1
|
Hu C, Liu X, Dan H, Guo C, Zhang M, Bowen CR, Yang Y. Quantifying the pyroelectric and photovoltaic coupling series of ferroelectric films. Nat Commun 2025; 16:828. [PMID: 39827231 PMCID: PMC11742720 DOI: 10.1038/s41467-025-56233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The coupling of photovoltaic and pyroelectric effects is a common phenomenon in ferroelectric films and often results in coupling enhancements. Although the coupling effects of a variety of ferroelectric films have been examined in terms of improved performance, they have yet to be quantitatively ranked and assessed. Here, by taking the charge coupling factor, the Yang's charge, and output energy as metrics to evaluate the coupling performance, a methodology is developed for evaluating the performance of a range ferroelectric films when the pyroelectric and photovoltaic effects are coupled. By experimentally measuring and quantitatively ranking the evaluation metrics, the influence of coupling effects on the output charge and the energy harvesting capabilities of various ferroelectric films can be readily visualized. In addition, the analysis of the underlying reasons for the coupling enhancement enables optimization of the methods to quantify the charge coupling factor. This work provides a unique reference for the selection of materials, optimization of performance, and energy harvesting for coupled ferroelectric film-based generators.
Collapse
Affiliation(s)
- Chaosheng Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Information Science Academy, China Electronics Technology Group Corporation, Beijing, 100042, PR China
| | - Xingyue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huiyu Dan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Chong Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Maoyi Zhang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Claverton Down, BA2 7AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Lin J, Wang H, Zheng Y, Kan Y, Chen R, Long M, Chen Y, Zhou Z, Qi R, Yue F, Duan CG, Chu J, Sun L. Enhanced Bulk Photovoltaic Effect of Single-Domain Freestanding BiFeO 3 Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414113. [PMID: 39600071 DOI: 10.1002/adma.202414113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The bulk photovoltaic effect (BPVE), which uniquely exists in non-centrosymmetric materials, has been received extensive attention recently due to its potential to overcome the theoretical Shockley-Queisser limit in traditional p-n junction solar cells. Here, freestanding single-domain BiFeO3 membranes are exfoliated from miscut SrTiO3 substrates by dissolving Sr3Al2O6 sacrificial layers, and transferred on SiO2/Si substrates. This study finds that the freestanding BiFeO3 membranes maintain the single-domain structure and exhibits the significantly enhanced bulk photovoltaic response (≈200% enhancement), compared to the strained BiFeO3 films. The comprehensive atomic imaging analyses manifest that the freestanding BiFeO3 membrane demonstrates the bigger noncentral ion (Fe) displacement, which results in the larger in-plane ferroelectric polarization and substantial increase in the BPVE photocurrent. This work not only provides an effective approach to enhance the BPVE of ferroelectric oxide films, but also can potentially promote the exploration of BPVE of oxide membranes integrated with silicon-based or 2D electronics.
Collapse
Affiliation(s)
- Jianjun Lin
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Hongru Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Yufan Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Yucheng Kan
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Rui Chen
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Mingyue Long
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ye Chen
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Zhiyong Zhou
- Shanghai Institute of Ceramics, Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Fangyu Yue
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Junhao Chu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
- Institute of Optoelectronics, Fudan University, Shanghai, 200438, China
| | - Lin Sun
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Liu T, Yang C, Si J, Sun W, Su D, Li C, Yuan X, Huang S, Cheng X, Cheng Z. Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414711. [PMID: 39722161 DOI: 10.1002/adma.202414711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO3) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O3 in pMUTs. Despite its potential, the integration of BiFeO3 thin films into pMUTs has been hindered by poling issues. Here, a BiFeO3 heterostructure compositionally downgraded with Gd doping is developed to introduce compressive strain, resulting in strong self-poling. Utilizing a large-area self-poled thin film over an entire 6-inch wafer, a pMUT with a 6 × 6 array at the device level is designed and evaluated. At a resonant frequency of 21 kHz, the dynamic vibration displacement can reach 24.0 nm. At 500 Hz, far below the resonant frequency of 21 kHz, the pMUT also displays sensitive converse piezoelectric response, even at a high temperature of 200 °C. This work represents a significant breakthrough in lead-free BiFeO3 thin film for practical sensing applications, paving the way for the transformation of macro-transducers into next-generation functional microdevices.
Collapse
Affiliation(s)
- Tong Liu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
- Laoshan Laboratory, Qingdao, 266237, China
- MEMS Institute of Zibo National High-tech Development Zone, Zibo, 255000, China
| | - Changhong Yang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Jingxiang Si
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Wei Sun
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Daojian Su
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Chenglong Li
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Xiufang Yuan
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shifeng Huang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
4
|
Ko D, Kim S, Yoon Y, Ma K, Seo I, Kim DH. Transfer of High-Temperature-Sputtered BiFeO 3 Thin Films onto Flexible Substrates Using α-MoO 3 Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402856. [PMID: 39004889 DOI: 10.1002/smll.202402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Inducing external strains on highly oriented thin films transferred onto mechanically deformable substrates enables a drastic enhancement of their ferroelectric, magnetic, and electronic performances, which cannot be achieved in films on rigid single crystals. Herein, the growth and diffusion behaviors of BiFeO3 thin films grown at various temperatures is reported on α-MoO3 layers of different thicknesses using sputtering. When the BiFeO3 thin films are deposited at a high temperature, significant diffusion of Fe into α-MoO3 occurs, producing the Fe1.89Mo4.11O7 phase and suppressing the maintenance of the 2D structure of the α-MoO3 layers. Although lowering the deposition temperature alleviates the diffusion yielding the survival of the α-MoO3 layer, enabling exfoliation, the BiFeO3 is amorphous and the formation of the Fe1.89Mo4.11O7 phase cannot be suppressed at the crystallization temperature. High-temperature-grown BiFeO3 thin films are successfully transferred onto flexible substrates via mechanical exfoliation by introducing a blocking layer of Au and measured the ferroelectric properties of the transferred films.
Collapse
Affiliation(s)
- Dohyun Ko
- Department of Materials Science and Engineering, Myongji University, Yongin, 17058, Republic of Korea
| | - Sanghun Kim
- Department of Materials Science and Engineering, Myongji University, Yongin, 17058, Republic of Korea
| | - Yeomin Yoon
- Department of Materials Science and Engineering, Myongji University, Yongin, 17058, Republic of Korea
| | - Kihyun Ma
- Department of Materials Science and Engineering, Myongji University, Yongin, 17058, Republic of Korea
| | - Intae Seo
- Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Dong Hun Kim
- Department of Materials Science and Engineering, Myongji University, Yongin, 17058, Republic of Korea
| |
Collapse
|
5
|
Wang L, Boda MA, Chen C, He X, Yi Z. Ferroelectric, flexoelectric and photothermal coupling in PVDF-based composites for flexible photoelectric sensors. MATERIALS HORIZONS 2024; 11:5295-5303. [PMID: 39120550 DOI: 10.1039/d4mh00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A ferroelectric polyvinylidene fluoride (PVDF) film with excellent flexibility possesses great potential for photodetection and wearable devices. However, the relatively weak photo-absorption and the consequent small photocurrent limit its photofunctional properties. Herein, we embedded a strongly visible-light active material system, 0.5Ba(Zr0.08Ti0.8Mn0.12)O3-0.5(Ba0.7Ca0.3)TiO3 (BZTM-BCT) loaded with Ag and Au nanoparticles, into a PVDF film, which demonstrates a significantly higher photovoltaic response in the whole visible light range with a β-phase content of over 90%. In a state of "bending + poling", the PVDF/BZTM-BCT:Au film presents an optimal response for photoelectric properties by exhibiting a photocurrent that is 57 times higher than that of a pure PVDF film when illuminated with 405 nm LED light at 100 mW cm-2. Photoexcitation and thermal excitation jointly contribute to the generation of free carriers, while the flexoelectric and ferroelectric coupling electric field provides a greater driving force for carrier separation and transport. More interestingly, composite film-based photoelectric sensors can simultaneously respond to light and the movement and deformation of contacted things, indicating its potential in versatile applications. Overall, this work puts forward a new route for designing new flexible multifunctional photoelectric devices.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Muzaffar Ahmad Boda
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Chen Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xiang He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Zhiguo Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
6
|
Gong L, Taguchi A, Zhou W, Mitsuya R, Ohta H, Katayama T. Ferroelectric BaTiO 3 Freestanding Sheets for an Ultra-High-Speed Light-Driven Actuator. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54146-54153. [PMID: 39327981 DOI: 10.1021/acsami.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Light-driven actuators convert optical energy into physical motion. Organic materials, commonly used in light-driven actuators thus far, suffer from two limitations: slow repetitive operation and the requirement of two different light sources. Herein, we report a high-speed, light-driven actuator that can be operated by a single light source with low-energy density. We achieved this breakthrough by utilizing a freestanding epitaxial sheet of ferroelectric BaTiO3. One repetitive operation takes only 120 μs, which is 104 times faster than that of organic-based counterparts. The high-speed operation is derived from the light-induced nonthermal deformation provided by the excellent ferroelectricity (remnant polarization of 23 μC/cm2) and piezoelectricity (d33 of 600 pm/V) of the sheet. The displacement-to-length ratio is achieved to be 3.7% with a relatively low laser power density (10-200 mW/cm2) compared to previously reports (150-109 mW/cm2). Furthermore, the actuator was operable even in water, demonstrating its potential in various applications.
Collapse
Affiliation(s)
- Lizhikun Gong
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Atsushi Taguchi
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
| | - Weikun Zhou
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Ren Mitsuya
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Hiromichi Ohta
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
| | - Tsukasa Katayama
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
- JST-PRESTO, Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
7
|
Wu Y, Zeng Z, Lu H, Han X, Yang C, Liu N, Zhao X, Qiao L, Ji W, Che R, Deng L, Yan P, Peng B. Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic. Nat Commun 2024; 15:8616. [PMID: 39366986 PMCID: PMC11452644 DOI: 10.1038/s41467-024-53019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Multiferroic materials have been intensively pursued to achieve the mutual control of electric and magnetic properties. The breakthrough progress in 2D magnets and ferroelectrics encourages the exploration of low-dimensional multiferroics, which holds the promise of understanding inscrutable magnetoelectric coupling and inventing advanced spintronic devices. However, confirming ferroelectricity with optical techniques is challenging in 2D materials, particularly in conjunction with antiferromagnetic orders in single- and few-layer multiferroics. Here, we report the discovery of 2D vdW multiferroic with out-of-plane ferroelectric polarization in trilayer NiI2 device, as revealed by scanning reflective magnetic circular dichroism microscopy and ferroelectric hysteresis loops. The evolution between ferroelectric and antiferroelectric phases has been unambiguously observed. Moreover, the magnetoelectric interaction is directly probed by magnetic control of the multiferroic domain switching. This work opens up opportunities for exploring multiferroic orders and multiferroic physics at the limit of single or few atomic layers, and for creating advanced magnetoelectronic devices.
Collapse
Affiliation(s)
- Yangliu Wu
- National Engineering Research Center of Electromagnetic Radiation Control Materials and Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaozhuo Zeng
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China
| | - Haipeng Lu
- National Engineering Research Center of Electromagnetic Radiation Control Materials and Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Chendi Yang
- Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Fudan University, Shanghai, China
| | - Nanshu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, China.
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Fudan University, Shanghai, China
| | - Longjiang Deng
- National Engineering Research Center of Electromagnetic Radiation Control Materials and Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Peng Yan
- School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China.
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials and Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Harbola V, Pesquera D, Xu R, Ashby PD, Martin LW, Hwang HY. Flexoelectric Enhancement of Strain Gradient Elasticity Across a Ferroelectric-to-Paraelectric Phase Transition. NANO LETTERS 2024; 24:10331-10336. [PMID: 39133234 DOI: 10.1021/acs.nanolett.4c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We study the temperature dependent elastic properties of Ba0.8Sr0.2TiO3 freestanding membranes across the ferroelectric-to-paraelectric phase transition using an atomic force microscope. The bending rigidity of thin membranes can be stiffer compared to stretching due to strain gradient elasticity (SGE). We measure the Young's modulus of freestanding Ba0.8Sr0.2TiO3 drumheads in bending and stretching dominated deformation regimes on a variable temperature platform, finding a peak in the difference between the two Young's moduli obtained at the phase transition. This demonstrates a dependence of SGE on the dielectric properties of a material and alludes to a flexoelectric origin of an effective SGE.
Collapse
Affiliation(s)
- Varun Harbola
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute of Materials and Energy Sciences, SLAC National Laboratory, Menlo Park, California 94025, United States
| | - David Pesquera
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruijuan Xu
- Stanford Institute of Materials and Energy Sciences, SLAC National Laboratory, Menlo Park, California 94025, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
- Departments of Materials Science and NanoEngineering, Chemistry, and Physics and Astronomy and the Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| | - Harold Y Hwang
- Stanford Institute of Materials and Energy Sciences, SLAC National Laboratory, Menlo Park, California 94025, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Li R, Yue Z, Luan H, Dong Y, Chen X, Gu M. Multimodal Artificial Synapses for Neuromorphic Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0427. [PMID: 39161534 PMCID: PMC11331013 DOI: 10.34133/research.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
The rapid development of neuromorphic computing has led to widespread investigation of artificial synapses. These synapses can perform parallel in-memory computing functions while transmitting signals, enabling low-energy and fast artificial intelligence. Robots are the most ideal endpoint for the application of artificial intelligence. In the human nervous system, there are different types of synapses for sensory input, allowing for signal preprocessing at the receiving end. Therefore, the development of anthropomorphic intelligent robots requires not only an artificial intelligence system as the brain but also the combination of multimodal artificial synapses for multisensory sensing, including visual, tactile, olfactory, auditory, and taste. This article reviews the working mechanisms of artificial synapses with different stimulation and response modalities, and presents their use in various neuromorphic tasks. We aim to provide researchers in this frontier field with a comprehensive understanding of multimodal artificial synapses.
Collapse
Affiliation(s)
- Runze Li
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute of Photonic Chips,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Pudong, Shanghai 201210, China
| | - Zengji Yue
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haitao Luan
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yibo Dong
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xi Chen
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology,
University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Chen YC, Chen PH, Liao YS, Chou JP, Wu JM. Defect Engineering Centrosymmetric 2D Material Flexocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401116. [PMID: 38456370 DOI: 10.1002/smll.202401116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/24/2024] [Indexed: 03/09/2024]
Abstract
In this study, the flexoelectric characteristics of 2D TiO2 nanosheets are examined. The theoretical calculations and experimental results reveal an excellent strain-induced flexoelectric potential (flexopotential) by an effective defect engineering strategy, which suppresses the recombination of electron-hole pairs, thus substantially improving the catalytic activity of the TiO2 nanosheets in the degradation of Rhodamine B dye and the hydrogen evolution reaction in a dark environment. The results indicate that strain-induced bandgap reduction enhances the catalytic activity of the TiO2 nanosheets. In addition, the TiO2 nanosheets degraded Rhodamine B, with kobs being ≈1.5 × 10-2 min-1 in dark, while TiO2 nanoparticles show only an adsorption effect. 2D TiO2 nanosheets achieve a hydrogen production rate of 137.9 µmol g-1 h-1 under a dark environment, 197% higher than those of TiO2 nanoparticles (70.1 µmol g-1 h-1). The flexopotential of the TiO2 nanosheets is enhanced by increasing the bending moment, with excellent flexopotential along the y-axis. Density functional theory is used to identify the stress-induced bandgap reduction and oxygen vacancy formation, which results in the self-dissociation of H2O on the surface of the TiO in the dark. The present findings provide novel insights into the role of TiO2 flexocatalysis in electrochemical reactions.
Collapse
Affiliation(s)
- Yu-Ching Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- Ph.D. Program in Prospective Functional Materials Industry, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Po-Han Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Yin-Song Liao
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- Tsing Hua Interdisciplinary Program, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, No. 1 Jin-De Road, Changhua, 500, Taiwan
| | - Jyh Ming Wu
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- High Entropy Materials Center, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| |
Collapse
|
11
|
Salles P, Guzman R, Tan H, Ramis M, Fina I, Machado P, Sánchez F, De Luca G, Zhou W, Coll M. Unfolding the Challenges To Prepare Single Crystalline Complex Oxide Membranes by Solution Processing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36796-36803. [PMID: 38967374 PMCID: PMC11261560 DOI: 10.1021/acsami.4c05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The ability to prepare single crystalline complex oxide freestanding membranes has opened a new playground to access new phases and functionalities not available when they are epitaxially bound to the substrates. The water-soluble Sr3Al2O6 (SAO) sacrificial layer approach has proven to be one of the most promising pathways to prepare a wide variety of single crystalline complex oxide membranes, typically by high vacuum deposition techniques. Here, we present solution processing, also named chemical solution deposition (CSD), as a cost-effective alternative deposition technique to prepare freestanding membranes identifying the main processing challenges and how to overcome them. In particular, we compare three different strategies based on interface and cation engineering to prepare CSD (00l)-oriented BiFeO3 (BFO) membranes. First, BFO is deposited directly on SAO but forms a nanocomposite of Sr-Al-O rich nanoparticles embedded in an epitaxial BFO matrix because the Sr-O bonds react with the solvents of the BFO precursor solution. Second, the incorporation of a pulsed laser deposited La0.7Sr0.3MnO3 (LSMO) buffer layer on SAO prior to the BFO deposition prevents the massive interface reaction and subsequent formation of a nanocomposite but migration of cations from the upper layers to SAO occurs, making the sacrificial layer insoluble in water and withholding the membrane release. Finally, in the third scenario, a combination of LSMO with a more robust sacrificial layer composition, SrCa2Al2O6 (SC2AO), offers an ideal building block to obtain (001)-oriented BFO/LSMO bilayer membranes with a high-quality interface that can be successfully transferred to both flexible and rigid host substrates. Ferroelectric fingerprints are identified in the BFO film prior and after membrane release. These results show the feasibility to use CSD as alternative deposition technique to prepare single crystalline complex oxide membranes widening the range of available phases and functionalities for next-generation electronic devices.
Collapse
Affiliation(s)
- Pol Salles
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Roger Guzman
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Huan Tan
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Martí Ramis
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ignasi Fina
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Pamela Machado
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Florencio Sánchez
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Gabriele De Luca
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Wu Zhou
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Mariona Coll
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
12
|
Jiang Y, Niu J, Wang C, Xue D, Shi X, Gao W, Zhao S. Experimental demonstration of tunable hybrid improper ferroelectricity in double-perovskite superlattice films. Nat Commun 2024; 15:5549. [PMID: 38956065 PMCID: PMC11219787 DOI: 10.1038/s41467-024-49707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Hybrid improper ferroelectricity can effectively avoid the intrinsic chemical incompatibility of electronic mechanism for multiferroics. Perovskite superlattices, as theoretically proposed hybrid improper ferroelectrics with simple structure and high technological compatibility, are conducive to device integration and miniaturization, but the experimental realization remains elusive. Here, we report a strain-driven oxygen octahedral distortion strategy for hybrid improper ferroelectricity in La2NiMnO6/La2CoMnO6 double-perovskite superlattices. The epitaxial growth mode with mixed crystalline orientations maintains a large strain transfer distance more than 90 nm in the superlattice films with lattice mismatch less than 1%. Such epitaxial strain permits sustainable long-range modulation of oxygen octahedral rotation and tilting, thereby inducing and regulating hybrid improper ferroelectricity. A robust room-temperature ferroelectricity with remnant polarization of ~ 0.16 μC cm-2 and piezoelectric coefficient of 2.0 pm V-1 is obtained, and the density functional theory calculations and Landau-Ginsburg-Devonshire theory reveal the constitutive correlations between ferroelectricity, octahedral distortions, and strain. This work addresses the gap in experimental studies of hybrid improper ferroelectricity for perovskite superlattices and provides a promising research platform and idea for designing and exploring hybrid improper ferroelectricity.
Collapse
Affiliation(s)
- Yaoxiang Jiang
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology & School of Physical Science and Technology, Inner Mongolia University, Hohhot, PR China
| | - Jianguo Niu
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology & School of Physical Science and Technology, Inner Mongolia University, Hohhot, PR China
| | - Cong Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, China.
| | - Donglai Xue
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology & School of Physical Science and Technology, Inner Mongolia University, Hohhot, PR China
| | - Xiaohui Shi
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology & School of Physical Science and Technology, Inner Mongolia University, Hohhot, PR China
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shifeng Zhao
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology & School of Physical Science and Technology, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
13
|
Li T, Deng S, Liu H, Chen J. Insights into Strain Engineering: From Ferroelectrics to Related Functional Materials and Beyond. Chem Rev 2024; 124:7045-7105. [PMID: 38754042 DOI: 10.1021/acs.chemrev.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Ferroelectrics have become indispensable components in various application fields, including information processing, energy harvesting, and electromechanical conversion, owing to their unique ability to exhibit electrically or mechanically switchable polarization. The distinct polar noncentrosymmetric lattices of ferroelectrics make them highly responsive to specific crystal structures. Even slight changes in the lattice can alter the polarization configuration and response to external fields. In this regard, strain engineering has emerged as a prevalent regulation approach that not only offers a versatile platform for structural and performance optimization within ferroelectrics but also unlocks boundless potential in various functional materials. In this review, we systematically summarize the breakthroughs in ferroelectric-based functional materials achieved through strain engineering and progress in method development. We cover research activities ranging from fundamental attributes to wide-ranging applications and novel functionalities ranging from electromechanical transformation in sensors and actuators to tunable dielectric materials and information technologies, such as transistors and nonvolatile memories. Building upon these achievements, we also explore the endeavors to uncover the unprecedented properties through strain engineering in related chemical functionalities, such as ferromagnetism, multiferroicity, and photoelectricity. Finally, through discussions on the prospects and challenges associated with strain engineering in the materials, this review aims to stimulate the development of new methods for strain regulation and performance boosting in functional materials, transcending the boundaries of ferroelectrics.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Yu J, Huang B, Yang S, Zhang Y, Bai Y, Song C, Ming W, Liu W, Wang J, Li C, Wang Q, Li J. Flexoelectric Engineering of Bulk Photovoltaic Photodetector. NANO LETTERS 2024; 24:6337-6343. [PMID: 38742772 DOI: 10.1021/acs.nanolett.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.
Collapse
Affiliation(s)
- Junxi Yu
- Institute for Advanced Study, Chengdu University, Chengdu 610100, People's Republic of China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Songjie Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610100, People's Republic of China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yinxin Bai
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chunlin Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Wenjie Ming
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Wenyuan Liu
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang 314000, People's Republic of China
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Changjian Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Qingyuan Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610100, People's Republic of China
- Failure Mechanics and Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
15
|
Xia Y, Qian W, Yang Y. Advancements and Prospects of Flexoelectricity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9597-9613. [PMID: 38357861 DOI: 10.1021/acsami.3c16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The flexoelectric effect, as a novel form of the electromechanical coupling phenomenon, has attracted significant attention in the fields of materials science and electronic devices. It refers to the interaction between strain gradients and electric dipole moments or electric field intensity gradients and strain. In contrast to the traditional piezoelectric effect, the flexoelectric effect is not limited by material symmetry or the Curie temperature and exhibits a stronger effect at the nanoscale. The flexoelectric effect finds widespread applications ranging from energy harvesting to electronic device design. Utilizing the flexoelectric effect, enhanced energy harvesters, sensitive sensors, and high-performance wearable electronic devices can be developed. Additionally, the flexoelectric effect can be utilized to modulate the optoelectronic properties and physical characteristics of materials, holding the potential for significant applications in areas such as optoelectronic devices, energy storage devices, and flexible electronics. This review provides a comprehensive overview of the historical development, measurement of flexoelectric coefficients, enhancement mechanisms, and current research progress of the flexoelectric effect. Additionally, it offers a perspective on future prospects of the flexoelectric effect.
Collapse
Affiliation(s)
- Yanlong Xia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Resources Environment and Materials, Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiqi Qian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Resources Environment and Materials, Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
16
|
Wang YX, Li JG, Seifert G, Chang K, Zhang DB. Giant Flexoelectricity in Bent Semiconductor Thinfilm. NANO LETTERS 2024; 24:411-416. [PMID: 38146896 DOI: 10.1021/acs.nanolett.3c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We elucidate the flexoelectricity of semiconductors in the high strain gradient regime, the underlying mechanism of which is less understood. By using the generalized Bloch theorem, we uncover a strong flexoelectric-like effect in bent thinfilms of Si and Ge due to a high-strain-gradient-induced band gap closure. We show that an unusual type-II band alignment is formed between the compressed and elongated sides of the bent film. Therefore, upon the band gap closure, electrons transfer from the compressed side to the elongated side to reach the thermodynamic equilibrium, leading to a pronounced change of polarization along the film thickness dimension. The obtained transverse flexoelectric coefficients are unexpectedly high with a quadratic dependence on the film thickness. This new mechanism is extendable to other semiconductor materials with moderate energy gaps. Our findings have important implications for the future applications of flexoelectricity in semiconductor materials.
Collapse
Affiliation(s)
- Ya-Xun Wang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China
- Department of Physics, Beijing Normal University, Beijing 100875, P.R. China
| | - Jian-Gao Li
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China
- Department of Physics, Beijing Normal University, Beijing 100875, P.R. China
| | - Gotthard Seifert
- Theoretische Chemie, Technische Universitat Dresden, Dresden D-01062, Germany
| | - Kai Chang
- School of Physics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dong-Bo Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
17
|
Wu Q, Wang K, Simpson A, Hao Y, Wang J, Li D, Hong X. Electrode Effect on Ferroelectricity in Free-Standing Membranes of PbZr 0.2Ti 0.8O 3. ACS NANOSCIENCE AU 2023; 3:482-490. [PMID: 38144704 PMCID: PMC10740143 DOI: 10.1021/acsnanoscienceau.3c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023]
Abstract
We report the effects of screening capacity, surface roughness, and interfacial epitaxy of the bottom electrodes on the polarization switching, domain wall (DW) roughness, and ferroelectric Curie temperature (TC) of PbZr0.2Ti0.8O3 (PZT)-based free-standing membranes. Singe crystalline 10-50 nm (001) PZT and PZT/La0.67Sr0.33MnO3 (LSMO) membranes are prepared on Au, correlated oxide LSMO, and two-dimensional (2D) semiconductor MoS2 base layers. Switching the polarization of PZT yields nonvolatile current modulation in the MoS2 channel at room temperature, with an on/off ratio of up to 2 × 105 and no apparent decay for more than 3 days. Piezoresponse force microscopy studies show that the coercive field Ec for the PZT membranes varies from 0.75 to 3.0 MV cm-1 on different base layers and exhibits strong polarization asymmetry. The PZT/LSMO membranes exhibit significantly smaller Ec, with the samples transferred on LSMO showing symmetric Ec of about -0.26/+0.28 MV cm-1, smaller than that of epitaxial PZT films. The DW roughness exponent ζ points to 2D random bond disorder dominated DW roughening (ζ = 0.31) at room temperature. Upon thermal quench at progressively higher temperatures, ζ values for PZT membranes on Au and LSMO approach the theoretical value for 1D random bond disorder (ζ = 2/3), while samples on MoS2 exhibits thermal roughening (ζ = 1/2). The PZT membranes on Au, LSMO, and MoS2 show TC of about 763 ± 12, 725 ± 25, and 588 ± 12 °C, respectively, well exceeding the bulk value. Our study reveals the complex interplay between the electrostatic and mechanical boundary conditions in determining ferroelectricity in free-standing PZT membranes, providing important material parameters for the functional design of PZT-based flexible nanoelectronics.
Collapse
Affiliation(s)
- Qiuchen Wu
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Kun Wang
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Alyssa Simpson
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Yifei Hao
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Jia Wang
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Dawei Li
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| | - Xia Hong
- Department
of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588-0299, United
States
| |
Collapse
|
18
|
Liu Z, Zhang Q, Xie D, Zhang M, Li X, Zhong H, Li G, He M, Shang D, Wang C, Gu L, Yang G, Jin K, Ge C. Interface-type tunable oxygen ion dynamics for physical reservoir computing. Nat Commun 2023; 14:7176. [PMID: 37935751 PMCID: PMC10630289 DOI: 10.1038/s41467-023-42993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Reservoir computing can more efficiently be used to solve time-dependent tasks than conventional feedforward network owing to various advantages, such as easy training and low hardware overhead. Physical reservoirs that contain intrinsic nonlinear dynamic processes could serve as next-generation dynamic computing systems. High-efficiency reservoir systems require nonlinear and dynamic responses to distinguish time-series input data. Herein, an interface-type dynamic transistor gated by an Hf0.5Zr0.5O2 (HZO) film was introduced to perform reservoir computing. The channel conductance of Mott material La0.67Sr0.33MnO3 (LSMO) can effectively be modulated by taking advantage of the unique coupled property of the polarization process and oxygen migration in hafnium-based ferroelectrics. The large positive value of the oxygen vacancy formation energy and negative value of the oxygen affinity energy resulted in the spontaneous migration of accumulated oxygen ions in the HZO films to the channel, leading to the dynamic relaxation process. The modulation of the channel conductance was found to be closely related to the current state, identified as the origin of the nonlinear response. In the time series recognition and prediction tasks, the proposed reservoir system showed an extremely low decision-making error. This work provides a promising pathway for exploiting dynamic ion systems for high-performance neural network devices.
Collapse
Affiliation(s)
- Zhuohui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Yangtze River Delta Physics Research Center Co. Ltd., 213300, Liyang, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China
| | - Mingzhen Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China
| | - Xinyan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hai Zhong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physics and Optoelectronics Engineering, Ludong University, 264025, Yantai, Shandong, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China
| | - Meng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dashan Shang
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China.
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, 100049, Beijing, China.
| |
Collapse
|
19
|
Hou C, Shen Y, Xin J, Guo Y, Wang Q. Three-dimensional porous borocarbonitride composed of pentagonal motifs as a high-performance pyroelectric material. Phys Chem Chem Phys 2023; 25:28965-28973. [PMID: 37859546 DOI: 10.1039/d3cp02997b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Pyroelectric materials have been attracting significant attention due to their intrinsic and permanent polarization, where the induced polarization is not associated with specific conditions, such as ferroelectric phase transition, strain gradient, dopants, and electric field. Thus, these materials have great potential for wide applications in energy conversion. Here, we propose a new 3D porous borocarbonitride termed PH-BCN, which is composed of pentagonal motifs with intrinsic polarization along the [0001] direction. Based on first-principles calculations, we show that PH-BCN possesses a record high longitudinal electromechanical coupling coefficient with the value of k33 = 97.99%, a remarkably strong SHG response (χ(2)xzx(0) = χ(2)yzy(0) = χ(2)zxx(0) = χ(2)zyy(0) = -6.23 pm V-1 and χ(2)zzz(0) = 21.21 pm V-1), and a record high shift current value of 908.58 μA V-2 due to the intrinsic vertical polarization. This study expands the family of pentagon-based materials, and may open a new frontier in the design of high-performance pyroelectric materials as well.
Collapse
Affiliation(s)
- Changsheng Hou
- School of Materials Science and Engineering, CAPT, Peking University, Beijing 100871, China
| | - Yiheng Shen
- School of Materials Science and Engineering, CAPT, Peking University, Beijing 100871, China
| | - Jiaqi Xin
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Yaguang Guo
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Qian Wang
- School of Materials Science and Engineering, CAPT, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Ling Y, Yu X, Yuan S, He A, Han Z, Du J, Fan Q, Yan S, Xu Q. Flexomagnetic Effect Enhanced Ferromagnetism and Magnetoelectrochemistry in Freestanding High-Entropy Alloy Films. ACS NANO 2023; 17:17299-17307. [PMID: 37643207 DOI: 10.1021/acsnano.3c05255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Freestanding thin films of functional materials enable the tuning of properties via strain and strain gradients, broadening their applications. Here, a systematic approach is proposed to fabricate freestanding CrMnFeCoNi high-entropy alloy (HEA) thin films by pulsed laser deposition using expansion-contraction of NaCl substrates and weak van der Waals interaction of the interface, which form wrinkles with inhomogeneous strain gradients when transferred to a viscous handle. We demonstrate that the nonuniform gradients of external strain (flexomagnetic effect) can induce the partial structural phase transition from FCC to BCC in the wrinkled HEA film, resulting in a 10-fold increase in its room-temperature saturation magnetization compared with the unstrained flat HEA film. Furthermore, after applying an external magnetic field, due to the different electron transfer behavior caused by the electron scattering in wrinkled and flat HEA films, their electrocatalytic magnetic responses showed a diametrically opposite picture. Our work provides a promising strategy for tuning physical and chemical properties via complex strained geometries.
Collapse
Affiliation(s)
- Yechao Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Yu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shijun Yuan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Anpeng He
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhida Han
- College of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jun Du
- Department of Physics, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
| | - Qi Fan
- School of Materials Science and Enigneering, Southeast University, Nanjing 211189, China
| | - Shicheng Yan
- Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qingyu Xu
- School of Physics, Southeast University, Nanjing 211189, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
| |
Collapse
|
21
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Cheng X, Xi G, Fang YW, Ding J, Tian J, Zhang L. Chemical and interfacial design in the visible-light-absorbing ferroelectric thin films. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
23
|
Yan D, Wang J, Xiang J, Xing Y, Shao LH. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator. SCIENCE ADVANCES 2023; 9:eadc8845. [PMID: 36638177 PMCID: PMC9839323 DOI: 10.1126/sciadv.adc8845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
All dielectric materials including ceramics, semiconductors, biomaterials, and polymers have the property of flexoelectricity, which opens a fertile avenue to sensing, actuation, and energy harvesting by a broad range of materials. However, the flexoelectricity of solids is weak at the macroscale. Here, we achieve an ultrahigh flexoelectric effect via a composite foam based on PDMS and CCTO nanoparticles. The mass- and deformability-specific flexoelectricity of the foam exceeds 10,000 times that of the solid matrix under compression, yielding a density-specific equivalent piezoelectric coefficient 120 times that of PZT. The flexoelectricity output remains stable in 1,000,000 deformation cycles, and a portable sample can power LEDs and charge mobile phones and Bluetooth headsets. Our work provides a route to exploiting flexible and light-weight materials with highly sensitive omnidirectional electromechanical coupling that have applications in sensing, actuation, and scalable energy harvesting.
Collapse
Affiliation(s)
- Dongze Yan
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P.R. China
| | - Jianxiang Wang
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P.R. China
- CAPT-HEDPS and IFSA Collaborative Innovation Center of MoE, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Jinwu Xiang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yufeng Xing
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P.R. China
| | - Li-Hua Shao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
24
|
Gong L, Wei M, Yu R, Ohta H, Katayama T. Significant Suppression of Cracks in Freestanding Perovskite Oxide Flexible Sheets Using a Capping Oxide Layer. ACS NANO 2022; 16:21013-21019. [PMID: 36411060 DOI: 10.1021/acsnano.2c08649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible and functional perovskite oxide sheets with high orientation and crystallization are the next step in the development of next-generation devices. One promising synthesis method is the lift-off and transfer method using a water-soluble sacrificial layer. However, the suppression of cracks during lift-off is a crucial problem that remains unsolved. In this study, we demonstrated that this problem can be solved by depositing amorphous Al2O3 capping layers on oxide sheets. Using this simple method, over 20 mm2 of crack-free, deep-ultraviolet transparent electrode La:SrSnO3 and ferroelectric Ba0.75Sr0.25TiO3 flexible sheets were obtained. By contrast, the sheets without any capping layers broke. The obtained sheets showed considerable flexibility and high functionality. The La:SrSnO3 sheet simultaneously exhibited a wide bandgap (4.4 eV) and high electrical conductivity (>103 S/cm). The Ba0.75Sr0.25TiO3 sheet exhibited clear room-temperature ferroelectricity with a remnant polarization of 17 μC/cm2. Our findings provide a simple transfer method for obtaining large, crack-free, high-quality, single-crystalline sheets.
Collapse
Affiliation(s)
- Lizhikun Gong
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Mian Wei
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Rui Yu
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
| | - Hiromichi Ohta
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
| | - Tsukasa Katayama
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Huang J, Chen W. Flexible strategy of epitaxial oxide thin films. iScience 2022; 25:105041. [PMID: 36157575 PMCID: PMC9489952 DOI: 10.1016/j.isci.2022.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Applying functional oxide thin films to flexible devices is of great interests within the rapid development of information technology. The challenges involve the contradiction between the high-temperature growth of high-quality oxide films and low melting point of the flexible supports. This review summarizes the developed methods to fabricate high-quality flexible oxide thin films with novel functionalities and applications. We start from the fabrication methods, e.g. direct growth on flexible buffered metal foils and layered mica, etching and transfer approach, as well as remote epitaxy technique. Then, various functionalities in flexible oxide films will be introduced, specifically, owing to the mechanical flexibility, some unique properties can be induced in flexible oxide films. Taking the advantages of the excellent physical properties, the flexible oxide films have been employed in various devices. Finally, future perspectives in this research field will be proposed to further develop this field from fabrication, functionality to device.
Collapse
Affiliation(s)
- Jijie Huang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijin Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Han X, Ji Y, Wu L, Xia Y, Bowen CR, Yang Y. Coupling Enhancement of a Flexible BiFeO 3 Film-Based Nanogenerator for Simultaneously Scavenging Light and Vibration Energies. NANO-MICRO LETTERS 2022; 14:198. [PMID: 36201086 PMCID: PMC9537400 DOI: 10.1007/s40820-022-00943-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light, mechanical and thermal energy and achieve a stable direct current output. Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage, while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics. Here, we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO3 ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies. This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3% energy enhancement to achieve a multi-dimensional "1 + 1 > 2" coupling enhancement in terms of current, charge and energy. This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
Collapse
Affiliation(s)
- Xiao Han
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun Ji
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center On Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yanlong Xia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center On Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA27AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center On Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
27
|
Geng WR, Tang YL, Zhu YL, Wang YJ, Wu B, Yang LX, Feng YP, Zou MJ, Shi TT, Cao Y, Ma XL. Magneto-Electric-Optical Coupling in Multiferroic BiFeO 3 -Based Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106396. [PMID: 35730916 DOI: 10.1002/adma.202106396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.
Collapse
Affiliation(s)
- Wan-Rong Geng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yin-Lian Zhu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yu-Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Bo Wu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Li-Xin Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yan-Peng Feng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min-Jie Zou
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong-Tong Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Yi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Xiu-Liang Ma
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| |
Collapse
|
28
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
29
|
Zhang B, Tan D, Cao X, Tian J, Wang Y, Zhang J, Wang Z, Ren K. Flexoelectricity-Enhanced Photovoltaic Effect in Self-Polarized Flexible PZT Nanowire Array Devices. ACS NANO 2022; 16:7834-7847. [PMID: 35533408 DOI: 10.1021/acsnano.2c00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this investigation, we report the flexoelectricity-enhanced photovoltaic (FPV) effect in a flexible Pb(Zr0.52Ti0.48)O3 nanowire (PZT NW) array/PDMS (polydimethylsiloxane) nanocomposite. The simulation result of density functional theory (DFT) indicated that the FPV effect in PZT NWs can be greatly affected by the interactions of the strain gradients with the internal field generated by self-polarization. We found that when the nanocomposite film was curved down, the photovoltaic current of the aligned PZT-NW/PDMS composite increased by 84.6-fold and 27.6-fold compared with the PZT-nanoparticles/PDMS and randomly aligned PZT-NW/PDMS nanocomposites at the same curvature, respectively. This is mainly ascribed to the increased flexoelectricity in the aligned PZT-NW/PDMS nanocomposite. This study will contribute to a full understanding of the influence of nanoparticle shape on the flexophotovoltaic effect of nanocomposites. It will have potential use in nanocomposites for the study of the FPV effect and associated applications.
Collapse
Affiliation(s)
- Bowen Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Dan Tan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P.R. China
| | - Xiaodan Cao
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Junyuan Tian
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
| | - Yonggui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Jinxi Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
| | - Zhonglin Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kailiang Ren
- Beijing Key Laboratory of Micro-nano Energy and Sensors, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
30
|
Salles P, Guzmán R, Zanders D, Quintana A, Fina I, Sánchez F, Zhou W, Devi A, Coll M. Bendable Polycrystalline and Magnetic CoFe 2O 4 Membranes by Chemical Methods. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12845-12854. [PMID: 35232015 PMCID: PMC8931725 DOI: 10.1021/acsami.1c24450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The preparation and manipulation of crystalline yet bendable functional complex oxide membranes has been a long-standing issue for a myriad of applications, in particular, for flexible electronics. Here, we investigate the viability to prepare magnetic and crystalline CoFe2O4 (CFO) membranes by means of the Sr3Al2O6 (SAO) sacrificial layer approach using chemical deposition techniques. Meticulous chemical and structural study of the SAO surface and SAO/CFO interface properties have allowed us to identify the formation of an amorphous SAO capping layer and carbonates upon air exposure, which dictate the crystalline quality of the subsequent CFO film growth. Vacuum annealing at 800 °C of SAO films promotes the elimination of the surface carbonates and the reconstruction of the SAO surface crystallinity. Ex-situ atomic layer deposition of CFO films at 250 °C on air-exposed SAO offers the opportunity to avoid high-temperature growth while achieving polycrystalline CFO films that can be successfully transferred to a polymer support preserving the magnetic properties under bending. Float on and transfer provides an alternative route to prepare freestanding and wrinkle-free CFO membrane films. The advances and challenges presented in this work are expected to help increase the capabilities to grow different oxide compositions and heterostructures of freestanding films and their range of functional properties.
Collapse
Affiliation(s)
- Pol Salles
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Roger Guzmán
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Zanders
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | | | - Ignasi Fina
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | | | - Wu Zhou
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anjana Devi
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Mariona Coll
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
31
|
Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng RC, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen LQ, Martin LW, Huang YL, Íñiguez J, Ramesh R. The role of lattice dynamics in ferroelectric switching. Nat Commun 2022; 13:1110. [PMID: 35236832 PMCID: PMC8891289 DOI: 10.1038/s41467-022-28622-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO3) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO3 films, to large (10's of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.
Collapse
Affiliation(s)
- Qiwu Shi
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Eric Parsonnet
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxing Cheng
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16802, PA, USA
| | - Natalya Fedorova
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, L-4362, Esch/Alzette, Luxembourg
| | - Ren-Ci Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Information and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Alexander Qualls
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xue Chang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - David Pesquera
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sujit Das
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Material Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Dmitri Nikonov
- Components Research, Intel Corporation, Hillsboro, OR, 97142, USA
| | - Ian Young
- Components Research, Intel Corporation, Hillsboro, OR, 97142, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16802, PA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yen-Lin Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, L-4362, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, L-4422, Belvaux, Luxembourg
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
32
|
Wang H, Wu H, Chi X, Li Y, Zhou C, Yang P, Yu X, Wang J, Chow GM, Yan X, Pennycook SJ, Chen J. Large-Scale Epitaxial Growth of Ultralong Stripe BiFeO 3 Films and Anisotropic Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8557-8564. [PMID: 35129325 DOI: 10.1021/acsami.1c22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The controlled synthesis of large-scale ferroelectric domains with high uniformity is crucial for practical applications in next-generation nanoelectronics on the basis of their intriguing properties. Here, ultralong and highly uniform stripe domains in (110)-oriented BiFeO3 thin films are large-area synthesized through a pulsed laser deposition technique. Utilizing scanning transmission electron microscopy and piezoresponse force microscopy, we verified that the ferroelectric domains have one-dimensional 109° domains and the length of a domain is up to centimeter scale. More importantly, the ferroelectric displacement is directly determined on atomic-scale precision, further confirming the domain structure. We find that the unique one-dimensional ferroelectric domain significantly enhances the optical anisotropy. Furthermore, we demonstrate that the purely parallel domain patterns can be used to control photovoltaic current. These ultralong ferroelectric domains can be patterned into various functional devices, which may inspire research efforts to explore their properties and various applications.
Collapse
Affiliation(s)
- Han Wang
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haijun Wu
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Chi
- Singapore Synchrotron Light Source (SSLS), National University of Singapore 117603, Singapore
| | - Yangyang Li
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| | - Chenghang Zhou
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore 117603, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source (SSLS), National University of Singapore 117603, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| | - Gan-Moog Chow
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| | - Xiaobing Yan
- College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore 117575, Singapore
| |
Collapse
|
33
|
Zhong G, An F, Qu K, Dong Y, Yang Z, Dai L, Xie S, Huang R, Luo Z, Li J. Highly Flexible Freestanding BaTiO 3 -CoFe 2 O 4 Heteroepitaxial Nanostructure Self-Assembled with Room-Temperature Multiferroicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104213. [PMID: 34816590 DOI: 10.1002/smll.202104213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Multiferroics with simultaneous electric and magnetic orderings are highly desirable for sensing, actuation, data storage, and bio-inspired systems, yet developing flexible materials with robust multiferroic properties at room temperature is a long-term challenge. Utilizing water-soluble Sr3 Al2 O6 as a sacrificial layer, the authors have successfully self-assembled a freestanding BaTiO3 -CoFe2 O4 heteroepitaxial nanostructure via pulse laser deposition, and confirmed its epitaxial growth in both out-of-plane and in-plane directions, with highly ordered CoFe2 O4 nanopillars embedded in a single crystalline BaTiO3 matrix free of substrate constraint. The freestanding nanostructure enjoys super flexibility and mechanical integrity, not only capable of spontaneously curving into a roll, but can also be bent with a radius as small as 4.23 µm. Moreover, piezoelectricity and ferromagnetism are demonstrated at both microscopic and macroscopic scales, confirming its robust multiferroicity at room temperature. This work establishes an effective route for flexible multiferroic materials, which have the potential for various practical applications.
Collapse
Affiliation(s)
- Gaokuo Zhong
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng An
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ke Qu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yongqi Dong
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhenzhong Yang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241, China
| | - Liyufen Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Shuhong Xie
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, Shanghai, 200241, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Jiangyu Li
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
34
|
Zhao Y, Li Y, Chen C, Dong G, Zhu S, Zhao Y, Tian B, Jiang Z, Zhou Z, Shi K, Liu M, Pan J. Dislocation Defect Layer-Induced Magnetic Bi-states Phenomenon in Epitaxial La 0.7Sr 0.3MnO 3(111) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59511-59517. [PMID: 34859661 DOI: 10.1021/acsami.1c18136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
La0.7Sr0.3MnO3 (LSMO) is one of the most fascinating strongly correlated oxides in which the spin polarization and magnetic property are sensitive to strain, especially in the (111)-oriented LSMO. In the paper, epitaxial LSMO(111) thin films with different thicknesses were prepared, and they showed continuous dislocation defect arrays with thickness greater than 45 nm. Then, the thick LSMO(111) films were divided into a double-layer structure with two slightly different oriented cells. The LSMO(111) films present a stronger lattice-spin coupling, thus the double-layer structure triggers an obvious magnetic heterogeneity phenomenon (magnetic bi-states) by the way of creating a double-mode ferromagnetic resonance (FMR) spectrum. Therefore, the nanostructures, especially the ordered structure defects, may trigger enriched physical phenomena and offer new forms of spin coupling and device functionality in strain-sensitive strongly correlated oxide systems.
Collapse
Affiliation(s)
- Yanan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaojin Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Chen
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guohua Dong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shukai Zhu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Keqing Shi
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University (Yantai) Research Institute For Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingye Pan
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
35
|
Sun Z, Wei J, Yang T, Li Y, Liu Z, Chen G, Wang T, Sun H, Cheng Z. Integrating Band Engineering and the Flexoelectric Effect Induced by a Composition Gradient for High Photocurrent Density in Bismuth Ferrite Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49850-49859. [PMID: 34643367 DOI: 10.1021/acsami.1c13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photovoltaic energy as one of the important alternatives to traditional fossil fuels has always been a research hot spot in the field of renewable and clean solar energy. Very recently, the anomalous ferroelectric photovoltaic effect in multiferroic bismuth ferrite (BiFeO3) has attracted much attention due to the above-bandgap photovoltage and switchable photocurrent. However, its photocurrent density mostly in the magnitudes of μA/cm2 resulted in a poor power conversion efficiency, which severely hampered its practical application as a photovoltaic device. In this case, a novel approach was designed to improve the photocurrent density of BiFeO3 through the cooperative effect of the gradient distribution of oxygen vacancies and consequently induced the flexoelectric effect realized in the (La, Co) gradient-doped BiFeO3 multilayers. Subsequent results and analysis indicated that the photocurrent density of the gradient-doped multilayer BiFeO3 sample was nearly 3 times as much as that of the conventional doped single-layer sample. Furthermore, a possible mechanism was proposed herein to demonstrate roles of band engineering and the flexoelectric effect on the photovoltaic performance of the gradient-doped BiFeO3 film.
Collapse
Affiliation(s)
- Zehao Sun
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jie Wei
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tiantian Yang
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yunpeng Li
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhiting Liu
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guogang Chen
- Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tiangang Wang
- Lanzhou Institute of Physics, Lanzhou 730000, P. R. China
| | - Hai Sun
- Lanzhou Institute of Physics, Lanzhou 730000, P. R. China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| |
Collapse
|
36
|
Qiao H, Zhao P, Kwon O, Sohn A, Zhuo F, Lee D, Sun C, Seol D, Lee D, Kim S, Kim Y. Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101793. [PMID: 34390211 PMCID: PMC8529448 DOI: 10.1002/advs.202101793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Indexed: 05/05/2023]
Abstract
The triboelectric effect is a ubiquitous phenomenon in which the surfaces of two materials are easily charged during the contact-separation process. Despite the widespread consequences and applications, the charging mechanisms are not sufficiently understood. Here, the authors report that, in the presence of a strain gradient, the charge transfer is a result of competition between flexoelectricity and triboelectricity, which could enhance charge transfer during triboelectric measurements when the charge transfers of both effects are in the same direction. When they are in the opposite directions, the direction and amount of charge transfer could be modulated by the competition between flexoelectric and triboelectric effects, which leads to a distinctive phenomenon, that is, the charge transfer is reversed with varying forces. The subsequent results on the electrical power output signals from the triboelectrification support the proposed mechanism. Therefore, the present study emphasizes the key role of the flexoelectric effect through experimental approaches, and suggests that both the amount and direction of charge transfer can be modulated by manipulating the mixed triboelectric and flexoelectric effects. This finding may provide important information on the triboelectric effect and can be further extended to serve as a guideline for material selection during a nanopatterned device design.
Collapse
Affiliation(s)
- Huimin Qiao
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Pin Zhao
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Owoong Kwon
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Ahrum Sohn
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Fangping Zhuo
- Department of Materials and Earth SciencesTechnical University of Darmstadt64287DarmstadtGermany
| | - Dong‐Min Lee
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Changhyo Sun
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Daehee Seol
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Daesu Lee
- Department of PhysicsPohang University of Science & Technology (POSTECH)Pohang37673Republic of Korea
| | - Sang‐Woo Kim
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) and Samsung Advanced Institute for Health Sciences & Technology (SAIHST)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
37
|
Jiang J, Chen Z, Hu Y, Xiang Y, Zhang L, Wang Y, Wang GC, Shi J. Flexo-photovoltaic effect in MoS 2. NATURE NANOTECHNOLOGY 2021; 16:894-901. [PMID: 34140672 DOI: 10.1038/s41565-021-00919-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The theoretical Shockley-Queisser limit of photon-electricity conversion in a conventional p-n junction could be potentially overcome by the bulk photovoltaic effect that uniquely occurs in non-centrosymmetric materials. Using strain-gradient engineering, the flexo-photovoltaic effect, that is, the strain-gradient-induced bulk photovoltaic effect, can be activated in centrosymmetric semiconductors, considerably expanding material choices for future sensing and energy applications. Here we report an experimental demonstration of the flexo-photovoltaic effect in an archetypal two-dimensional material, MoS2, by using a strain-gradient engineering approach based on the structural inhomogeneity and phase transition of a hybrid system consisting of MoS2 and VO2. The experimental bulk photovoltaic coefficient in MoS2 is orders of magnitude higher than that in most non-centrosymmetric materials. Our findings unveil the fundamental relation between the flexo-photovoltaic effect and a strain gradient in low-dimensional materials, which could potentially inspire the exploration of new optoelectronic phenomena in strain-gradient-engineered materials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Zhizhong Chen
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yang Hu
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yu Xiang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lifu Zhang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yiping Wang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Gwo-Ching Wang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
38
|
Wang X, Zhou X, Cui A, Deng M, Xu X, Xu L, Ye Y, Jiang K, Shang L, Zhu L, Zhang J, Li Y, Hu Z, Chu J. Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse. MATERIALS HORIZONS 2021; 8:1985-1997. [PMID: 34846475 DOI: 10.1039/d1mh00024a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexoelectricity and photoelectricity with their coupled effect (the so-called flexo-photoelectronic effect), are of increasing interest in the study of electronics and optoelectronics in van der Waals layered semiconductors. However, the related device design is severely restricted owing to the ambiguous underlying physical nature of flexo-photoelectronic effects originating from the co-manipulation of light and strain-gradients. Here, flexoelectric polarization and the flexo-photoelectronic effect of few-layered semiconductors have been multi-dimensionally investigated from high-resolution microscopic characterization on the nanoscale, physics analysis, and deriving a device design. We found that two back-to-back built-in electric fields form in bent InSe and WSe2, and greatly modulate the transport behaviors of photogenerated carriers, further facilitating the separation of photogenerated electron-hole pairs and trapping the holes/electrons in InSe or WSe2 channels, recorded in realtime by a home-made technique of lighting Kelvin probe force microscopy (KPFM). The slow release of trapped carriers contributes to the photoconductance relaxation after illumination. Utilizing the photoconductance relaxation, a light-stimulated artificial synapse based on the flexo-photoelectronic effect of bent InSe has been achieved. Significantly, all the pair-pulse facilitation (PPF) behavior, spike frequency-dependent excitatory post-synaptic current (EPSC) and the transition from short-term memory (STM) to long-term memory (LTM) have been successfully realized in this artificial synapse. This work adds to the investigation of flexo-photoelectronic effects on 2D optoelectronics, and moves towards the development of 2D neuromorphic electronics.
Collapse
Affiliation(s)
- Xiang Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang C, Ding S, Qiao K, Li J, Li Z, Yin Z, Sun J, Wang J, Zhao T, Hu F, Shen B. Large Low-Field Magnetoresistance (LFMR) Effect in Free-Standing La 0.7Sr 0.3MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28442-28450. [PMID: 34105344 DOI: 10.1021/acsami.1c03753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The realization of a large low-field magnetoresistance (LFMR) effect in free-standing magnetic oxide films is a crucial goal toward promoting the development of flexible, low power consumption, and nonvolatile memory devices for information storage. La0.7Sr0.3MnO3 (LSMO) is an ideal material for spintronic devices due to its excellent magnetic and electronic properties. However, it is difficult to achieve both a large LFMR effect and high flexibility in LSMO films due to the lack of research on LFMR-related mechanisms and the strict LSMO growth conditions, which require rigid substrates. Here, we induced a large LFMR effect in an LSMO/mica heterostructure by utilizing a disorder-related spin-polarized tunneling effect and developed a simple transfer method to obtain free-standing LSMO films for the first time. Electrical and magnetic characterizations of these free-standing LSMO films revealed that all of the principal properties of LSMO were sustained under compressive and tensile conditions. Notably, the magnetoresistance of the processed LSMO film reached up to 16% under an ultrasmall magnetic field (0.1 T), which is 80 times that of a traditional LSMO film. As a demonstration, a stable nonvolatile multivalue storage function in flexible LSMO films was successfully achieved. Our work may pave the way for future wearable resistive memory device applications.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuaishuai Ding
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Kaiming Qiao
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia Li
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhe Li
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuo Yin
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Jing Wang
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou, Fujian 350108, People's Republic of China
| | - Tongyun Zhao
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, People's Republic of China
| |
Collapse
|
40
|
Zhang H, Yimam DT, de Graaf S, Momand J, Vermeulen PA, Wei Y, Noheda B, Kooi BJ. Strain Relaxation in "2D/2D and 2D/3D Systems": Highly Textured Mica/Bi 2Te 3, Sb 2Te 3/Bi 2Te 3, and Bi 2Te 3/GeTe Heterostructures. ACS NANO 2021; 15:2869-2879. [PMID: 33476130 PMCID: PMC7905873 DOI: 10.1021/acsnano.0c08842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Strain engineering as a method to control functional properties has seen in the last decades a surge of interest. Heterostructures comprising 2D-materials and containing van der Waals(-like) gaps were considered unsuitable for strain engineering. However, recent work on heterostructures based on Bi2Te3, Sb2Te3, and GeTe showed the potential of a different type of strain engineering due to long-range mutual straining. Still, a comprehensive understanding of the strain relaxation mechanism in these telluride heterostructures is lacking due to limitations of the earlier analyses performed. Here, we present a detailed study of strain in two-dimensional (2D/2D) and mixed dimensional (2D/3D) systems derived from mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures, respectively. We first clearly show the fast relaxation process in the mica/Bi2Te3 system where the strain was generally transferred and confined up to the second or third van der Waals block and then abruptly relaxed. Then we show, using three independent techniques, that the long-range exponentially decaying strain in GeTe and Sb2Te3 grown on the relaxed Bi2Te3 and Bi2Te3 on relaxed Sb2Te3 as directly observed at the growth surface is still present within these three different top layers a long time after growth. The observed behavior points at immediate strain relaxation by plastic deformation without any later relaxation and rules out an elastic (energy minimization) model as was proposed recently. Our work advances the understanding of strain tuning in textured heterostructures or superlattices governed by anisotropic bonding.
Collapse
|
41
|
Huang F, Hu C, Xian Z, Sun X, Zhou Z, Meng X, Tan P, Zhang Y, Huang X, Wang Y, Tian H. Photovoltaic properties in an orthorhombic Fe doped KTN single crystal. OPTICS EXPRESS 2020; 28:34754-34760. [PMID: 33182936 DOI: 10.1364/oe.409750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Since the domain wall photovoltaic effect (DW-PVE) is reported in BiFeO3 film, the investigations on photovoltaic properties in ferroelectrics have appealed more and more attention. In this work, we employed two Fe doped KTa1-xNbxO3 (Fe:KTN) single crystals in tetragonal phase and orthorhombic phase, respectively, possessing similar net polarization along [001]C direction, to quantize the contribution on photovoltaic properties from bulk photovoltaic effect (BPVE) and DW-PVE in Fe:KTN. The results show that there are significant enhancements of open-circuit voltages (VOC = -6.0 V, increases over 440%) and short-circuit current density (JSC = 18.5 nA cm-2, increases over 1580%) in orthorhombic Fe:KTN with engineer-domain structure after poled, corresponding to 14.2 mV and 2.2 mV for the single domain wall and bulk region under illumination of 405 nm light (100 mW). It reveals that DW-PVE plays a major role in KTN-based ferroelectrics, indicating an orthorhombic Fe:KTN single crystal is one of the potential photovoltaic materials.
Collapse
|
42
|
Tang YY, Liu YH, Peng H, Deng BB, Cheng TT, Hu YT. Three-Dimensional Lead Bromide Hybrid Ferroelectric Realized by Lattice Expansion. J Am Chem Soc 2020; 142:19698-19704. [DOI: 10.1021/jacs.0c09586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yu-Hua Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Bin-Bin Deng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ting-Ting Cheng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yan-Ting Hu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|