1
|
Pallavolu MR, Muralee Gopi CVV, Prabu S, Ullapu PR, Jung JH, Joo SW, Ramesh R. Hierarchical nanoporous NiCoN nanoflowers with highly rough surface electrode material for high-performance asymmetric supercapacitors. RSC Adv 2025; 15:4619-4627. [PMID: 39935466 PMCID: PMC11811699 DOI: 10.1039/d4ra07757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/25/2024] [Indexed: 02/13/2025] Open
Abstract
This study presents a novel strategy to enhance the energy storage performance of asymmetric supercapacitors (ASCs) by utilizing nanoporous NiCoN flower structures as the positive electrode material. The NiCoN material is synthesized via a straightforward hydrothermal method, followed by calcination in a nitrogen atmosphere. The resulting electrode demonstrates exceptional electrochemical properties, including a high specific capacity of 773 C g-1 (1955 F g-1), excellent rate capability, and outstanding cycling stability. The hierarchical architecture of the NiCoN electrode, composed of interconnected porous nanosheets, facilitates efficient charge transfer and enhanced electrolyte ion diffusion. When paired with activated carbon (AC) as the negative electrode in the NiCoN//AC ASC configuration, the device achieves an impressive energy density of 36 W h kg-1 at a power density of 775 W kg-1. Moreover, the device exhibits remarkable cycling stability, retaining 85% of its initial capacitance after 5000 charge-discharge cycles. These findings underscore the potential of NiCoN as a high-performance electrode material for ASCs, offering a promising pathway for advancements in next-generation energy storage technologies.
Collapse
Affiliation(s)
- Mohan Reddy Pallavolu
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University Zhong-Da Road, Zhong-Li District Tao-Yuan City Taiwan
| | - Punna Reddy Ullapu
- School of Science and Technology (UST) 176 Gajung-dong, 217 Gajungro, Yuseong-gu Daejung 305-333 South Korea
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
2
|
Singh PP, Khatua BB. Succulent inspired grown g-C 3N 4@lithium sodium niobate for supercapacitors and piezo-tuned electrochemical potential controlled smart electromagnetic shielding management. MATERIALS HORIZONS 2024; 11:6525-6541. [PMID: 39431726 DOI: 10.1039/d4mh01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-C3N4@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g-1. The PSCS device exhibits an energy density of 15.3 W h kg-1 and a power density of 4.2 kW kg-1 with an impressive capacitive retention capability of 93.2% after 6000 cycles of charging-discharging. The PSCS device can be charged up to 393 mV within 180 s under 14.2 N of cyclic pressing by human finger imparting. The fabricated PSCS device was also investigated for self-charging potential regulated smart EMI shielding applications. The smart PSCS device achieves an 88.3 dB increment from 40.9 dB of EMI shielding under charging from 0 mV to 300 mV. The increased charging potential of the PSCS device enhances the destructive interference and leads to boosted absorption and decreased reflection of incident EM radiation.
Collapse
Affiliation(s)
- Prem Pal Singh
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | - Bhanu Bhusan Khatua
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| |
Collapse
|
3
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
4
|
Fang C, Han J, Yang Q, Gao Z, Tan D, Chen T, Xu B. Boosting Zn-Ion Storage Behavior of Pre-Intercalated MXene with Black Phosphorus toward Self-Powered Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408549. [PMID: 39206855 PMCID: PMC11515922 DOI: 10.1002/advs.202408549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 09/04/2024]
Abstract
MXene-based Zn-ion capacitors (ZICs) with adsorption-type and battery-type electrodes demonstrate high energy storage and anti-self-discharge capabilities, potentially being paired with triboelectric nanogenerators (TENGs) to construct self-powered systems. Nevertheless, inadequate interlayer spacing, deficient active sites, and compact self-restacking of MXene flakes pose hurdles for MXene-based ZICs, limiting their applications. Herein, black phosphorus (BP)-Zn-MXene hybrid is formulated for MXene-based ZIC via a two-step molecular engineering strategy of Zn-ion pre-intercalation and BP nanosheet assembly. Zn ions as intercalators induce cross-linking of MXene flakes with expandable interlayer spacing to serve as scaffolds for BP nanosheets, thereby providing sufficient accessible active sites and efficient migration routes for enhanced Zn-ion storage. The density functional theory calculations affirm that zinc adsorption and diffusion kinetics are significantly improved in the hybrid. A wearable ZIC with the hybrid delivers a competitive areal energy of 426.3 µWh cm-2 and ultra-low self-discharge rate of 7.0 mV h-1, achieving remarkable electrochemical matching with TENGs in terms of low energy loss, matched capacity, and fast Zn-ion storage. The resultant self-powered system efficiently collects and stores energy from human motion to power microelectronics. This work advances the Zn-ion storage of MXene-based ZICs and their synergy with TENG in self-powered systems.
Collapse
Affiliation(s)
- Cuiqin Fang
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Jing Han
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Qingjun Yang
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Zhenguo Gao
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Di Tan
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Tiandi Chen
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and TextilesThe Hong Kong Polytechnic UniversityHong Kong999077China
| |
Collapse
|
5
|
Hassan M, Li P, Lin J, Li Z, Javed MS, Peng Z, Celebi K. Smart Energy Storage: W 18O 49 NW/Ti 3C 2T x Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400278. [PMID: 38552247 DOI: 10.1002/smll.202400278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Indexed: 08/17/2024]
Abstract
Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W18O49 NW/Ti3C2Tx composite has been fabricated and deposited on a pre-assembled Ag and W18O49 NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W18O49 NW/Ti3C2Tx composite exhibits an areal capacitance of 125 mF cm-2, with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mA cm-2. Using this electrode, a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 µWh cm-2 and a power density of 0.605 mW cm-2 is fabricated, with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching), and a significant coloration efficiency of 116 cm2 C-1 with good optical modulation stability. In addition, the device exhibits significant mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.
Collapse
Affiliation(s)
- Muhammad Hassan
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Pingping Li
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang, 314400, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ju Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zihao Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad S Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhengchun Peng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kemal Celebi
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang, 314400, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Sinha P, Sharma A. The prospect of supercapacitors in integrated energy harvesting and storage systems. NANOTECHNOLOGY 2024; 35:382001. [PMID: 38904267 DOI: 10.1088/1361-6528/ad5a7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Renewable energy sources, such as wind, tide, solar cells, etc, are the primary research areas that deliver enormous amounts of energy for our daily usage and minimize the dependency upon fossil fuel. Paralley, harnessing ambient energy from our surroundings must be prioritized for small powered systems. Nanogenerators, which use waste energy to generate electricity, are based on such concepts. We refer to these nanogenerators as energy harvesters. The purpose of energy harvesters is not to outcompete traditional renewable energy sources. It aims to reduce reliance on primary energy sources and enhance decentralized energy production. Energy storage is another area that needs to be explored for quickly storing the generated energy. Supercapacitor is a familiar device with a unique quick charging and discharging feature. Encouraging advancements in energy storage and harvesting technologies directly supports the efficient and comprehensive use of sustainable energy. Yet, self-optimization from independent energy harvesting and storage devices is challenging to overcome. It includes instability, insufficient energy output, and reliance on an external power source, preventing their direct application and future development. Coincidentally, integrating energy harvesters and storage devices can address these challenges, which demand their inherent action. This review intends to offer a complete overview of supercapacitor-based integrated energy harvester and storage systems and identify opportunities and directions for future research in this subject.
Collapse
Affiliation(s)
- Prerna Sinha
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Ashutosh Sharma
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Materials Science Programme, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Wang J, Zhang B, Zhang J, Xing H, Shi Y, Tian K, Guo W, Xu J, Liu S, Li X, Xie H, Wang H. Aerobically Autoxidized Self-Charge Concept Derived from Synergistic Pyrrolic Nitrogen and Catechol Configurations in N, O Co-Doped Carbon Cathode Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310928. [PMID: 38308134 DOI: 10.1002/smll.202310928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Aerobically autoxidized self-charging concept has drawn significant attraction due to its promising chemical charge features without external power supply. Particularly, heteroatom-doped carbon materials with abundant oxidizable sites and good conductivity are expected to be ideal cathode materials. However, there is no well-defined aerobically autoxidized self-charging concept based on heteroatom-doped carbon materials, significantly hindering the design of related carbon cathodes. An aerobically autoxidized self-chargeable concept derived from synergistic effect of pyrrolic nitrogen and catechol configuration in carbon cathode using model single pyrrolic nitrogen and oxygen (N-5, O) co-doped carbon and O-enriched carbon is proposed. First, self-charging of N-5, O co-doped carbon cathode can be achieved by aerobic oxidation of pyrrolic nitrogen and catechol to oxidized pyrrolic nitrogen and ortho-quinone configurations, respectively. Second, introducing a single pyrrolic nitrogen configuration enhanced acidic wettability of N-5, O co-doped carbon facilitating air self-charge/galvanic discharge involving proton removal/introduction. Third, synergistic effect of pyrrolic nitrogen and hydroxyl species with the strong electron-donating ability to conjugated carbon-based backbone endows N-5, O co-doped carbon with a higher highest occupied molecular orbital (HOMO) energy level more susceptible to oxidation charging. The assembled Cu/Carbon batteries can drive a timer after every air-charging run. This promising aerobically autoxidized self-charging concept can inspire exploring high-efficiency self-charging devices.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Bosen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Hanyu Xing
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuning Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Kesong Tian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Wanchun Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Junjie Xu
- Xi'an Rare Metal Materials Institute Co., Ltd, Xi'an, 710016, P. R. China
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueai Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang, 310003, P. R. China
| | - Haiyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
8
|
Fang T, Liu H, Luo X, Sun M, Peng W, Li Y, Zhang F, Fan X. Enabling Uniform and Stable Lithium-Ion Diffusion at the Ultrathin Artificial Solid-Electrolyte Interface in Siloxene Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309600. [PMID: 38403846 DOI: 10.1002/smll.202309600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Constructing a stable and robust solid electrolyte interphase (SEI) has a decisive influence on the charge/discharge kinetics of lithium-ion batteries (LIBs), especially for silicon-based anodes which generate repeated destruction and regeneration of unstable SEI films. Herein, a facile way is proposed to fabricate an artificial SEI layer composed of lithiophilic chitosan on the surface of two-dimensional siloxene, which has aroused wide attention as an advanced anode for LIBs due to its special characteristics. The optimized chitosan-modified siloxene anode exhibits an excellent reversible cyclic stability of about 672.6 mAh g-1 at a current density of 1000 mA g-1 after 200 cycles and 139.9 mAh g-1 at 6000 mA g-1 for 1200 cycles. Further investigation shows that a stable and LiF-rich SEI film is formed and can effectively adhere to the surface during cycling, redistribute lithium-ion flux, and enable a relatively homogenous lithium-ion diffusion. This work provides constructive guidance for interface engineering strategy of nano-structured silicon anodes.
Collapse
Affiliation(s)
- Tiantian Fang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyu Luo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mengru Sun
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - WenChao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang, 312300, China
| |
Collapse
|
9
|
Kim SI, Kim WJ, Kang JG, Kim DW. Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus. NANO-MICRO LETTERS 2024; 16:219. [PMID: 38884690 PMCID: PMC11183009 DOI: 10.1007/s40820-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024]
Abstract
Doped two-dimensional (2D) materials hold significant promise for advancing many technologies, such as microelectronics, optoelectronics, and energy storage. Herein, n-type 2D oxidized Si nanosheets, namely n-type siloxene (n-SX), are employed as Li-ion battery anodes. Via thermal evaporation of sodium hypophosphite at 275 °C, P atoms are effectively incorporated into siloxene (SX) without compromising its 2D layered morphology and unique Kautsky-type crystal structure. Further, selective nucleophilic substitution occurs, with only Si atoms being replaced by P atoms in the O3≡Si-H tetrahedra. The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types: (i) P atoms residing in Si sites and (ii) H vacancies. The doping concentrations are varied by controlling the amount of precursors or their mean free paths. Even at 2000 mA g-1, the n-SX electrode with the optimized doping concentration (6.7 × 1019 atoms cm-3) delivers a capacity of 594 mAh g-1 with a 73% capacity retention after 500 cycles. These improvements originate from the enhanced kinetics of charge transport processes, including electronic conduction, charge transfer, and solid-state diffusion. The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage.
Collapse
Affiliation(s)
- Se In Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Woong-Ju Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, 02792, Seoul, South Korea.
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea.
| |
Collapse
|
10
|
Sakhre S, R JT, Tangellamudi S, Vikraman A, Jamal A. Inventory and management of E-waste: a case study of Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:588. [PMID: 38816612 DOI: 10.1007/s10661-024-12739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The recent surge in electronic device usage has led to a notable rise in electronic waste (E-waste) generation, presenting significant environmental challenges. This study aims to quantify Kerala's E-waste inventory and formulate a comprehensive management plan. Utilizing sales data from 2017 to 2020 and estimating E-waste generation based on "average" or "end-of-life" durations of electrical and electronic equipment (EEE) items, the analysis forecasts substantial E-waste quantities. Key assumptions include correlating sales data with E-waste generation and utilizing guidelines for estimating E-waste quantities based on EEE item types and sales figures. The highest E-waste generation is predicted for the years 2028-2029, estimated at 97,541 tonnes, which is crucial for the state's management strategy. To address this challenge, the study proposes a comprehensive environmental management plan that integrates the principles of reduce, reuse, and recycle (3R) into its core strategies. The plan includes establishing 78 collection units across the state, strategically allocated based on the Taluk (a sub-division of a district) population, to ensure efficient E-waste collection and recovery of reusable items. Additionally, the study outlines the need for 273 recycling units statewide, with Malappuram district requiring the most units due to its high population density. The plan emphasizes efficient E-waste collection, segregation, and recycling, promoting responsible consumption and resource conservation. The study furnishes a "cradle-to-grave" framework for the management of E-waste at local, regional, and national levels, serving as a valuable resource for pollution control boards, regulatory bodies, statutory bodies, and research organizations alike.
Collapse
Affiliation(s)
- Saurabh Sakhre
- Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| | - Jayalekshmi T R
- Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sravanth Tangellamudi
- Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Akhil Vikraman
- Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Ansari Jamal
- Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| |
Collapse
|
11
|
Chernysheva DV, Smirnova NV, Ananikov VP. Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials. CHEMSUSCHEM 2024; 17:e202301367. [PMID: 37948061 DOI: 10.1002/cssc.202301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Supercapacitors (SCs) have emerged as critical components in applications ranging from transport to wearable electronics due to their rapid charge-discharge cycles, high power density, and reliability. This review offers an analysis of recent strides in supercapacitor research, emphasizing pivotal developments in sustainability, electrode materials, electrolytes, and 'smart SCs' designed for modern microelectronics with attributes such as flexibility, stretchability, and biocompatibility. Central to this discourse are two dominant electrode materials: carbon materials (CMs), primarily in electric double layer capacitors (EDLCs), and pseudocapacitive materials, involving oxides/hydroxides, chalcogenides, metal-organic frameworks, conductive polymers and metal nitrides such as MXene. Despite EDLCs' historical use, challenges such as low energy density persist, with heteroatom introduction into the carbon lattice seen as a solution. Concurrently, pseudocapacitive materials dominate recent studies, with efficiency enhancement strategies, such as the creation of hybrids based on different types of materials, surface structural engineering and doping, under exploration. Electrolyte innovation, especially the shift towards gel polymer electrolytes for flexible SCs, and the harmonization of electrode materials with SC designs are highlighted. Emphasis is given to smart SCs with novel attributes such as self-charging, self-healing, biocompatibility, and environmentally conscious designs. In summary, the article underscores the drive in sustainable supercapacitor research to achieve high energy and power density, steering towards SCs that are efficient and versatile and involving bioderived/biocompatible SC materials. This brief review is based on selected recent references, offering depth combined with an accessible overview of the SC landscape.
Collapse
Affiliation(s)
- Daria V Chernysheva
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Nina V Smirnova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
12
|
Hui X, Asaduzzaman M, Zahed MA, Sharma S, Jeong S, Song H, Faruk O, Park JY. Multifunctional Siloxene-Decorated Laser-Inscribed Graphene Patch for Sweat Ion Analysis and Electrocardiogram Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9725-9735. [PMID: 38378454 DOI: 10.1021/acsami.3c16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Potentiometric detection in complex biological fluids enables continuous electrolyte monitoring for personal healthcare; however, the commercialization of ion-selective electrode-based devices has been limited by the rapid loss of potential stability caused by electrode surface inactivation and biofouling. Here, we describe a simple multifunctional hybrid patch incorporating an Au nanoparticle/siloxene-based solid contact (SC) supported by a substrate made of laser-inscribed graphene on poly(dimethylsiloxane) for the noninvasive detection of sweat Na+ and K+. These SC nanocomposites prevent the formation of a water layer during ion-to-electron transfer, preserving 3 and 5 μV/h potential drift for the Na+ and K+ ion-selective electrodes, respectively, after 13 h of exposure. The lamellar structure of the siloxene sheets increases the SC area. In addition, the electroplated Au nanoparticles, which have a large surface area and excellent conductivity, further increased the electric double-layer capacitance at the interface between the ion-selective membranes and solid-state contacts, thus facilitating ion-to-electron transduction and ultimately improving the detection stability of Na+ and K+. Furthermore, the integrated temperature and electrocardiogram sensors in the flexible patch assist in monitoring body temperature and electrocardiogram signals, respectively. Featuring both electrochemical ion-selective and physical sensors, this patch offers immense potential for the self-monitoring of health.
Collapse
Affiliation(s)
- Xue Hui
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - M Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - SeongHoon Jeong
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Omar Faruk
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
- SnE Solution Co., Ltd, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
13
|
Singh PP, Khatua BB. An Integrated Approach for Piezo-Electrochemical Nanoenergy Generation, Storage, and Real-Time Electromagnetic Interference Shielding Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11050-11061. [PMID: 38349947 DOI: 10.1021/acsami.3c18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The extensive utilization of high-end wireless electronic equipment in medical, robotics, satellite, and military communications has created a pressing challenge for real-time electromagnetic interference (EMI) control. Herein, a piezo-powered self-chargeable supercapacitor (PPSC) architecture based on an iron-doped graphitic nitride (Fe-g-C3N4: FGN) electrode with a solid piezoelectrolyte is devised, which can provide real-time controlled EMI shielding through piezo-powered self-charging voltage (SCV). This PPSC device along with real-time SCV-controlled EMI shielding also integrates additional features like nanoenergy generation and storing capability. The results demonstrate that the PPSC device is capable of exhibiting a piezo-tuned self-charging ability of up to 669.2 mV under 9.47 N of dynamic pressing for 180 s. The SCV electrostatically modifies the PPSC device that causes destructive interference and governs the absorption of electromagnetic radiation (EMR) and controls the absorption-dominated EMI shielding up to 59.2 dB at 500 mV. Additionally, the SCV-led electrification of the PPSC device also controls a unique functional transition from the EMR reflector to the EMR absorber at ∼90 mV. Hence, this strategy of tailored absorption and reflection adjustments of EMR could also potentially contribute toward the advancement of stealth technology for military armaments with externally controlled stealth capabilities.
Collapse
Affiliation(s)
- Prem Pal Singh
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bhanu Bhusan Khatua
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Cao YM, Su Y, Zheng M, Luo P, Xue YB, Han BB, Zheng M, Wang Z, Liao LS, Zhuo MP. Vertical Phase-Engineering MoS 2 Nanosheet-Enhanced Textiles for Efficient Moisture-Based Energy Generation. ACS NANO 2024; 18:492-505. [PMID: 38117279 DOI: 10.1021/acsnano.3c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible moisture-electric generators (MEGs) capture chemical energy from atmospheric moisture for sustainable electricity, gaining attention in wearable electronics. However, challenges persist in the large-scale integration and miniaturization of MEGs for long-term, high-power output. Herein, a vertical heterogeneous phase-engineering MoS2 nanosheet structure based silk and cotton were rationally designed and successfully applied to construct wearable MEGs for moisture-energy conversion. The prepared METs exhibit ∼0.8 V open-circuit voltage, ∼0.27 mA/cm2 current density for >10 h, and >36.12 μW/cm2 peak output power density, 3 orders higher than current standards. And the large-scale device realizes a current output of 0.145 A. An internal phase gradient between the 2H semiconductor MoS2 in carbonized silks and 1T metallic MoS2 in cotton fibers enables a phase-engineering-based heterogeneous electric double layer functioning as an equivalent parallel circuit, leading to enhanced high-power output. Owing to their facile customization for seamless adaptation to the human body, we envision exciting possibilities for these wearable METs as integrated self-power sources, enabling real-time monitoring of physiological parameters in wearable electronics.
Collapse
Affiliation(s)
- Yuan-Ming Cao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yang Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mi Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yang-Biao Xue
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Bin-Bin Han
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zuoshan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
15
|
Liu Y, Li G, Huan L, Cao S. Advancements in silicon carbide-based supercapacitors: materials, performance, and emerging applications. NANOSCALE 2024; 16:504-526. [PMID: 38108473 DOI: 10.1039/d3nr05050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Silicon carbide (SiC) nanomaterials have emerged as promising candidates for supercapacitor electrodes due to their unique properties, which encompass a broad electrochemical stability range, exceptional mechanical strength, and resistance to extreme conditions. This review offers a comprehensive overview of the latest advancements in SiC nanomaterials for supercapacitors. It encompasses diverse synthesis methods for SiC nanomaterials, including solid-state, gas-phase, and liquid-phase synthesis techniques, while also discussing the advantages and challenges associated with each method. Furthermore, this review places a particular emphasis on the electrochemical performance of SiC-based supercapacitors, highlighting the pivotal role of SiC nanostructures and porous architectures in enhancing specific capacitance and cycling stability. A deep dive into SiC-based composite materials, such as SiC/carbon composites and SiC/metal oxide hybrids, is also included, showcasing their potential to elevate energy density and cycling stability. Finally, the paper outlines prospective research directions aimed at surmounting existing challenges and fully harnessing SiC's potential in the development of next-generation supercapacitors.
Collapse
Affiliation(s)
- Yangwen Liu
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Guanghuan Li
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Li Huan
- Department of Library, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
16
|
Wang J, Guo W, Tian K, Li X, Wang X, Li P, Zhang Y, Zhang B, Zhang B, Liu S, Li X, Xu Z, Xu J, Wang H, Hou Y. Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material. NANO-MICRO LETTERS 2023; 16:62. [PMID: 38117409 PMCID: PMC10733265 DOI: 10.1007/s40820-023-01283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
HIGHLIGHTS An air-breathing chemical self-charge concept of oxygen-enriched carbon cathode. The oxygen-enriched carbon material with abundant catechol groups. Rapid air-oxidation chemical self-charge of catechol groups. The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting, conversion and storage without an external power supply. However, most self-charging designs assembled by multiple energy harvesting, conversion and storage materials increase the energy transfer loss; the environmental energy supply is generally limited by climate and meteorological conditions, hindering the potential application of these self-powered devices to be available at all times. Based on aerobic autoxidation of catechol, which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge, we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups. Energy harvesting, conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials. Moreover, the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications. This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Wanchun Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Kesong Tian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Xinta Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Panhua Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Bosen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Biao Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Centre for Engineering Science and Advanced Technology, School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xueai Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Zhaopeng Xu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Junjie Xu
- Xi'an Rare Metal Materials Institute Co. Ltd, Xi'an, 710016, People's Republic of China
| | - Haiyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Centre for Engineering Science and Advanced Technology, School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
17
|
Shrestha D. Applications of functionalized porous carbon from bio-waste of Alnus nepalensis in energy storage devices and industrial wastewater treatment. Heliyon 2023; 9:e21804. [PMID: 38027968 PMCID: PMC10651512 DOI: 10.1016/j.heliyon.2023.e21804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
This research investigates the utility of functionalized porous carbon (FPC), derived from the waste wood of Alnus nepalensis. It demonstrates FPC's dual suitability as a versatile component for energy storage systems, specifically supercapacitors, and its impressive capacity to adsorb malachite green (MG) dye from industrial wastewater. The synthesis of FPC occurred through a controlled two-step process: initial activation of wood powder with H3PO4, followed by carbonization at 400 °C for 3 h in a tube furnace. To comprehensively evaluate the material's attributes, multiple analytical methods were employed: Brunauer-Emmet-Teller (BET) analysis, Transmission Electron Microscopy (TEM) imaging, X-ray Diffraction (XRD) analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. The prepared FPC exhibited desirable characteristics essential for achieving electrochemical performances and adsorption of dyes as well. TEM revealed voids within the material's structure, while BET confirmed high porosity with an active surface area of 1498 m2/g, a pore volume of 1.2 cm³/g, and a pore size of 4.6 nm featuring a harmonious presence of both micropores and mesopores. XRD and Raman spectroscopy confirmed FPC's amorphous state, and FTIR indicated oxygenated functional groups. As a supercapacitor electrode material, FPC demonstrated a specific capacitance of 156.3 F/g at 1A/g current density, an energy density of 5.1 Wh/Kg, a power density of 183.6 W/kg, and enduring cycling stability, retaining 98.4 % performance after 1000 charge-discharge cycles at 3A/g current density. In terms of dye adsorption, FPC exhibited remarkable efficiency. At a pH of 10.5 for MG dye, 0.030g of FPC displayed peak adsorption capacity, removing 95.6 % of 20 ppm MG within 2 min and an even more impressive 99.6 % within 6 min. These findings confirm FPC's potential from Alnus nepalensis as an outstanding supercapacitor electrode material and a rapid, efficient adsorbent for MG removal from industrial wastewater. This research suggests promising applications in energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dibyashree Shrestha
- Department of Chemistry, Patan Multiple Campus, Tribhuvan University, Lalitpur, 44613, Nepal
| |
Collapse
|
18
|
Han P, Tofangchi A, Carr D, Zhang S, Hsu K. Enhancing the Piezoelectric Properties of 3D Printed PVDF Using Concurrent Torsional Shear Strain. Polymers (Basel) 2023; 15:4204. [PMID: 37959883 PMCID: PMC10647440 DOI: 10.3390/polym15214204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Extrusion-based polymer 3D printing induces shear strains within the material, influencing its rheological and mechanical properties. In materials like polyvinylidene difluoride (PVDF), these strains stretch polymer chains, leading to increased crystallinity and improved piezoelectric properties. This study demonstrates a 400% enhancement in the piezoelectric property of extrusion-printed PVDF by introducing additional shear strains during the printing process. The continuous torsional shear strains, imposed via a rotating extrusion nozzle, results in additional crystalline β-phases, directly impacting the piezoelectric behavior of the printed parts. The effect of the nozzle's rotational speed on the amount of β-phase formation is characterized using FTIR. This research introduces a new direction in the development of polymer and composite 3D printing, where in-process shear strains are used to control the alignment of polymer chains and/or in-fill phases and the overall properties of printed parts.
Collapse
Affiliation(s)
- Pu Han
- Ira A Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85212, USA;
| | - Alireza Tofangchi
- J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40208, USA
| | - Derek Carr
- J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40208, USA
| | - Sihan Zhang
- J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40208, USA
| | - Keng Hsu
- Ira A Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85212, USA;
| |
Collapse
|
19
|
Song Z, Wang B, Zhang Z, Yu Y, Lin D. A Highly Flexible Piezoelectric Ultrasonic Sensor for Wearable Bone Density Testing. MICROMACHINES 2023; 14:1798. [PMID: 37763961 PMCID: PMC10535184 DOI: 10.3390/mi14091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Driven by the loss of bone calcium, the elderly are prone to osteoporosis, and regular routine checks on bone status are necessary, which mainly rely on bone testing equipment. Therefore, wearable real-time healthcare devices have become a research hotspot. Herein, we designed a high-performance flexible ultrasonic bone testing system using axial transmission technology based on quantitative ultrasound theory. First, a new rare-earth-element-doped PMN-PZT piezoelectric ceramic was synthesized using a solid-state reaction, and characterized by X-ray diffraction and SEM. Both a high piezoelectric coefficient d33 = 525 pC/N and electromechanical coupling factors of k33 = 0.77, kt = 0.58 and kp = 0.63 were achieved in 1%La/Sm-doped 0.17 PMN-0.47 PZ-0.36 PT ceramics. Combining a flexible PDMS substrate with an ultrasonic array, a flexible hardware circuit was designed which includes a pulse excitation module, ultrasound array module, amplification module, filter module, digital-to-analog conversion module and wireless transmission module, showing high power transfer efficiency and power intensity with values of 35% and 55.4 mW/cm2, respectively. Finally, the humerus, femur and fibula were examined by the flexible device attached to the skin, and the bone condition was displayed in real time on the mobile client, which indicates the potential clinical application of this device in the field of wearable healthcare.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Automation and Robotics Engineering, School of Automation, Wuxi University, Wuxi 214105, China;
| | - Bozhi Wang
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Zhuo Zhang
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Yirong Yu
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Dabin Lin
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| |
Collapse
|
20
|
Rabia M, Elsayed AM, Abdallah Alnuwaiser M, Abdelazeez AAA. Ag 2S-Ag 2O-Ag/poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two-Electrode Symmetric Supercapacitor: Tested in Acidic and Basic Mediums. MICROMACHINES 2023; 14:1423. [PMID: 37512734 PMCID: PMC10383204 DOI: 10.3390/mi14071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared using the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor applications, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor has great performance that appeared through the charge time in an acid medium in comparison to the basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis further confirmed the excellent performance of the supercapacitor material, as indicated by the large area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g) were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg-1 in the acidic and basic mediums, correspondingly. The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and 6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to the progress of supercapacitor technology through a prototype design soon.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asmaa M Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
21
|
Rabia M, Elsayed AM, Salem AM, Abdallah Alnuwaiser M. Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial. MICROMACHINES 2023; 14:1424. [PMID: 37512735 PMCID: PMC10386695 DOI: 10.3390/mi14071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal candidate for use as a pseudo supercapacitor. To enhance the capacitance behavior, a porous ball structure polypyrrole (PB-Ppy) was incorporated into the nanocomposite. When tested at 0.2 A/g, the capacitance values of the R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy were found to be 19.6 F/g and 92 F/g, respectively, indicating a significant increase in capacitance due to the addition of PB-Ppy. The energy density was also found to increase from 1.18 Wh.kg-1 for R-GO/P2ABT-ML to 5.43 Wh.kg-1 for R-GO/P2ABT-ML/PB-Ppy. The stability of the supercapacitor was found to be significantly enhanced by the addition of PB-Ppy. The retention coefficients at 100 and 500 charge cycles for R-GO/P2ABT-ML/PB-Ppy were 95.6% and 85.0%, respectively, compared to 89% and 71% for R-GO/P2ABT-ML without PB-Ppy. Given the low cost, mass production capability, and easy fabrication process of this pseudo capacitor, it holds great potential for commercial applications. Therefore, a prototype of this supercapacitor can be expected to be synthesized soon.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asmaa M Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M Salem
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
22
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
23
|
Chettiannan B, Srinivasan AK, Arumugam G, Shajahan S, Haija MA, Rajendran R. Incorporation of α-MnO 2 Nanoflowers into Zinc-Terephthalate Metal-Organic Frameworks for High-Performance Asymmetric Supercapacitors. ACS OMEGA 2023; 8:6982-6993. [PMID: 36844521 PMCID: PMC9948164 DOI: 10.1021/acsomega.2c07808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the synthesis of α-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure α-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.
Collapse
Affiliation(s)
- Balaji Chettiannan
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Gowdhaman Arumugam
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box,
127788, Abu Dhabi 127788, United Arab Emirates
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
24
|
A new cadmium oxide (CdO) and copper selenide (CuSe) nanocomposite: An energy-efficient electrode for wide-voltage hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Rabia M, Essam D, Alkallas FH, Shaban M, Elaissi S, Ben Gouider Trabelsi A. Flower-Shaped CoS-Co 2O 3/G-C3N4 Nanocomposite for Two-Symmetric-Electrodes Supercapacitor of High Capacitance Efficiency Examined in Basic and Acidic Mediums. MICROMACHINES 2022; 13:2234. [PMID: 36557533 PMCID: PMC9787701 DOI: 10.3390/mi13122234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Graphitic carbon nitride (G-C3N4) was synthesized through the direct combustion of urea in the air. The CoS-Co2O3/G-C3N4 composite was synthesized via the hydrothermal method of G-C3N4 using cobalt salts. The morphological and chemical structures were determined through XRD, XPS, SEM, and TEM. XRD and XPS analyses confirmed the chemical structure, function groups, and elements percentage of the prepared nanocomposite. SEM measurements illustrated the formation of G-C3N4 sheets, as well as the flower shape of the CoS-Co2O3/G-C3N4 composite, evidenced through the formation of nano appendages over G-C3N4 sheets. TEM confirmed the 2D nanosheets of G-C3N4 with an average width and length of 80 nm and 170 nm, respectively. Two symmetric electrodes for the supercapacitor from the CoS-Co2O3/G-C3N4 composite. Electrochemical measurements were carried out to determine the charge/discharge, cyclic voltammetry, stability, and impedance of the prepared supercapacitor. The measurements were carried out under acid (0.5 M HCL) and basic (6.0 M NaOH) mediums. The charge and discharge lifetime values in the acid and base medium were 85 and 456 s, respectively. The cyclic voltammetry behavior was rectangular in a base medium for the pseudocapacitance feature. The supercapacitor had 100% stability retention up to 600 cycles; then, the stability decreased to 98.5% after 1000 cycles. The supercapacitor displayed a specific capacitance (CS) of 361 and 92 F/g, and an energy density equal to 28.7 and 30.2 W h kg-1 in the basic and acidic mediums, respectively. Our findings demonstrate the capabilities of supercapacitors to become an alternative solution to batteries, owing to their easy and low-cost manufacturing technique.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Doaa Essam
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samira Elaissi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
26
|
Fang T, Liu H, Luo X, Gong N, Sun M, Peng W, Li Y, Zhang F, Fan X. Accommodation of Two-Dimensional SiO x in a Point-to-Plane Conductive Network Composed of Graphene and Nitrogen-Doped Carbon for Robust Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53658-53666. [PMID: 36400752 DOI: 10.1021/acsami.2c13824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silicon oxides (SiOx) are one of the most promising anode materials for next-generation lithium-ion batteries owing to their abundant reserve and low lost and high reversible capacity. However, the practical application of SiOx is still hindered by their intrinsically low conductivity and huge volume change. In this regard, we design a novel anode material in which sheet-like SiOx nanosheets are encapsulated in a unique point-to-plane conductive network composed of graphene flakes and nitrogen-doped carbon spheres. This unique composite structure demonstrates high specific capacity (867.7 mAh g-1 at 0.1 A g-1), superior rate performance, and stable cycle life. The electrode delivers a superior reversible discharge capacity of 595.8 mAh g-1 after 200 cycles at 1.0 A g-1 and 287.5 mAh g-1 after 500 cycles at 5.0 A g-1. This work may shed light on the rational design of SiOx-based anode materials for next-generation high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Tiantian Fang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xinyu Luo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Ning Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Mengru Sun
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - WenChao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang312300, China
| |
Collapse
|
27
|
Trabelsi ABG, Essam D, H. Alkallas F, M. Ahmed A, Rabia M. Petal-like NiS-NiO/G-C3N4 Nanocomposite for High-Performance Symmetric Supercapacitor. MICROMACHINES 2022; 13:2134. [PMID: 36557433 PMCID: PMC9784817 DOI: 10.3390/mi13122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Graphitic carbon nitride (G-C3N4) and NiS-NiO/G-C3N4 nanocomposite have been synthesized via combustion and hydrothermal techniques, respectively. The chemical and morphological properties of these materials were confirmed using different analytical methods. SEM confirms the formation of G-C3N4 sheets containing additional petal-like shapes of NiS-NiO nanoparticles. The electrochemical testing of NiS-NiO/G-C3N4 symmetric supercapacitors is carried out from 0.6 M HCl electrolyte. Such testing includes charge/discharge, cyclic voltammetry, impedance, and supercapacitor stability. The charge/discharge time reaches 790 s at 0.3 A/g, while the cyclic voltammetry curve forms under a high surface area. The produced specific capacitance (CS) and energy density values are 766 F/g and 23.55 W.h.kg-1, correspondingly.
Collapse
Affiliation(s)
- Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Essam
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashour M. Ahmed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
28
|
Liu S, Zeng T, Zhang Y, Wan Q, Yang N. Coupling W 18 O 49 /Ti 3 C 2 T x MXene Pseudocapacitive Electrodes with Redox Electrolytes to Construct High-Performance Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204829. [PMID: 36344426 DOI: 10.1002/smll.202204829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
A pseudocapacitive electrode with a large surface area is critical for the construction of a high-performance supercapacitor. A 3D and interconnected network composed of W18 O49 nanoflowers and Ti3 C2 Tx MXene nanosheets is thus synthesized using an electrostatic attraction strategy. This composite effectively prevents the restacking of Ti3 C2 Tx MXene nanosheets and meanwhile sufficiently exposes electrochemically active sites of W18 O49 nanoflowers. Namely, this self-assembled composite owns abundant oxygen vacancies from W18 O49 nanoflowers and enough active sites from Ti3 C2 Tx MXene nanosheets. As a pseudocapacitive electrode, it shows a big specific capacitance, superior rate capability and good cycle stability. A quasi-solid-state asymmetric supercapacitor (ASC) is then fabricated using this pseudocapacitive anode and the cathode of activated carbon coupled with a redox electrolyte of FeBr3 . This ASC displays a cell voltage of 1.8 V, a capacitance of 101 F g-1 at a current density of 1 A g-1 , a maximum energy density of 45.4 Wh kg-1 at a power density of 900 W kg-1 , and a maximum power density of 18 000 W kg-1 at an energy density of 10.8 Wh kg-1 . The proposed strategies are promising to synthesize different pseudocapacitive electrodes as well as to fabricate high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Ting Zeng
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
29
|
Ma H, Cheng P, Chen C, Geng X, Yang K, Lv F, Ma J, Jiang Y, Liu Q, Su Y, Li J, Zhu N. Highly Selective Wearable Alcohol Homologue Sensors Derived from Pt-Coated Truncated Octahedron Au. ACS Sens 2022; 7:3067-3076. [PMID: 36173279 DOI: 10.1021/acssensors.2c01392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peihao Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaizhou Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jian Li
- Center for Reproductive Medicine, Dalian Women and Children's Medical Center (Group), Dalian 116037, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
30
|
High-performance piezoelectric composites via β phase programming. Nat Commun 2022; 13:4867. [PMID: 35982033 PMCID: PMC9388583 DOI: 10.1038/s41467-022-32518-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a Ti3C2Tx MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix. Employing phase-field simulation and molecular dynamics calculations, we show that OH surface terminations on the Ti3C2Tx nanosheets offer hydrogen bonding with the fluoropolymer matrix, leading to dipole alignment and enhanced net spontaneous polarization of the polymer-ceramic composites. We then translated this interfacial bonding strategy into electrospinning to boost the piezoelectric response of samarium doped Pb (Mg1/3Nb2/3)O3-PbTiO3/polyvinylidene fluoride composite nanofibers by 160% via Ti3C2Tx nanosheets inclusion. With excellent piezoelectric and mechanical attributes, the as-electrospun piezoelectric nanofibers can be easily integrated into the conventional shoe insoles to form a foot sensor network for all-around gait patterns monitoring, walking habits identification and Metatarsalgi prognosis. This work utilizes the interfacial coupling mechanism of intermolecular anchoring as a strategy to develop high-performance piezoelectric composites for wearable electronics.
Collapse
|
31
|
Sheng Z, Lin X, Zhao Y, Huang L, Gao H, Wei H, Wang C, Xu D, Wang Y. Facile and Controllable Synthesis of CuS@Ni-Co Layered Double Hydroxide Nanocages for Hybrid Supercapacitors. ACS OMEGA 2022; 7:27703-27713. [PMID: 35967029 PMCID: PMC9366966 DOI: 10.1021/acsomega.2c03511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of battery-type electrode materials with hollow nanostructures for high-performance hybrid supercapacitors (HSCs) remains challenging. In this study, hollow CuS@Ni-Co layered double hydroxide (CuS-LDH) composites with distinguished compositions and structures are successfully synthesized by co-precipitation and the subsequent etching/ion-exchange reaction. CuS-LDH-10 with uniformly dispersed CuS prepared with the addition of 10 mg of CuS shows a unique hollow polyhedral structure constituted by loose nanosphere units, and these nanospheres are composed of interlaced fine nanosheets. The composite prepared with 30 mg of CuS addition (CuS-LDH-30) is composed of a hollow cubic morphology with vertically aligned nanosheets on the CuS shell. The CuS-LDH-10 and CuS-LDH-30 electrodes exhibit high specific capacity (765.1 and 659.6 C g-1 at 1 A g-1, respectively) and superior cycling performance. Additionally, the fabricated HSC delivers a prominent energy density of 52.7 Wh kg-1 at 804.5 W kg-1 and superior cycling performance of 87.9% capacity retention after 5000 cycles. Such work offers a practical and effortless route for synthesizing unique metal sulfide/hydroxide composite electrode materials with hollow structures for high-performance HSCs.
Collapse
|
32
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
33
|
Li L, Liu B, Hou S, Yang Q, Zhu Z. Preparation of bulk doped NiCo 2O 4 bimetallic oxide supercapacitor materials by in situ growth method. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ling Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, PR China
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, PR China
| | - Shaogang Hou
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, PR China
| | - Qiming Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, PR China
| | - Zichuang Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, PR China
| |
Collapse
|
34
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
35
|
Nardekar SS, Krishnamoorthy K, Manoharan S, Pazhamalai P, Kim SJ. Two Faces Under a Hood: Unravelling the Energy Harnessing and Storage Properties of 1T-MoS 2 Quantum Sheets for Next-Generation Stand-Alone Energy Systems. ACS NANO 2022; 16:3723-3734. [PMID: 35138806 DOI: 10.1021/acsnano.1c07311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The two-dimensional 1T-MoS2 quantum sheets (QSs) continuously seek attention due to their extraordinary energy harnessing and storage properties towards designing an all-in-one self-charging power system (SCPS). Herein, we have utilized the superior dual-functional nature of exfoliated MoS2 QSs for SCPS via fabricating all-solid-state microsupercapacitors (MSC) as an energy storage device and triboelectric nanogenerator (TENG) with MoS2 QSs based charge-trapping interfacial layer as the energy harvester. The electrochemical analysis of MoS2 QSs MSC indicated their superior capacitive properties with a high areal capacitance (4.3 mF cm-2), energy density (0.38 μWh cm-2), and long cycle life. Furthermore, we emphasize the fabrication of MSC with shape diversity and performance uniformity via construction in several designable shapes, which exhibit superior electrochemical performances. The MoS2 QSs based charge-trapping layer enhances the output performance of TENG dramatically with a peak power density as large as 10 μW cm-2, which is 13-fold greater than that of the pristine TENG. As proof of the concept, we fabricated an all MoS2 based SCPS which showed their ability to self-charge up to a maximum of 1050 mV, outperforming many SCPS reported previously. Overall, this work creates a way to utilize the bifunctional properties of MoS2 QSs for the development of next-generation SCPS.
Collapse
Affiliation(s)
- Swapnil Shital Nardekar
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, South Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, South Korea
| | - Sindhuja Manoharan
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, South Korea
| | - Parthiban Pazhamalai
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, South Korea
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju 63243, South Korea
- Research Institute of Energy New Industry, Jeju National University, Jeju 63243, South Korea
| |
Collapse
|
36
|
Atun G, Şahin F, Türker Acar E, Ortaboy S. Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cobalt, nickel, and their mixed hydroxides were electrochemically deposited on polythiophene-coated carbon-cloth substrate to develop new pseudo-capacitive electrodes for energy storage devices. Thiophene was electro-polymerized on carbon-cloth by the potentiodynamic method in acetonitrile containing 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ionic-liquid as supporting electrolyte. The scanning-electron-microscopy images imply that flower-like Co(OH)2 microstructures deposited on bamboo-like polythiophene coatings on carbon-fibers but they are covered by net curtain like thin Ni(OH)2 layer. The Co-Ni layered-double-hydroxide deposited from their equimolar sulfate solutions is composed of large aggregates. The electron-dispersive-spectrum exhibits that Co/Ni ratio equals unity in the layered-double-hydroxide. The capacitances of Co, Ni, and Co-Ni hydroxide-coated PTh electrodes are 100, 569, and 221 F/g at 5 mA/cm2 in 1 M KOH solution, respectively. Their corresponding oxides obtained by calcination at 450 °C in de-aerated medium possess higher capacitance up to 911, 643, and 696 F/g at 2 A/cm2. The shape of cyclic-voltammetry and galvanostatic-charge-discharge curves, as well as the Nyquist plots derived from electrochemical-impedance-spectroscopy measurements, reveal that hydroxide coatings on the polythiophene-coated carbon-cloth are more promising electrode materials for supercapacitor applications. The mixed hydroxide-coated electrode shows good cyclic stability of 100% after 400 cycles at 5 mA/cm2.
Collapse
Affiliation(s)
- Gülten Atun
- Department of Chemistry , Engineering Faculty, Istanbul University-Cerrahpaşa , 34320 Avcılar , Istanbul , Turkey
| | - Filiz Şahin
- Department of Chemistry , Engineering Faculty, Istanbul University-Cerrahpaşa , 34320 Avcılar , Istanbul , Turkey
| | - Elif Türker Acar
- Department of Chemistry , Engineering Faculty, Istanbul University-Cerrahpaşa , 34320 Avcılar , Istanbul , Turkey
| | - Sinem Ortaboy
- Department of Chemistry , Engineering Faculty, Istanbul University-Cerrahpaşa , 34320 Avcılar , Istanbul , Turkey
| |
Collapse
|
37
|
Synergistic effect of two complexing agents on the hydrothermal synthesis of self-supported ZnNiCo oxide as electrode material in supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D Materials for Skin-Mountable Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005858. [PMID: 33998064 DOI: 10.1002/adma.202005858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Skin-mountable devices that can directly measure various biosignals and external stimuli and communicate the information to the users have been actively studied owing to increasing demand for wearable electronics and newer healthcare systems. Research on skin-mountable devices is mainly focused on those materials and mechanical design aspects that satisfy the device fabrication requirements on unusual substrates like skin and also for achieving good sensing capabilities and stable device operation in high-strain conditions. 2D materials that are atomically thin and possess unique electrical and optical properties offer several important features that can address the challenging needs in wearable, skin-mountable electronic devices. Herein, recent research progress on skin-mountable devices based on 2D materials that exhibit a variety of device functions including information input and output and in vitro and in vivo healthcare and diagnosis is reviewed. The challenges, potential solutions, and perspectives on trends for future work are also discussed.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yongjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minpyo Kang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songfang Zhao
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
39
|
Guo Q, Liu J, Bai C, Chen N, Qu L. 2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. ACS NANO 2021; 15:16533-16541. [PMID: 34636546 DOI: 10.1021/acsnano.1c06104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supercapacitors possessing fast-charging characteristics and long lifespan are becoming increasingly important for powering portable and smart energy storage devices, and combining capacitive and battery-type materials into an integrated device is an effective method for increasing the overall performance of capacitors. Silicene is being designed as a cathode for the development of enhanced capacitance and ultra-cycle stable zinc-ion hybrid capacitors. Possessing a maximum areal capacity of 14 mF cm-2, a maximum power density of 9 mW cm-2, capacitance retention of 112% even after 10 000 cycles, and an unexpectedly high energy density of 23 mJ cm-2, this achievement of the zinc-ion hybrid capacitor would be superior to that of previously reported silicon-based supercapacitors. The DFT calculations further reveal that Zn ions dominate the capacitive behavior of the silicene electrode. The support association between silicene and zinc-ion hybrid capacitors so that they can take advantage of each other's strengths, which takes electrochemical energy technology to a stage, offering a straightforward proposal for integration and implementation of silicon-based materials.
Collapse
Affiliation(s)
- Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jingjing Liu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
| | - Congcong Bai
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Wang F, Zhang P, Wang G, Nia AS, Yu M, Feng X. Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| | - Panpan Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| | - Gang Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 Dresden 01069 Germany
| |
Collapse
|
41
|
Sun X, Yang P, Wang S, Jin C, Ren M, Xing H. Fabrication of Nanoflower-like MCoP (M = Fe and Ni) Composites for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10403-10412. [PMID: 34436907 DOI: 10.1021/acs.langmuir.1c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elaborating the development of functional materials with excellent performance for supercapacitors is important in energy storage devices. In the present study, nanoflower-like MCoP (M = Ni and Fe) composites were successfully fabricated on Ni foam (denoted as NF@MCoP) by a cost-effective hydrothermal and low-temperature phosphating method. Simultaneously, the unique three-dimensional structure, nanoflower morphology, and the conductive substrate provide a favorable large electroactive area, shorter electron transfer distance, and rapid electron conductivity. The as-synthesized nanoflower-like MCoP composites exhibit outstanding energy density, power density, and long-term cycling stability. These results show that the developed electrode materials with excellent performance have great application prospects in the field of supercapacitor applications.
Collapse
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Ping Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Shaohua Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Congcong Jin
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Menglei Ren
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Honglong Xing
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| |
Collapse
|
42
|
Zhang Y, Jeong CK, Wang J, Chen X, Choi KH, Chen LQ, Chen W, Zhang QM, Wang Q. Hydrogel Ionic Diodes toward Harvesting Ultralow-Frequency Mechanical Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103056. [PMID: 34302386 DOI: 10.1002/adma.202103056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 05/10/2023]
Abstract
Energy harvesting from human motion is regarded as a promising protocol for powering portable electronics, biomedical devices, and smart objects of the Internet of things. However, state-of-the-art mechanical-energy-harvesting devices generally operate at frequencies (>10 Hz) well beyond human activity frequencies. Here, a hydrogel ionic diode formed by the layered structures of anionic and cationic ionomers in hydrogels is presented. As confirmed by finite element analysis, the underlying mechanism of the hydrogel ionic diode involves the formation of the depletion region by mobile cations and anions and the subsequent increase of the built-in potential across the depletion region in response to mechanical pressure. Owing to the enhanced ionic rectification ratio by the embedded carbon nanotube and silver nanowire electrodes, the hydrogel ionic diode exhibits a power density of ≈5 mW cm-2 and a charge density of ≈4 mC cm-2 at 0.01 Hz, outperforming the current energy-harvesting devices by several orders of magnitude. The applications of the self-powered hydrogel ionic diode to tactile sensing, pressure imaging, and touchpads are demonstrated, with sensing limitation is as low as 0.01 kPa. This work is expected to open up new opportunities for ionic-current-based ionotronics in electronics and energy devices.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chang Kyu Jeong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Division of Advanced Materials Engineering, Department of Energy Storage/Conversion Engineering of Graduate School & Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Jianjun Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kyoung Hwan Choi
- Energy Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, Gyeonggi, 16676, Republic of Korea
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wen Chen
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Q M Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
43
|
Mariappan VK, Krishnamoorthy K, Manoharan S, Pazhamalai P, Kim SJ. Electrospun Polymer-Derived Carbyne Supercapacitor for Alternating Current Line Filtering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102971. [PMID: 34270870 DOI: 10.1002/smll.202102971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The filtering device is a vital component of electronic goods that rectifies ripples which occur upon converting alternating current (AC) to direct current (DC) and attenuates high-frequency noise during switching or voltage declines. Classical filtering devices suffer from low performance metrics and are bulky, limiting their use in modern electronic devices. The fabrication process of electrode materials for high-frequency symmetric supercapacitor (HFSSC) is complicated, hindering commercialization. Herein, for the first time, the design of a high-performance stand-alone carbyne film comprised of sp/sp2 -hybridized carbon as an electrode for AC filtering under a wide frequency range is reported. The carbyne film as HFSSC shows the ideal capacitive behavior at ultrahigh scan rate of 10 000 V s-1 with excellent linearity which is top among the reported AC line filter capacitor. The carbyne HFSSC exhibits a high energy density of 703.25 µF V2 cm-2 at 120 Hz, which is superior to that of current commercial electrolytic filters and many reported AC line supercapacitors. As a proof of concept, a carbyne device is implemented in a real time AC to DC adaptor that demonstrates excellent filtering performance at high frequencies.
Collapse
Affiliation(s)
- Vimal Kumar Mariappan
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sindhuja Manoharan
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Parthiban Pazhamalai
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang-Jae Kim
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
- Semiconductor & Display Research Center, Jeju National University, Jeju, 63243, Republic of Korea
- Research Institute of Advanced Technology, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
44
|
Sultana QN, Khan M, Mahamud R, Saadatzi M, Sultana P, Farouk T, Quirino R, Banerjee S. Fabrication and Characterization of Non-Equilibrium Plasma-Treated PVDF Nanofiber Membrane-Based Sensors. SENSORS 2021; 21:s21124179. [PMID: 34207088 PMCID: PMC8233957 DOI: 10.3390/s21124179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
The effect of a self-pulsing non-equilibrium plasma discharge on piezoelectric PVDF nanofiber membrane was investigated. The plasma discharge was generated in air with a DC power source, with a discharge current of 0.012 mA, a nominal interelectrode separation of 1 mm, and discharge voltage of ~970 V. In a continuous fabrication process, the electrospinning method was used to generate thin nanofiber membrane with a flow rate of 0.7-1 mL h-1 and 25-27 kV voltage to obtain the nanofiber with high sensitivity and a higher degree of alignment and uniformity over a larger area. Plasma treatment was applied on both single layer and multi-layer (three layers) nanomembranes. In addition, simultaneously, the nanofiber membranes were heat-treated at a glass transition temperature (80-120 °C) and then underwent plasma treatment. Fourier-transform infrared (FTIR) spectroscopy showed that the area under the curve at 840 and 1272 cm-1 (β phase) increased due to the application of plasma and differential scanning calorimeter (DSC) indicated an increase in the degree of crystallinity. Finally, PVDF sensors were fabricated from the nanofibers and their piezoelectric properties were characterized. The results suggested that compared to the pristine samples the piezoelectric properties in the plasma and plasma-heat-treated sensors were enhanced by 70% and 85% respectively.
Collapse
Affiliation(s)
- Quazi Nahida Sultana
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA; (Q.N.S.); (P.S.)
| | - Mujibur Khan
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA; (Q.N.S.); (P.S.)
- Correspondence:
| | - Rajib Mahamud
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (R.M.); (M.S.); (T.F.); (S.B.)
| | - Mohammadsadegh Saadatzi
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (R.M.); (M.S.); (T.F.); (S.B.)
| | - Papia Sultana
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA; (Q.N.S.); (P.S.)
| | - Tanvir Farouk
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (R.M.); (M.S.); (T.F.); (S.B.)
| | - Rafael Quirino
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA;
| | - Sourav Banerjee
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (R.M.); (M.S.); (T.F.); (S.B.)
| |
Collapse
|
45
|
Laser assisted anchoring of cadmium sulfide nanospheres into tungsten oxide nanosheets for enhanced photocatalytic and electrochemical energy storage applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Hasan MAM, Wang Y, Bowen CR, Yang Y. 2D Nanomaterials for Effective Energy Scavenging. NANO-MICRO LETTERS 2021; 13:82. [PMID: 34138309 PMCID: PMC8006560 DOI: 10.1007/s40820-021-00603-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 05/26/2023]
Abstract
The development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.
Collapse
Affiliation(s)
- Md Al Mahadi Hasan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yuanhao Wang
- SUSTech Engineering Innovation Center, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA27AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
47
|
Kesavan D, Mariappan VK, Pazhamalai P, Krishnamoorthy K, Kim SJ. Topochemically synthesized MoS 2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors. J Colloid Interface Sci 2021; 584:714-722. [PMID: 33268065 DOI: 10.1016/j.jcis.2020.09.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023]
Abstract
This work describes the formation of two-dimensional molybdenum di-sulfide (MoS2) nanosheets via topochemical sulfurization of MoO3 microplates and its applications towards wide-temperature tolerant supercapacitors. Physico-chemical characterizations such as XRD, FE-SEM, HR-TEM, XPS and elemental mapping analysis revealed the formation of MoS2 nanosheets with lateral size in the range of 200 nm. The electrochemical properties of the MoS2 electrode using three-electrode configuration tests revealed the presence of pseudocapacitive mechanism of charge-storage with a high capacitance (119.38 F g-1) from cyclic voltammetry profiles and superior cyclic stability of 95.1% over 2000 cycles. The symmetric supercapacitor (SSC) fabricated using MoS2 electrodes delivered a high-energy density (6.56 Wh kg-1) and high-power density (2500 W kg-1) with long cycle life. The electrochemical performance of the MoS2 SSC exhibited ~121% improvement at 80 °C compared to that achieved at 20 °C and the mechanism of improved properties were examined with the use of electrochemical impedance spectroscopy. These experimental results indicate usefulness of topochemically synthesized MoS2 for construction of wide-temperature tolerant supercapacitors that can be useful in a variety of industrial sectors.
Collapse
Affiliation(s)
- Dhanasekar Kesavan
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea
| | - Vimal Kumar Mariappan
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea
| | - Parthiban Pazhamalai
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Jae Kim
- Nanomaterials and System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea; Department of Advanced Convergence Science and Technology, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
48
|
Zhai Y, Xin G, Wang J, Zhang B, Song J, Liu X. Microwave-assisted Synthesis of rGO/CeO 2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhang S, Li Z, Huang P, Lu Y, Wang P. Silica Nanoparticles Reinforced Ionogel as Nonvolatile and Stretchable Conductors. MEMBRANES 2020; 10:membranes10110354. [PMID: 33227897 PMCID: PMC7699213 DOI: 10.3390/membranes10110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Ionogels combine the advantages of being conductive, stretchable, transparent and nonvolatile, which makes them suitable to be applied as conductors for flexible electronic devices. In this paper, a series of ionogels based on 1-ethyl-3-methylimidazolium ethyl-sulfate ([C2mim][EtSO4]) and polyacrylic networks were prepared. Silica nanoparticles (SNPs) were dispersed into the ionogel matrix to enhance its mechanical properties. The thermal, mechanical and electrical properties of the ionogels with various contents of crosslinking agents and SNPs were studied. The results show that a small amount of SNP doping just increases the breaking strain/stress and the nonvolatility of ionogels, as well as maintaining adequate conductivity and a high degree of transparency. Furthermore, the experimental results demonstrate that SNP-reinforced ionogels can be applied as conductors for dielectric elastomer actuators and stretchable wires, as well as for signal transmission.
Collapse
Affiliation(s)
| | - Zhen Li
- Correspondence: (Z.L.); (P.W.)
| | | | | | | |
Collapse
|
50
|
Pu X, Wang ZL. Self-charging power system for distributed energy: beyond the energy storage unit. Chem Sci 2020; 12:34-49. [PMID: 34163582 PMCID: PMC8178954 DOI: 10.1039/d0sc05145d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Power devices for the smart sensor networks of Internet of things (IoT) are required with minimum or even no maintenance due to their enormous quantities and widespread distribution. Self-charging power systems (SCPSs) refer to integrated energy devices with simultaneous energy harvesting, power management and effective energy storage capabilities, which may need no extra battery recharging and can sustainably drive sensors. Herein, we focus on the progress made in the field of nanogenerator-based SCPSs, which harvest mechanical energy using the Maxwell displacement current arising from the variation in the surface-polarized-charge-induced electrical field. Prototypes of different nanogenerator-based SCPSs will be overviewed. Finally, challenges and prospects in this field will be discussed.
Collapse
Affiliation(s)
- Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 China
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University Nanning 530004 China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 China
- CUSPEA Institute of Technology Wenzhou Zhejiang 325024 China
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0245 USA
| |
Collapse
|