1
|
Kamml J, Acevedo C, Kammer DS. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale. J Mech Behav Biomed Mater 2024; 159:106697. [PMID: 39182252 PMCID: PMC11539549 DOI: 10.1016/j.jmbbm.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The mineralized collagen fibril is the main building block of hard tissues and it directly affects the macroscopic mechanics of biological tissues such as bone. The mechanical behavior of the fibril itself is determined by its structure: the content of collagen molecules, minerals, and cross-links, and the mechanical interactions and properties of these components. Advanced glycation end products (AGEs) form cross-links between tropocollagen molecules within the collagen fibril and are one important factor that is believed to have a major influence on the tissue. For instance, it has been shown that brittleness in bone correlates with increased AGEs densities. However, the underlying nano-scale mechanisms within the mineralized collagen fibril remain unknown. Here, we study the effect of mineral and AGEs cross-linking on fibril deformation and fracture behavior by performing destructive tensile tests using coarse-grained molecular dynamics simulations. Our results demonstrate that after exceeding a critical content of mineral, it induces stiffening of the collagen fibril at high strain levels. We show that mineral morphology and location affect collagen fibril mechanics: The mineral content at which this stiffening occurs depends on the mineral's location and morphology. Further, both, increasing AGEs density and mineral content lead to stiffening and increased peak stresses. At low mineral contents, the mechanical response of the fibril is dominated by the AGEs, while at high mineral contents, the mineral itself determines fibril mechanics.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
2
|
Wang C, Sun CL, Boulatov R. Productive chemistry induced by mechanochemically generated macroradicals. Chem Commun (Camb) 2024; 60:10629-10641. [PMID: 39171460 DOI: 10.1039/d4cc03206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Large or repeated mechanical loads degrade polymeric materials by accelerating chain fragmentation. This mechanochemical backbone fracture usually occurs by homolysis of otherwise inert C-C, C-O and C-S bonds, generating highly reactive macroradicals. Because backbone fracture is detrimental on its own and the resulting macroradicals can initiate damaging reaction cascades, a major thrust in contemporary polymer mechanochemistry is to suppress it, usually by mechanochemical release of "hidden length" that dissipates local molecular strain. Here we summarize an emerging complementary strategy of channelling mechanochemically generated macroradicals in reaction cascades to form new load-bearing chemical bonds, which enables local self-healing or self-strengthening, and/or to generate mechanofluorescence, which could yield detailed quantitative molecular understanding of how material-failure-inducing macroscopic mechanical loads distribute across the network. We aim to identify generalizable lessons derivable from the reported implementations of this strategy and outline the key challenges in adapting it to diverse polymeric materials and loading scenarios.
Collapse
Affiliation(s)
- Chenxu Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| |
Collapse
|
3
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi SK, Walker A, Li Y, Villazon J, Mestre-Farrera A, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron regulatory states contribute to heterogeneity in breast cancer aggressiveness. iScience 2024; 27:110661. [PMID: 39262774 PMCID: PMC11387597 DOI: 10.1016/j.isci.2024.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Contact with dense collagen I (Col1) can induce collective invasion of triple negative breast cancer (TNBC) cells and transcriptional signatures linked to poor patient prognosis. However, this response is heterogeneous and not well understood. Using phenotype-guided sequencing analysis of invasive vs. noninvasive subpopulations, we show that these two phenotypes represent opposite sides of the iron response protein 1 (IRP1)-mediated response to cytoplasmic labile iron pool (cLIP) levels. Invasive cells upregulate iron uptake and utilization machinery characteristic of a low cLIP response, which includes contractility regulating genes that drive migration. Non-invasive cells upregulate iron sequestration machinery characteristic of a high cLIP response, which is accompanied by upregulation of actin sequestration genes. These divergent IRP1 responses result from Col1-induced transient expression of heme oxygenase I (HO-1), which cleaves heme and releases iron. These findings lend insight into the emerging theory that heme and iron fluxes regulate TNBC aggressiveness.
Collapse
Affiliation(s)
- William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Z Rowell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Villazon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
5
|
Magerle R, Zech P, Dehnert M, Bendixen A, Otto A. Rate-independent hysteretic energy dissipation in collagen fibrils. SOFT MATTER 2024; 20:2831-2839. [PMID: 38456340 DOI: 10.1039/d3sm01625k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Nanoindentation cycles measured with an atomic force microscope on hydrated collagen fibrils exhibit a rate-independent hysteresis with return point memory. This previously unknown energy dissipation mechanism describes in unified form elastoplastic indentation, capillary adhesion, and surface leveling at indentation velocities smaller than 1 μm s-1, where viscous friction is negligible. A generic hysteresis model, based on force-distance data measured during one large approach-retract cycle, predicts the force (output) and the dissipated energy for arbitrary indentation trajectories (input). While both quantities are rate independent, they do depend nonlinearly on indentation history and on indentation amplitude.
Collapse
Affiliation(s)
- Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Paul Zech
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Alexandra Bendixen
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Andreas Otto
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| |
Collapse
|
6
|
Kamml J, Acevedo C, Kammer DS. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale. ARXIV 2024:arXiv:2403.11753v1. [PMID: 38562451 PMCID: PMC10984003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mineralized collagen fibril is the main building block of hard tissues and it directly affects the macroscopic mechanics of biological tissues such as bone. The mechanical behavior of the fibril itself is determined by its structure: the content of collagen molecules, minerals, and cross-links, and the mechanical interactions and properties of these components. Advanced-Glycation-Endproducts (AGEs) cross-linking between tropocollagen molecules within the collagen fibril is one important factor that is believed to have a major influence on the tissue. For instance, it has been shown that brittleness in bone correlates with increased AGEs densities. However, the underlying nano-scale mechanisms within the mineralized collagen fibril remain unknown. Here, we study the effect of mineral and AGEs cross-linking on fibril deformation and fracture behavior by performing destructive tensile tests using coarse-grained molecular dynamics simulations. Our results demonstrate that after exceeding a critical content of mineral, it induces stiffening of the collagen fibril at high strain levels. We show that mineral morphology and location affect collagen fibril mechanics: The mineral content at which this stiffening occurs depends on the mineral's location and morphology. Further, both, increasing AGEs density and mineral content lead to stiffening and increased peak stresses. At low mineral contents, the mechanical response of the fibril is dominated by the AGEs, while at high mineral contents, the mineral itself determines fibril mechanics.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, USA
| | | |
Collapse
|
7
|
Riedmiller K, Reiser P, Bobkova E, Maltsev K, Gryn'ova G, Friederich P, Gräter F. Substituting density functional theory in reaction barrier calculations for hydrogen atom transfer in proteins. Chem Sci 2024; 15:2518-2527. [PMID: 38362411 PMCID: PMC10866341 DOI: 10.1039/d3sc03922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Hydrogen atom transfer (HAT) reactions are important in many biological systems. As these reactions are hard to observe experimentally, it is of high interest to shed light on them using simulations. Here, we present a machine learning model based on graph neural networks for the prediction of energy barriers of HAT reactions in proteins. As input, the model uses exclusively non-optimized structures as obtained from classical simulations. It was trained on more than 17 000 energy barriers calculated using hybrid density functional theory. We built and evaluated the model in the context of HAT in collagen, but we show that the same workflow can easily be applied to HAT reactions in other biological or synthetic polymers. We obtain for relevant reactions (small reaction distances) a model with good predictive power (R2 ∼ 0.9 and mean absolute error of <3 kcal mol-1). As the inference speed is high, this model enables evaluations of dozens of chemical situations within seconds. When combined with molecular dynamics in a kinetic Monte-Carlo scheme, the model paves the way toward reactive simulations.
Collapse
Affiliation(s)
- Kai Riedmiller
- Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Patrick Reiser
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology Engler-Bunte-Ring 8 Karlsruhe 76131 Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1: 76344 Eggenstein-Leopoldshafen Germany
| | | | - Kiril Maltsev
- Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University Heidelberg Germany
| | - Pascal Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology Engler-Bunte-Ring 8 Karlsruhe 76131 Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1: 76344 Eggenstein-Leopoldshafen Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies Heidelberg Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University Heidelberg Germany
| |
Collapse
|
8
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi S, Walker A, Li Y, Villazon J, Farrera AM, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron-regulatory states contribute to heterogeneity in breast cancer aggressiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546216. [PMID: 37425829 PMCID: PMC10327122 DOI: 10.1101/2023.06.23.546216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Primary tumors with similar mutational profiles can progress to vastly different outcomes where transcriptional state, rather than mutational profile, predicts prognosis. A key challenge is to understand how distinct tumor cell states are induced and maintained. In triple negative breast cancer cells, invasive behaviors and aggressive transcriptional signatures linked to poor patient prognosis can emerge in response to contact with collagen type I. Herein, collagen-induced migration heterogeneity within a TNBC cell line was leveraged to identify transcriptional programs associated with invasive versus non-invasive phenotypes and implicate molecular switches. Phenotype-guided sequencing revealed that invasive cells upregulate iron uptake and utilization machinery, anapleurotic TCA cycle genes, actin polymerization promoters, and a distinct signature of Rho GTPase activity and contractility regulating genes. The non-invasive cell state is characterized by actin and iron sequestration modules along with glycolysis gene expression. These unique tumor cell states are evident in patient tumors and predict divergent outcomes for TNBC patients. Glucose tracing confirmed that non-invasive cells are more glycolytic than invasive cells, and functional studies in cell lines and PDO models demonstrated a causal relationship between phenotype and metabolic state. Mechanistically, the OXPHOS dependent invasive state resulted from transient HO-1 upregulation triggered by contact with dense collagen that reduced heme levels and mitochondrial chelatable iron levels. This induced expression of low cytoplasmic iron response genes regulated by ACO1/IRP1. Knockdown or inhibition of HO-1, ACO1/IRP1, MRCK, or OXPHOS abrogated invasion. These findings support an emerging theory that heme and iron flux serve as important regulators of TNBC aggressiveness.
Collapse
|
9
|
Bedi A, Bishop J, Keener J, Lansdown DA, Levy O, MacDonald P, Maffulli N, Oh JH, Sabesan VJ, Sanchez-Sotelo J, Williams RJ, Feeley BT. Rotator cuff tears. Nat Rev Dis Primers 2024; 10:8. [PMID: 38332156 DOI: 10.1038/s41572-024-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.
Collapse
Affiliation(s)
- Asheesh Bedi
- Department of Orthopedic Surgery, University of Chicago, Chicago, IL, USA
- NorthShore Health System, Chicago, IL, USA
| | - Julie Bishop
- Department of Orthopedic Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Keener
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA
| | - Drew A Lansdown
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ofer Levy
- Reading Shoulder Unit, Berkshire Independent Hospital, Reading, UK
| | - Peter MacDonald
- Department of Surgery, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Vani J Sabesan
- HCA Florida JFK Orthopaedic Surgery Residency Program, Atlantis Orthopedics, Atlantis, FL, USA
| | | | - Riley J Williams
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Zha J, Xia F. Developing Hybrid All-Atom and Ultra-Coarse-Grained Models to Investigate Taxol-Binding and Dynein Interactions on Microtubules. J Chem Theory Comput 2023; 19:5621-5632. [PMID: 37489636 DOI: 10.1021/acs.jctc.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Rennekamp B, Karfusehr C, Kurth M, Ünal A, Monego D, Riedmiller K, Gryn'ova G, Hudson DM, Gräter F. Collagen breaks at weak sacrificial bonds taming its mechanoradicals. Nat Commun 2023; 14:2075. [PMID: 37045839 PMCID: PMC10097693 DOI: 10.1038/s41467-023-37726-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Collagen is a force-bearing, hierarchical structural protein important to all connective tissue. In tendon collagen, high load even below macroscopic failure level creates mechanoradicals by homolytic bond scission, similar to polymers. The location and type of initial rupture sites critically decide on both the mechanical and chemical impact of these micro-ruptures on the tissue, but are yet to be explored. We here use scale-bridging simulations supported by gel electrophoresis and mass spectrometry to determine breakage points in collagen. We find collagen crosslinks, as opposed to the backbone, to harbor the weakest bonds, with one particular bond in trivalent crosslinks as the most dominant rupture site. We identify this bond as sacrificial, rupturing prior to other bonds while maintaining the material's integrity. Also, collagen's weak bonds funnel ruptures such that the potentially harmful mechanoradicals are readily stabilized. Our results suggest this unique failure mode of collagen to be tailored towards combatting an early onset of macroscopic failure and material ageing.
Collapse
Affiliation(s)
- Benedikt Rennekamp
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Christoph Karfusehr
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
- Physics Department and ZNN, Technical University Munich, Coulombwall 4a, 85748, Garching, Germany
| | - Markus Kurth
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - Aysecan Ünal
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Debora Monego
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Kai Riedmiller
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120, Heidelberg, Germany.
- Max Planck School Matter to Life, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Rowe J, Röder K. Chemical bonds in collagen rupture selectively under tensile stress. Phys Chem Chem Phys 2023; 25:2331-2341. [PMID: 36597961 DOI: 10.1039/d2cp05051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagen fibres are the main constituent of the extracellular matrix, and fulfil an important role in the structural stability of living multicellular organisms. An open question is how collagen absorbs pulling forces, and if the applied forces are strong enough to break bonds, what mechanisms underlie this process. As experimental studies on this topic are challenging, simulations are an important tool to further our understanding of these mechanisms. Here, we present pulling simulations of collagen triple helices, revealing the molecular mechanisms induced by tensile stress. At lower forces, pulling alters the configuration of proline residues leading to an effective absorption of applied stress. When forces are strong enough to introduce bond ruptures, these are located preferentially in X-position residues. Reduced backbone flexibility, for example through mutations or cross linking, weakens tensile resistance, leading to localised ruptures around these perturbations. In fibre-like segments, a significant overrepresentation of ruptures in proline residues compared to amino acid contents is observed. This study confirms the important role of proline in the structural stability of collagen, and adds detailed insight into the molecular mechanisms underlying this observation.
Collapse
Affiliation(s)
- James Rowe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Konstantin Röder
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Naumann J, Koppe N, Thome UH, Laube M, Zink M. Mechanical properties of the premature lung: From tissue deformation under load to mechanosensitivity of alveolar cells. Front Bioeng Biotechnol 2022; 10:964318. [PMID: 36185437 PMCID: PMC9523442 DOI: 10.3389/fbioe.2022.964318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Many preterm infants require mechanical ventilation as life-saving therapy. However, ventilation-induced overpressure can result in lung diseases. Considering the lung as a viscoelastic material, positive pressure inside the lung results in increased hydrostatic pressure and tissue compression. To elucidate the effect of positive pressure on lung tissue mechanics and cell behavior, we mimic the effect of overpressure by employing an uniaxial load onto fetal and adult rat lungs with different deformation rates. Additionally, tissue expansion during tidal breathing due to a negative intrathoracic pressure was addressed by uniaxial tension. We found a hyperelastic deformation behavior of fetal tissues under compression and tension with a remarkable strain stiffening. In contrast, adult lungs exhibited a similar response only during compression. Young’s moduli were always larger during tension compared to compression, while only during compression a strong deformation-rate dependency was found. In fact, fetal lung tissue under compression showed clear viscoelastic features even for small strains. Thus, we propose that the fetal lung is much more vulnerable during inflation by mechanical ventilation compared to normal inspiration. Electrophysiological experiments with different hydrostatic pressure gradients acting on primary fetal distal lung epithelial cells revealed that the activity of the epithelial sodium channel (ENaC) and the sodium-potassium pump (Na,K-ATPase) dropped during pressures of 30 cmH2O. Thus, pressures used during mechanical ventilation might impair alveolar fluid clearance important for normal lung function.
Collapse
Affiliation(s)
- Jonas Naumann
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Nicklas Koppe
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, Leipzig University, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, Leipzig University, Leipzig, Germany
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
- *Correspondence: Mareike Zink,
| |
Collapse
|
14
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
15
|
Obarska-Kosinska A, Rennekamp B, Ünal A, Gräter F. ColBuilder: A server to build collagen fibril models. Biophys J 2021; 120:3544-3549. [PMID: 34265261 DOI: 10.1016/j.bpj.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Type I collagen is the main structural component of many tissues in the human body. It provides excellent mechanical properties to connective tissue and acts as a protein interaction hub. There is thus a wide interest in understanding the properties and diverse functions of type I collagen at the molecular level. A precondition is an atomistic collagen I structure as it occurs in native tissue. To this end, we built full-atom models of cross-linked collagen fibrils by integrating the low-resolution structure of collagen fibril available from x-ray fiber diffraction with high-resolution structures of short collagen-like peptides from x-ray crystallography and mass spectrometry data. We created a Web resource of collagen models for 20 different species with a large variety of cross-link types and localization within the fibril to facilitate structure-based analyses and simulations of type I collagen in health and disease. To easily enable simulations, we provide parameters of the modeled cross-links for an Amber force field. The repository of collagen models is available at https://colbuilder.h-its.org.
Collapse
Affiliation(s)
- Agnieszka Obarska-Kosinska
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Hamburg Unit c/o DESY, European Molecular Biology Laboratory, Hamburg, Germany
| | - Benedikt Rennekamp
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Max Planck School Matter-to-Life (MtL), Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Aysecan Ünal
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Max Planck School Matter-to-Life (MtL), Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Max Planck School Matter-to-Life (MtL), Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
16
|
Tabak S, Schreiber-Avissar S, Beit-Yannai E. Crosstalk between MicroRNA and Oxidative Stress in Primary Open-Angle Glaucoma. Int J Mol Sci 2021; 22:2421. [PMID: 33670885 PMCID: PMC7957693 DOI: 10.3390/ijms22052421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.
Collapse
Affiliation(s)
| | | | - Elie Beit-Yannai
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.T.); (S.S.-A.)
| |
Collapse
|
17
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
18
|
Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A. Kontrolle über die optische und katalytische Aktivität gentechnisch hergestellter Proteine mit Ultraschall. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Zhou
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Shuaidong Huo
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Science Xiamen University 361102 Xiamen China
| | - Mark Loznik
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Arnold J. Boersma
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Andreas Herrmann
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| |
Collapse
|
19
|
Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A. Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound. Angew Chem Int Ed Engl 2021; 60:1493-1497. [PMID: 33104261 PMCID: PMC7839785 DOI: 10.1002/anie.202010324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch "on" and "off" protein activity by US will serve as a blueprint to remotely control other bioactive molecules.
Collapse
Affiliation(s)
- Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Shuaidong Huo
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical ScienceXiamen University361102XiamenChina
| | - Mark Loznik
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Arnold J. Boersma
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Andreas Herrmann
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
20
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|