1
|
Xu S, Wang X, Bellaiche L, Xu B. Electric Control of Magnetism in Multiferroic Rare-Earth-Substituted BiFeO_{3} with Ferrielectricity. PHYSICAL REVIEW LETTERS 2024; 133:046801. [PMID: 39121429 DOI: 10.1103/physrevlett.133.046801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 08/11/2024]
Abstract
The multiferroic rare-earth-substituted BiFeO_{3} has emerged as a promising candidate to achieve ultralow-energy-dissipation logic or memory devices, but the fundamental details of the switching mechanism involving the electrical, structural, and magnetic degrees of freedom is not fully understood, in particular, in its single-phase form. Here, a first-principles-based computational scheme is used to study Nd-doped BiFeO_{3} as a model system. The structure that yields a reduced P-E hysteresis loop is found to be ferrielectric with modulated octahedral tiltings, and it is shown that both the in-plane and out-of-plane ferromagnetization can be controlled by an applied electric field. The switching behaviors can be well interpreted by a Landau-type model, in which the magnetoelectric coupling is indirect and mediated by octahedral tiltings. The effects of varied composition and temperature are further discussed, revealing important correlations between the polarization switching and the robustness of the control of magnetization.
Collapse
Affiliation(s)
- Shiji Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xin Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - L Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Bin Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
2
|
Husain S, Harris I, Meisenheimer P, Mantri S, Li X, Ramesh M, Behera P, Taghinejad H, Kim J, Kavle P, Zhou S, Kim TY, Zhang H, Stevenson P, Analytis JG, Schlom D, Salahuddin S, Íñiguez-González J, Xu B, Martin LW, Caretta L, Han Y, Bellaiche L, Yao Z, Ramesh R. Non-volatile magnon transport in a single domain multiferroic. Nat Commun 2024; 15:5966. [PMID: 39013862 PMCID: PMC11252442 DOI: 10.1038/s41467-024-50180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Antiferromagnets have attracted significant attention in the field of magnonics, as promising candidates for ultralow-energy carriers for information transfer for future computing. The role of crystalline orientation distribution on magnon transport has received very little attention. In multiferroics such as BiFeO3 the coupling between antiferromagnetic and polar order imposes yet another boundary condition on spin transport. Thus, understanding the fundamentals of spin transport in such systems requires a single domain, a single crystal. We show that through Lanthanum (La) substitution, a single ferroelectric domain can be engineered with a stable, single-variant spin cycloid, controllable by an electric field. The spin transport in such a single domain displays a strong anisotropy, arising from the underlying spin cycloid lattice. Our work shows a pathway to understanding the fundamental origins of magnon transport in such a single domain multiferroic.
Collapse
Affiliation(s)
- Sajid Husain
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Isaac Harris
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Sukriti Mantri
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Xinyan Li
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Piush Behera
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Hossein Taghinejad
- Department of Physics, University of California, Berkeley, CA, USA
- Heising-Simons Junior Fellow, Kavli Energy NanoScience Institute (ENSI), University of California, Berkeley, CA, USA
| | - Jaegyu Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Pravin Kavle
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Shiyu Zhou
- Department of Physics, Brown University, Providence, RI, USA
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Hongrui Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, MA, USA
| | - James G Analytis
- Department of Physics, University of California, Berkeley, CA, USA
| | - Darrell Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sayeef Salahuddin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Jorge Íñiguez-González
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg
| | - Bin Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Lane W Martin
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
- Departments of Chemistry, and Physics and Astronomy, Rice University, Houston, TX, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA
| | - Lucas Caretta
- School of Engineering, Brown University, Providence, RI, USA
| | - Yimo Han
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Laurent Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Ramamoorthy Ramesh
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA.
- Departments of Chemistry, and Physics and Astronomy, Rice University, Houston, TX, USA.
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Huang X, Chen X, Li Y, Mangeri J, Zhang H, Ramesh M, Taghinejad H, Meisenheimer P, Caretta L, Susarla S, Jain R, Klewe C, Wang T, Chen R, Hsu CH, Harris I, Husain S, Pan H, Yin J, Shafer P, Qiu Z, Rodrigues DR, Heinonen O, Vasudevan D, Íñiguez J, Schlom DG, Salahuddin S, Martin LW, Analytis JG, Ralph DC, Cheng R, Yao Z, Ramesh R. Manipulating chiral spin transport with ferroelectric polarization. NATURE MATERIALS 2024; 23:898-904. [PMID: 38622325 DOI: 10.1038/s41563-024-01854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.
Collapse
Affiliation(s)
- Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Yuhang Li
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - John Mangeri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | | | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Sandhya Susarla
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rakshit Jain
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Christoph Klewe
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tianye Wang
- Department of Physics, University of California, Berkeley, CA, USA
| | - Rui Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Cheng-Hsiang Hsu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Isaac Harris
- Department of Physics, University of California, Berkeley, CA, USA
| | - Sajid Husain
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jia Yin
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ziqiang Qiu
- Department of Physics, University of California, Berkeley, CA, USA
| | - Davi R Rodrigues
- Department of Electrical Engineering, Politecnico di Bari, Bari, Italy
| | - Olle Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Dilip Vasudevan
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sayeef Salahuddin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James G Analytis
- Department of Physics, University of California, Berkeley, CA, USA
- CIFAR Quantum Materials, CIFAR, Toronto, Ontario, Canada
| | - Daniel C Ralph
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Ran Cheng
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Wang Z, Wang Q, Gong W, Chen A, Islam A, Quan L, Woehl TJ, Yan Q, Ren S. Magnet-in-ferroelectric crystals exhibiting photomultiferroicity. Proc Natl Acad Sci U S A 2024; 121:e2322361121. [PMID: 38625947 PMCID: PMC11046584 DOI: 10.1073/pnas.2322361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 04/18/2024] Open
Abstract
Growing crystallographically incommensurate and dissimilar organic materials is fundamentally intriguing but challenging for the prominent cross-correlation phenomenon enabling unique magnetic, electronic, and optical functionalities. Here, we report the growth of molecular layered magnet-in-ferroelectric crystals, demonstrating photomanipulation of interfacial ferroic coupling. The heterocrystals exhibit striking photomagnetization and magnetoelectricity, resulting in photomultiferroic coupling and complete change of their color while inheriting ferroelectricity and magnetism from the parent phases. Under a light illumination, ferromagnetic resonance shifts of 910 Oe are observed in heterocrystals while showing a magnetization change of 0.015 emu/g. In addition, a noticeable magnetization change (8% of magnetization at a 1,000 Oe external field) in the vicinity of ferro-to-paraelectric transition is observed. The mechanistic electric-field-dependent studies suggest the photoinduced ferroelectric field effect responsible for the tailoring of photo-piezo-magnetism. The crystallographic analyses further evidence the lattice coupling of a magnet-in-ferroelectric heterocrystal system.
Collapse
Affiliation(s)
- Zhongxuan Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Qian Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, MA02115
| | - Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Abdullah Islam
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Lina Quan
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
- Department of Materials and Science Engineering, Virginia Tech, Blacksburg, VA24060
| | - Taylor J. Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD20742
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, MA02115
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| |
Collapse
|
5
|
Husain S, Harris I, Gao G, Li X, Meisenheimer P, Shi C, Kavle P, Choi CH, Kim TY, Kang D, Behera P, Perrodin D, Guo H, M Tour J, Han Y, Martin LW, Yao Z, Ramesh R. Low-temperature grapho-epitaxial La-substituted BiFeO 3 on metallic perovskite. Nat Commun 2024; 15:479. [PMID: 38212317 PMCID: PMC10784590 DOI: 10.1038/s41467-024-44728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3 thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3 at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3 electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3 (001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3 typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.
Collapse
Affiliation(s)
- Sajid Husain
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Isaac Harris
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Xinyan Li
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Pravin Kavle
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Chi Hun Choi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Deokyoung Kang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Piush Behera
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Didier Perrodin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hua Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - James M Tour
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Lane W Martin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Ramamoorthy Ramesh
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
6
|
Valiulin VE, Chtchelkatchev NM, Mikheyenkov AV, Vinokur VM. Time-dependent exchange creates the time-frustrated state of matter. Sci Rep 2022; 12:16177. [PMID: 36171223 PMCID: PMC9519972 DOI: 10.1038/s41598-022-19751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic systems governed by exchange interactions between magnetic moments harbor frustration that leads to ground state degeneracy and results in the new topological state often referred to as a frustrated state of matter (FSM). The frustration in the commonly discussed magnetic systems has a spatial origin. Here we demonstrate that an array of nanomagnets coupled by the real retarded exchange interactions develops a new state of matter, time frustrated matter (TFM). In a spin system with the time-dependent retarded exchange interaction, a single spin-flip influences other spins not instantly but after some delay. This implies that the sign of the exchange interaction changes, leading to either ferro- or antiferromagnetic interaction, depends on time. As a result, the system’s temporal evolution is essentially non-Markovian. The emerging competition between different magnetic orders leads to a new kind of time-core frustration. To establish this paradigmatic shift, we focus on the exemplary system, a granular multiferroic, where the exchange transferring medium has a pronounced frequency dispersion and hence develops the TFM.
Collapse
Affiliation(s)
- V E Valiulin
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia.,Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - N M Chtchelkatchev
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
| | - A V Mikheyenkov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia.,Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - V M Vinokur
- Terra Quantum AG, Kornhausstrasse 25, 9000, St. Gallen, Switzerland. .,Physics Department, City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
7
|
Parsonnet E, Caretta L, Nagarajan V, Zhang H, Taghinejad H, Behera P, Huang X, Kavle P, Fernandez A, Nikonov D, Li H, Young I, Analytis J, Ramesh R. Nonvolatile Electric Field Control of Thermal Magnons in the Absence of an Applied Magnetic Field. PHYSICAL REVIEW LETTERS 2022; 129:087601. [PMID: 36053684 DOI: 10.1103/physrevlett.129.087601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Spin transport through magnetic insulators has been demonstrated in a variety of materials and is an emerging pathway for next-generation spin-based computing. To modulate spin transport in these systems, one typically applies a sufficiently strong magnetic field to allow for deterministic control of magnetic order. Here, we make use of the well-known multiferroic magnetoelectric, BiFeO_{3}, to demonstrate nonvolatile, hysteretic, electric-field control of thermally excited magnon current in the absence of an applied magnetic field. These findings are an important step toward magnon-based devices, where electric-field-only control is highly desirable.
Collapse
Affiliation(s)
- Eric Parsonnet
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Vikram Nagarajan
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Hossein Taghinejad
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Piush Behera
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Pravin Kavle
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Dmitri Nikonov
- Components Research, Intel Corporation, Hillsboro, Oregon 97124, USA
| | - Hai Li
- Components Research, Intel Corporation, Hillsboro, Oregon 97124, USA
| | - Ian Young
- Components Research, Intel Corporation, Hillsboro, Oregon 97124, USA
| | - James Analytis
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Ramamoorthy Ramesh
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Geng WR, Tang YL, Zhu YL, Wang YJ, Wu B, Yang LX, Feng YP, Zou MJ, Shi TT, Cao Y, Ma XL. Magneto-Electric-Optical Coupling in Multiferroic BiFeO 3 -Based Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106396. [PMID: 35730916 DOI: 10.1002/adma.202106396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.
Collapse
Affiliation(s)
- Wan-Rong Geng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yin-Lian Zhu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yu-Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Bo Wu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Li-Xin Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yan-Peng Feng
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min-Jie Zou
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong-Tong Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Yi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Xiu-Liang Ma
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| |
Collapse
|
9
|
Guo Y, Yu X, Zhang Y, Zhang X, Yuan S, Li Y, Yang SA, Wang J. 2D Multiferroicity with Ferroelectric Switching Induced Spin-Constrained Photoelectricity. ACS NANO 2022; 16:11174-11181. [PMID: 35816175 DOI: 10.1021/acsnano.2c04017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiferroic materials with tunable magnetoelectric orders enable the integration of sensing, data storage, and processing into one single device. The scarcity of single-phase multiferroics spurs extensive research in pursuit of composite systems combining different types of ferroic materials. In this work, spin-constrained photoelectric memory is proposed in two-dimensional (2D) layered magnetic/ferroelectric heterostructures, holding the possibility of low-power electrical write operation and nondestructive optical read operation. The ground state of ferromagnetic (FM) and antiferromagnetic (AFM) orderings in the magnetic layer is altered by polarization direction of the ferroelectric layer. Specifically, the FM heterostructure exhibits a type-II band alignment. Due to the light-induced charge transfer, spin-polarized/unpolarized current arises from the FM/AFM state, which can be recorded as the "1"/"0" state and served for logic processing and memory applications. Our first-principles calculations demonstrate that the NiI2/In2Se3 heterobilayer is an ideal candidate to realize such a spin-dependent photoelectric memory. The reversible FM state (easy-axis magnetic anisotropy) and AFM state (easy-plane magnetic orientation) in the NiI2 layer originate from interfacial charge transfer and effective electric field due to the proximity effect. This work offers considerable potential in the integration of memory processing capability into one single device with 2D layered multiferroic heterostructures.
Collapse
Affiliation(s)
- Yilv Guo
- School of Physics, Southeast University, Nanjing 211189, China
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xing Yu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiwen Zhang
- School of Mechanism Engineering & School of Physics, Southeast University, Nanjing 211189, China
| | - Shijun Yuan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Fernandez A, Acharya M, Lee HG, Schimpf J, Jiang Y, Lou D, Tian Z, Martin LW. Thin-Film Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108841. [PMID: 35353395 DOI: 10.1002/adma.202108841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial-thin-film-based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro-, meso-, and macroscopic length scales. This review traces the evolution of ferroelectric thin-film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high-throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand-in-hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.
Collapse
Affiliation(s)
- Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han-Gyeol Lee
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jesse Schimpf
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yizhe Jiang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Djamila Lou
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Multilevel polarization switching in ferroelectric thin films. Nat Commun 2022; 13:3159. [PMID: 35672404 PMCID: PMC9174202 DOI: 10.1038/s41467-022-30823-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022] Open
Abstract
Ferroic order is characterized by hystereses with two remanent states and therefore inherently binary. The increasing interest in materials showing non-discrete responses, however, calls for a paradigm shift towards continuously tunable remanent ferroic states. Device integration for oxide nanoelectronics furthermore requires this tunability at the nanoscale. Here we demonstrate that we can arbitrarily set the remanent ferroelectric polarization at nanometric dimensions. We accomplish this in ultrathin epitaxial PbZr0.52Ti0.48O3 films featuring a dense pattern of decoupled nanometric 180° domains with a broad coercive-field distribution. This multilevel switching is achieved by driving the system towards the instability at the morphotropic phase boundary. The phase competition near this boundary in combination with epitaxial strain increases the responsiveness to external stimuli and unlocks new degrees of freedom to nano-control the polarization. We highlight the technological benefits of non-binary switching by demonstrating a quasi-continuous tunability of the non-linear optical response and of tunnel electroresistance. Setting any polarization value in ferroelectric thin films is a key step for their implementation in neuromorphic devices. Here, the authors demonstrate continuous modulation of the remanent polarization at the nanoscale in PbZr0.52Ti0.48O3 films.
Collapse
|
12
|
Parvathy NS, Govindaraj R. Atomic scale insights on the growth of BiFeO 3 nanoparticles. Sci Rep 2022; 12:4758. [PMID: 35306518 PMCID: PMC8934348 DOI: 10.1038/s41598-022-08687-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
This study provides new insights on the formation of the nanocrystallites of phase pure BiFeO3 prepared using sol-gel method with tartaric acid as the fuel as comprehended based on the local structure and magnetic hyperfine fields at Fe sites using Mossbauer spectroscopy. Important steps involved in the growth of the nanocrystallites of BiFeO3 in the sol-gel reaction are elucidated in a detailed manner in this study for the first time. Three important stages with the second stage marked by the formation of as high as 75% of nanocrystallites of BiFeO3 occurring over a narrow calcination temperature interval 700-723 K have been deduced in this study. Variation of hyperfine parameters with calcination temperature of the dried precursor gel leading to an increase in the mean size of crystallites of BiFeO3 has been deduced. The nanoparticles of BiFeO3 are deduced to exhibit weak ferromagnetic property in addition to being strongly ferroelectric based on the magnetization and P-E loop studies. Consequently an appreciable magneto electric coupling effect in terms of significant changes in P-E loop variation with the application of external magnetic field is elucidated in this study, which is comprehended based on the defects associated with BiFeO3 nanoparticles.
Collapse
Affiliation(s)
- N S Parvathy
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, 603102, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - R Govindaraj
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, 603102, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
13
|
Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng RC, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen LQ, Martin LW, Huang YL, Íñiguez J, Ramesh R. The role of lattice dynamics in ferroelectric switching. Nat Commun 2022; 13:1110. [PMID: 35236832 PMCID: PMC8891289 DOI: 10.1038/s41467-022-28622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO3) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO3 films, to large (10's of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.
Collapse
Affiliation(s)
- Qiwu Shi
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Eric Parsonnet
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxing Cheng
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16802, PA, USA
| | - Natalya Fedorova
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, L-4362, Esch/Alzette, Luxembourg
| | - Ren-Ci Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Information and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Alexander Qualls
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xue Chang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - David Pesquera
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sujit Das
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Material Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Dmitri Nikonov
- Components Research, Intel Corporation, Hillsboro, OR, 97142, USA
| | - Ian Young
- Components Research, Intel Corporation, Hillsboro, OR, 97142, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16802, PA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yen-Lin Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, L-4362, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, L-4422, Belvaux, Luxembourg
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Ramesh R. Materials for a Sustainable Microelectronics Future: Electric Field Control of Magnetism with Multiferroics. J Indian Inst Sci 2022; 102:489-511. [PMID: 35035127 PMCID: PMC8749116 DOI: 10.1007/s41745-021-00277-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
This article is written on behalf of many colleagues, collaborators, and researchers in the field of complex oxides as well as current and former students and postdocs who continue to enable and undertake cutting-edge research in the field of multiferroics, magnetoelectrics, and the pursuit of electric-field control of magnetism. What I present is something that is extremely exciting from both a fundamental science and applications perspective and has the potential to revolutionize our world, particularly from a sustainability perspective. To realize this potential will require numerous new innovations, both in the fundamental science arena as well as translating these scientific discoveries into real applications. Thus, this article will attempt to bridge the gap between fundamental materials physics and the actual manifestations of the physical concepts into real-life applications. I hope this article will help spur more translational research within the broad materials community.
Collapse
Affiliation(s)
- R Ramesh
- Department of Physics and Department of Materials Science and Engineering, University of California, Berkeley, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
15
|
Müller M, Huang Y, Vélez S, Ramesh R, Fiebig M, Trassin M. Training the Polarization in Integrated La 0.15 Bi 0.85 FeO 3 -Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104688. [PMID: 34606122 PMCID: PMC11468450 DOI: 10.1002/adma.202104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The functionalities of BiFeO3 -based magnetoelectric multiferroic heterostructures rely on the controlled manipulation of their ferroelectric domains and of the corresponding net in-plane polarization, as this aspect guides the voltage-controlled magnetic switching. Chemical substitution has emerged as a key to push the energy dissipation of the BiFeO3 into the attojoule range but appears to result in a disordered domain configuration. Using non-invasive optical second-harmonic generation on heavily La-substituted BiFeO3 films, it is shown that a weak net in-plane polarization remains imprinted in the pristine films despite the apparent domain disorder. It is found that this ingrained net in-plane polarization can be trained with out-of-plane electric fields compatible with applications. Operando studies on capacitor heterostructures treated in this way show the full restoration of the domain configuration of pristine BiFeO3 along with a giant net in-plane polarization enhancement. Thus, the experiments reveal a surprising robustness of the net in-plane polarization of BiFeO3 against chemical modification, an important criterion in ongoing attempts to integrate magnetoelectric materials into energy-efficient devices.
Collapse
Affiliation(s)
- Marvin Müller
- Department of MaterialsETH ZurichZurich8093Switzerland
| | - Yen‐Lin Huang
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley LaboratoryBerkeleyCA94720USA
| | - Saül Vélez
- Department of MaterialsETH ZurichZurich8093Switzerland
- Condensed Matter Physics Center (IFIMAC) and Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridE‐28049Spain
| | - Ramamoorthy Ramesh
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley LaboratoryBerkeleyCA94720USA
- Department of PhysicsUniversity of CaliforniaBerkeleyCA94720USA
| | | | | |
Collapse
|
16
|
Gelves-Badillo JS, Romero AH, Garcia-Castro AC. Unveiling the mechanisms behind the ferroelectric response in the Sr(Nb,Ta)O 2N oxynitrides. Phys Chem Chem Phys 2021; 23:17142-17149. [PMID: 34179906 DOI: 10.1039/d1cp01716k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxynitride perovskites of the type ABO2N have attracted considerable attention thanks to their potential ferroelectric behavior and tunable bandgap energy, making them ideal candidates for photocatalysis processes. Therefore, in order to shed light on the origin of their ferroelectric response, here we report a complete analysis of the structural and vibrational properties of SrNbO2N and SrTaO2N oxynitrides. By employing first-principles calculations, we analyzed the symmetry in-equivalent structures considering the experimentally reported parent I4/mcm space group (with a phase a0a0c- in Glazer's notation). Based on the I4/mcm reference within the 20-atoms unit-cell, we found and studied the ensemble of structures where different octahedral anionic orderings are allowed by symmetry. Thus, by exploring the vibrational landscape of the cis- and trans-type configuration structures and supported by the ionic eigendisplacements and the Born effective charges, we explained the mechanism responsible for the appearance of stable ferroelectric phases in both anionic orderings. The latter goes from covalent-driven in the trans-type ordering to the geometrically-driven in the cis-type configuration. Finally, we found in both cases that the biaxial xy epitaxial strain considerably enhances such ferroelectric response.
Collapse
Affiliation(s)
- J S Gelves-Badillo
- School of Physics, Universidad Industrial de Santander, Carrera 27 Calle 09, 680002, Bucaramanga, Colombia.
| | | | | |
Collapse
|
17
|
Gradauskaite E, Meisenheimer P, Müller M, Heron J, Trassin M. Multiferroic heterostructures for spintronics. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractFor next-generation technology, magnetic systems are of interest due to the natural ability to store information and, through spin transport, propagate this information for logic functions. Controlling the magnetization state through currents has proven energy inefficient. Multiferroic thin-film heterostructures, combining ferroelectric and ferromagnetic orders, hold promise for energy efficient electronics. The electric field control of magnetic order is expected to reduce energy dissipation by 2–3 orders of magnitude relative to the current state-of-the-art. The coupling between electrical and magnetic orders in multiferroic and magnetoelectric thin-film heterostructures relies on interfacial coupling though magnetic exchange or mechanical strain and the correlation between domains in adjacent functional ferroic layers. We review the recent developments in electrical control of magnetism through artificial magnetoelectric heterostructures, domain imprint, emergent physics and device paradigms for magnetoelectric logic, neuromorphic devices, and hybrid magnetoelectric/spin-current-based applications. Finally, we conclude with a discussion of experiments that probe the crucial dynamics of the magnetoelectric switching and optical tuning of ferroelectric states towards all-optical control of magnetoelectric switching events.
Collapse
Affiliation(s)
- Elzbieta Gradauskaite
- Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 4 , Zurich , 8093 Switzerland
| | - Peter Meisenheimer
- Department of Materials Science and Engineering , University of Michigan , Ann Arbor , MI 48109 USA
| | - Marvin Müller
- Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 4 , Zurich , 8093 Switzerland
| | - John Heron
- Department of Materials Science and Engineering , University of Michigan , Ann Arbor , MI 48109 USA
| | - Morgan Trassin
- Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 4 , Zurich , 8093 Switzerland
| |
Collapse
|
18
|
Shi Z, Zhang J, Gao D, Zhu Z, Yang Z, Zhang Z. Giant magnetoelectric coupling observed at high frequency in NiFe 2O 4-BaTiO 3 particulate composite. RSC Adv 2020; 10:27242-27248. [PMID: 35515802 PMCID: PMC9055467 DOI: 10.1039/d0ra05782g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
A giant magnetoelectric voltage coupling coefficient without direct current magnetic field observed in NiFe2O4-BaTiO3 particulate composite is reported. The particulate composite was obtained by combining hydrothermal and sol-gel method, and was studied for their crystallographic structure, morphology, magnetic, dielectric and magnetoelectric properties. Results of Mössbauer spectra demonstrated the presence of interface phase in particulate composite, where the changes of the magnetic properties in composite compared to the pure NiFe2O4 also confirmed this. The particulate composite exhibits remarkable magnetoelectric effect through both static measurement and dynamic measurement. The special magnetoelectric property of the particulate composite is beneficial for applications in high frequency devices.
Collapse
Affiliation(s)
- Zhenhua Shi
- School of Science, Xi'an Technological University Xi'an 710021 People's Republic of China
| | - Jing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhonghua Zhu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhaolong Yang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhipeng Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|