unfolding of AAR indicated borderline stability of the protein. Based on these evidences, we propose that the marginal stability of AAR are plausible contributing reasons for aggregation propensity and hence the low catalytic activity of the enzyme when expressed in E. coli for biofuel production. Our results show a path for building superior biocatalyst for higher biofuel production.
Collapse
|
19
|
Couturier M, Bhalara HD, Monson RE, Salmond GPC, Leeper FJ. Revision in the first steps of the biosynthesis of the red antibiotic prodigiosin: use of a synthetic thioester to validate a new intermediate. RSC Chem Biol 2021; 2:551-555. [PMID: 34458798 PMCID: PMC8341465 DOI: 10.1039/d0cb00173b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023] Open
Abstract
A biosynthetic pathway for the red-antibiotic, prodigiosin, was proposed over a decade ago but not all the suggested intermediates could be detected experimentally. Here we show that a thioester that was not originally included in the pathway is an intermediate. In addition, the enzyme PigE was originally described as a transaminase but we present evidence that it also catalyses the reduction of the thioester intermediate to its aldehyde substrate. A revision is proposed to the biosynthetic pathway to the well-known red pigment prodigiosin via a new thioester intermediate.![]()
Collapse
Affiliation(s)
- Maxime Couturier
- Yusuf Hamied Dept. of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hiral D Bhalara
- Yusuf Hamied Dept. of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Rita E Monson
- Dept. of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - George P C Salmond
- Dept. of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Finian J Leeper
- Yusuf Hamied Dept. of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
20
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int J Biol Macromol 2020; 164:3155-3162. [PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
Abstract
The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|