1
|
Rijaul SKK, Maity N, Konar A, Hazra S. Topical Dexamethasone Counters Intravitreal Ivermectin-Induced Ocular Toxicity in a Rabbit Model. Curr Eye Res 2024; 49:750-758. [PMID: 38501588 DOI: 10.1080/02713683.2024.2330520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Systemic use of Ivermectin has been reported to incite blindness in humans and veterinary patients. This study was designed to investigate the systemic and intravitreal effect of Ivermectin on ocular and retinal health and its attenuation with topical Dexamethasone. METHODS Systemic injection of Ivermectin@ 1.6 mg/kg S/C was administered, thrice a week for three weeks to New Zealand White rabbits (N = 4) with and without topical drops of Verapamil (N = 4). Pre and post-treatment ocular examination was conducted. At the end of three weeks the eyes were collected for histopathology.0.2 ml of Ivermectin solution (1.6 mg/ml) was injected intravitreally in one eye of the rabbit (N = 8), Half the rabbits received 0.1% dexamethasone drops thrice daily for 7 days, while the controls received PBS. Pre and post-treatment, detailed examination was conducted, which included the Schirmer Tear test, Fluorescein staining, Intraocular pressure, slit lamp biomicroscopy and fundus photography. The retina was harvested for histopathological and tunnel assay. RESULTS Systemic therapy with Ivermectin, with and without Verapamil did not incite any adverse response in the eye. Intravitreal Ivermectin evoked severe uveitis 4/4, cataract 3/4, corneal erosion 3/4 eyes and severe inflammatory response. Eyes that received dexamethasone were rescued from the adverse changes as demonstrated clinically, by histopathology and prevention of apoptosis. CONCLUSIONS Intravitreal Ivermectin incites severe inflammatory response. Topical dexamethasone counters the ocular toxicity incited by Ivermectin.
Collapse
Affiliation(s)
- S K K Rijaul
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Namrata Maity
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | | | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
2
|
Wolbachia depletion blocks transmission of lymphatic filariasis by preventing chitinase-dependent parasite exsheathment. Proc Natl Acad Sci U S A 2022; 119:e2120003119. [PMID: 35377795 PMCID: PMC9169722 DOI: 10.1073/pnas.2120003119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.
Collapse
|
3
|
Clark J, Stolk WA, Basáñez MG, Coffeng LE, Cucunubá ZM, Dixon MA, Dyson L, Hampson K, Marks M, Medley GF, Pollington TM, Prada JM, Rock KS, Salje H, Toor J, Hollingsworth TD. How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Res 2022; 5:112. [PMID: 35169682 PMCID: PMC8816801 DOI: 10.12688/gatesopenres.13327.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials.
Collapse
Affiliation(s)
- Jessica Clark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Zulma M. Cucunubá
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Matthew A. Dixon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
| | - Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Timothy M. Pollington
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Joaquin M. Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| |
Collapse
|
4
|
Clark J, Stolk WA, Basáñez MG, Coffeng LE, Cucunubá ZM, Dixon MA, Dyson L, Hampson K, Marks M, Medley GF, Pollington TM, Prada JM, Rock KS, Salje H, Toor J, Hollingsworth TD. How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Res 2021; 5:112. [PMID: 35169682 PMCID: PMC8816801 DOI: 10.12688/gatesopenres.13327.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials.
Collapse
Affiliation(s)
- Jessica Clark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Zulma M. Cucunubá
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Matthew A. Dixon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
| | - Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Timothy M. Pollington
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Joaquin M. Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| |
Collapse
|
5
|
Walker M, Hamley JID, Milton P, Monnot F, Kinrade S, Specht S, Pedrique B, Basáñez MG. Supporting drug development for neglected tropical diseases using mathematical modelling. Clin Infect Dis 2021; 73:e1391-e1396. [PMID: 33893482 PMCID: PMC8442785 DOI: 10.1093/cid/ciab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
Drug-based interventions are at the heart of global efforts to reach elimination as a public health problem (trachoma, soil-transmitted helminthiases, schistosomiasis, lymphatic filariasis) or elimination of transmission (onchocerciasis) for 5 of the most prevalent neglected tropical diseases tackled via the World Health Organization preventive chemotherapy strategy. While for some of these diseases there is optimism that currently available drugs will be sufficient to achieve the proposed elimination goals, for others—particularly onchocerciasis—there is a growing consensus that novel therapeutic options will be needed. Since in this area no high return of investment is possible, minimizing wasted money and resources is essential. Here, we use illustrative results to show how mathematical modeling can guide the drug development pathway, yielding resource-saving and efficiency payoffs, from the refinement of target product profiles and intended context of use to the design of clinical trials.
Collapse
Affiliation(s)
- Martin Walker
- Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research, Royal Veterinary College, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Jonathan I D Hamley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Philip Milton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Frédéric Monnot
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Sally Kinrade
- Medicines Development for Global Health, Southbank VIC, Australia
| | - Sabine Specht
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Bélen Pedrique
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Maria-Gloria Basáñez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| |
Collapse
|
6
|
Jawahar S, Tricoche N, Bulman CA, Sakanari J, Lustigman S. Drugs that target early stages of Onchocerca volvulus: A revisited means to facilitate the elimination goals for onchocerciasis. PLoS Negl Trop Dis 2021; 15:e0009064. [PMID: 33600426 PMCID: PMC7891776 DOI: 10.1371/journal.pntd.0009064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of “prophylactic” drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These “prophylactic” drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.
Collapse
Affiliation(s)
- Shabnam Jawahar
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Nancy Tricoche
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Sara Lustigman
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
7
|
Crellen T, Sithithaworn P, Pitaksakulrat O, Khuntikeo N, Medley GF, Hollingsworth TD. Towards Evidence-based Control of Opisthorchis viverrini. Trends Parasitol 2021; 37:370-380. [PMID: 33516657 DOI: 10.1016/j.pt.2020.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 01/21/2023]
Abstract
Transmission of the carcinogenic liver fluke Opisthorchis viverrini is ongoing across Southeast Asia. Endemic countries within the region are in different stages of achieving control. However, evidence on which interventions are the most effective for reducing parasite transmission, and the resulting liver cancer, is currently lacking. Quantitative modelling can be used to evaluate different control measures against O. viverrini and assist the design of clinical trials. In this article we evaluate the epidemiological parameters that underpin models of O. viverrini and the data necessary for their estimation, with the aim of developing evidence-based strategies for parasite control at a national or regional level.
Collapse
Affiliation(s)
- Thomas Crellen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Paiboon Sithithaworn
- Department of Parasitology, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Opal Pitaksakulrat
- Department of Parasitology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Graham F Medley
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|