1
|
Wang Q, Li Y, Qiu Z, Zhou D, Yang L, Suo X, Cui X, Xing H. Highly Efficient Separation of Intermediate-Size m-Xylene from Xylenes via a Length-Matched Metal-Organic Framework with Optimal Oxygen Sites Distribution. Angew Chem Int Ed Engl 2024; 63:e202408817. [PMID: 39113149 DOI: 10.1002/anie.202408817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
Xylene separation is crucial but challenging, especially for the preferential separation of the intermediate-size m-xylene from xylene mixtures. Herein, exploiting the differences in molecular length and alkyl distribution among xylenes, we present a length-matched metal-organic framework, formulated as Al(OH)[O2C-C4H2O-CO2], featuring an effective pore size corresponding to m-xylene molecular length combined with multiple negative O hydrogen bond donors distribution, can serve as a molecular trap for efficient preferential separation of the intermediate-size m-xylene. Benchmark separation performance was achieved for separating m-xylene from a ternary mixture of m-xylene/o-xylene/p-xylene, with simultaneous record-high m-xylene uptake (1.3 mmol g-1) and m-xylene/p-xylene selectivity (5.3) in the liquid-phase competitive adsorption. Both vapor- and liquid-phase fixed-bed tests confirmed its practical separation capability with benchmark dynamic m-xylene/p-xylene and m-xylene/o-xylene selectivities, as well as excellent regenerability. The selective and strong m-xylene binding affinity among xylene molecules was further elucidated by simulations, validating the effectiveness of such a pore environment for the separation of intermediate-size molecules.
Collapse
Affiliation(s)
- Qingju Wang
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yijian Li
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhensong Qiu
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dengzhuo Zhou
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Yang
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xian Suo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xili Cui
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Huabin Xing
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
2
|
Yan B, Xu K, Cao Y, Xu X, Lei M. Energy-Efficient Separation of Xylene Isomers through Stacked 1-Aminopyrene Polymer Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407842. [PMID: 39428830 DOI: 10.1002/smll.202407842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Developing high-performance adsorbents for energy-efficient separation of xylene isomers has important research and application value. Identification and separation of xylene isomers (PX, MX, and OX) at room temperature based on the different relative positions of two methyl groups on the benzene ring is an unprecedented attempt. Herein, 1-aminopyrene polymer (PAP) is designed and electro-synthesized composited with a supporting electrolyte as an adsorbent for the separation of xylene isomers using a multi-stage dispersed liquid-solid adsorption process at room temperature. Each -NH-pyrene-NH- unit can form a force field to identify and discriminate xylene isomer through π-π interaction combined with -CH3···-NH- interactions of different strength, thereby achieving separation of PX, MX, and OX isomers by amplifying the slight differences in the adsorption capacity and diffusion rates. The density functional theory (DFT) simulations provide a more quantitative analysis of the adsorbate-adsorbent interactions to illustrate PX > MX > OX order of adsorption selectivity. This study may offer an alternative strategy for the precise designing of energy-efficient and adsorption-based separation materials.
Collapse
Affiliation(s)
- Boning Yan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Kang Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yucai Cao
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Company Ltd., Shanghai, 200062, China
| | - Xueru Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ming Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Sun N, Zhou X, Yu H, Si X, Ding F, Sun Y, Zaworotko MJ. Selective Separation of C 8 Aromatics by an Interpenetrating Metal-Organic Framework Material. Inorg Chem 2024; 63:18847-18854. [PMID: 39327973 PMCID: PMC11462495 DOI: 10.1021/acs.inorgchem.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
O-xylene (OX) is an important chemical raw material, but it is often produced in mixtures with other C8 aromatics. Similar physicochemical properties of the C8 isomers make their separation and purification very difficult and energy intensive. There is an unmet need for an adsorbent that would be effective for the separation of OX from the other C8 isomers. This work reports a three-dimensional interpenetrated metal-organic framework, SYUCT-110, that interacts with each of the single-component C8 isomers to form. The selectivity of C8 aromatic hydrocarbons was determined through liquid-phase batch uptake experiments. The results revealed that the selectivity order was OX > PX > MX > ethylbenzene (EB). The selectivity values were found to be 2.63, 1.58, 5.51, 3.71, 1.86, and 3.02 for OX/MX, OX/PX, OX/EB, PX/MX, MX/EB, and PX/EB, respectively. The adsorption capacity of OX was 71 mg/g. Grand Canonical Monte Carlo simulations were used to study the C8 adsorption sites, revealing that π···π interactions are the main reason for the observed adsorption selectivity. The adsorption energy calculation results also verified the selectivity of SYUCT-110 for the synthesis of OX.
Collapse
Affiliation(s)
- Na Sun
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
- School
of Materials Science and Engineering National Institute for Advanced
Materials TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xue Zhou
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Han Yu
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiuwen Si
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fu Ding
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yaguang Sun
- Key
Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
- Petrochemical
Department, Liaoning Petrochemical College, Jinzhou 121001, China
| | - Michael J. Zaworotko
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
4
|
Tien EP, Cao G, Chen Y, Clark N, Tillotson E, Ngo DT, Carter JH, Thompson SP, Tang CC, Allen CS, Yang S, Schröder M, Haigh SJ. Electron beam and thermal stabilities of MFM-300(M) metal-organic frameworks. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:24165-24174. [PMID: 39301275 PMCID: PMC11409654 DOI: 10.1039/d4ta03302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/30/2024] [Indexed: 09/22/2024]
Abstract
This work reports the thermal and electron beam stabilities of a series of isostructural metal-organic frameworks (MOFs) of type MFM-300(M) (M = Al, Ga, In, Cr). MFM-300(Cr) was most stable under the electron beam, having an unusually high critical electron fluence of 1111 e- Å-2 while the Group 13 element MOFs were found to be less stable. Within Group 13, MFM-300(Al) had the highest critical electron fluence of 330 e- Å-2, compared to 189 e- Å-2 and 147 e- Å-2 for the Ga and In MOFs, respectively. For all four MOFs, electron beam-induced structural degradation was independent of crystal size and was highly anisotropic, although both the length and width of the channels decreased during electron beam irradiation. Notably, MFM-300(Cr) was found to retain crystallinity while shrinking up to 10%. Thermal stability was studied using in situ synchrotron X-ray diffraction at elevated temperature, which revealed critical temperatures for crystal degradation to be 605, 570, 490 and 480 °C for Al, Cr, Ga, and In, respectively. The pore channel diameters contracted by ≈0.5% on desorption of solvent species, but thermal degradation at higher temperatures was isotropic. The observed electron stabilities were found to scale with the relative inertness of the cations and correlate well to the measured lifetime of the materials when used as photocatalysts.
Collapse
Affiliation(s)
- Eu-Pin Tien
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Guanhai Cao
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nick Clark
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Evan Tillotson
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Duc-The Ngo
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Joseph H Carter
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen P Thompson
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Chiu C Tang
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Christopher S Allen
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd Didcot Oxfordshire OX11 0DE UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sarah J Haigh
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
5
|
Hyun T, Park J, So J, Kim J, Koh DY. Unexpected Molecular Sieving of Xylene Isomer Using Tethered Ligand in Polymer-Metal-Organic Frameworks (polyMOFs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402980. [PMID: 38978346 PMCID: PMC11425841 DOI: 10.1002/advs.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Indexed: 07/10/2024]
Abstract
Promising advances in adsorption technology can lead to energy-efficient solutions in industrial sectors. This work presents precise molecular sieving of xylene isomers in the polymer-metal-oragnic framework (polyMOF), a hybrid porous material derived from the parent isoreticular MOF-1 (IRMOF-1). PolyMOFs are synthesized by polymeric ligands bridged by evenly spaced alkyl chains, showing reduced pore sizes and enhanced stabilities compared to its parent material due to tethered polymer bridge within the pores while maintaining the original rigid crystal lattice. However, the exact configuration of the ligands within the crystals remain unclear, posing hurdles to predicting the adsorption performances of the polyMOFs. This work reveals that the unique pore structure of polyIRMOF-1-7a can discriminate xylene isomers with sub-angstrom size differences, leading to highly selective adsorption of p-xylene over other isomers and alkylbenzenes in complex liquid mixtures (αpX/OM = 15 and αpX/OME = 9). The structural details of the polyIRMOF-1-7a are elucidated through computational studies, suggesting a plausible configuration of alkyl chains within the polyMOF crystal, which enable a record-high p-xylene selectivity and stability in liquid hydrocarbon. With this unprecedented molecular selectivity in MOFs, "polymer-MOF" hybridization is expected to meet rigorous requirements for high-standard molecular sieving through precisely tunable and highly stable pores.
Collapse
Affiliation(s)
- Taehoon Hyun
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Junkil Park
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jungseob So
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Saudi Aramco-KAIST CO2 Management Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| |
Collapse
|
6
|
Koupepidou K, Wang SQ, Nikolayenko VI, Castell DC, Matos CMO, Vandichel M, Zaworotko MJ. Gate-opening Induced by C8 Aromatics in a Double Diamondoid Coordination Network. ACS MATERIALS LETTERS 2024; 6:2197-2204. [PMID: 38845756 PMCID: PMC11151277 DOI: 10.1021/acsmaterialslett.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Coordination networks (CNs) that undergo guest-induced structural transformations are of topical interest thanks to their potential utility in separations and storage applications. Herein, we report a double diamondoid (ddi) topology CN, [Ni2(bimpz)2(bdc)2(H2O)] n or X-ddi-2-Ni (H2bdc = 1,4-benzenedicarboxylic acid, bimpz = 3,6-bis(imidazol-1-yl)pyridazine), that undergoes structural transformations induced by C8 isomers, i.e., xylenes (o-xylene, OX; m-xylene, MX; p-xylene, PX) and ethylbenzene (EB). X-ddi-2-Ni was characterized by single-crystal to single-crystal transformations from a nonporous phase, X-ddi-2-Ni-β, to isostructural C8-loaded phases, namely X-ddi-2-Ni-OX, X-ddi-2-Ni-MX, X-ddi-2-Ni-PX and X-ddi-2-Ni-EB. X-ddi-2-Ni accommodates two C8 isomers per Ni unit, resulting in relatively high uptake (ca. 50 wt %), but with low selectivity toward C8 isomers as found using nuclear magnetic resonance (NMR) and gas chromatography (GC). In addition, a narrow range of gate-opening pressures for each isomer was determined from dynamic vapor sorption, consistent with the nonadaptable nature of the C8-loaded phase determined crystallographically, also supported by modeling.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634 Singapore
| | - Varvara I. Nikolayenko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Dominic C. Castell
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Catiúcia
R. M. O. Matos
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
7
|
Ma Y, Li C, Guo L, Lu W, Cheng Y, Han X, Li J, Crawshaw D, He M, Shan L, Lee D, da Silva I, Manuel P, Ramirez-Cuesta AJ, Schröder M, Yang S. Exceptional capture of methane at low pressure by an iron-based metal-organic framework. Chemistry 2024; 30:e202303934. [PMID: 38102961 DOI: 10.1002/chem.202303934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
The selective capture of methane (CH4) at low concentrations and its separation from N2 are extremely challenging owing to the weak host-guest interactions between CH4 molecules and any sorbent material. Here, we report the exceptional adsorption of CH4 at low pressure and the efficient separation of CH4/N2 by MFM-300(Fe). MFM-300(Fe) shows a very high uptake for CH4 of 0.85 mmol g-1 at 1 mbar and 298 K and a record CH4/N2 selectivity of 45 for porous solids, representing a new benchmark for CH4 capture and CH4/N2 separation. The excellent separation of CH4/N2 by MFM-300(Fe) has been confirmed by dynamic breakthrough experiments. In situ neutron powder diffraction, and solid-state nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modelling, reveal a unique and strong binding of CH4 molecules involving Fe-OH⋯CH4 and C⋯phenyl ring interactions within the pores of MFM-300(Fe), thus promoting the exceptional adsorption of CH4 at low pressure.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Cheng Li
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lixia Guo
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Wanpeng Lu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Danielle Crawshaw
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lutong Shan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Daniel Lee
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Ivan da Silva
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Pascal Manuel
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | | | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Wang M, Han Z, Wang K, Zhao B, Sun T, Wu Y, Cheng P, Shi W. Confinement of p-Xylene in the Pores of a Bilanthanide Metal-Organic Framework for Highly Selective Recognition. Angew Chem Int Ed Engl 2024; 63:e202318722. [PMID: 38086781 DOI: 10.1002/anie.202318722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 12/31/2023]
Abstract
The rapid and accurate sensing of p-xylene, an essential raw material with a multi-billion-dollar market, in xylene mixture is of great significance in industry; however, the highly similar molecular structures, energy levels, and spectral characteristics of xylene isomers make the selective recognition extremely challenging. Metal-organic frameworks (MOFs) exhibiting tailorable pores and potential binding sites provide prospects for xylene sensing but a comprehensive understanding of the pore effect is still elusive, primarily due to the intricacies involved in the sensing process. Herein, we reported a robust bilanthanide MOF NKU-999-EuTb with precisely engineered pores to accommodate p-xylene, of which the binding sites were confirmed by single crystal X-ray diffraction and dynamic magnetic susceptibilities. NKU-999-EuTb exhibits high-performance in selective recognition for p-xylene towards its isomers. Through a systematical study, it was revealed that absorbing p-xylene into the pores governs the sensing performance. This work provides insights for developing advanced sensing materials for complex isomers.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Kunyu Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Tiankai Sun
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuewei Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300071, Tianjin, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
9
|
Zhang L, Zhang H, Zhao Z, Meng T, Ma X, Li X, Liu R, Han X, Zhao X, Hao H, Yan H. Molecular Dynamics Simulation of the Adsorption and Diffusion of C 8 Aromatic Isomers in MIL-47(V). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2385-2395. [PMID: 38237570 DOI: 10.1021/acs.langmuir.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The separation of C8 aromatic isomers (oX: o-xylene, pX: p-xylene, mX: m-xylene, and EB: ethylbenzene) remains an enormous challenge in industrial production due to their similar molecular structures and physical properties. Porous materials with suitable pore structures and selective recognition sites to discriminate the slight structural differences of isomers are imminently needed. In this paper, MIL-47(V) with a three-dimensional (3D) grid structure of 10.5 × 10.5 Å2 and a one-dimensional (1D) diamond channel was selected as the adsorbent. However, the mechanism of the adsorption and separation of C8 aromatic isomers in porous materials still needs to be understood. Given the importance of C8 aromatic isomers' confinement in MIL-47(V) for adsorption and diffusion applications, it is important to understand C8 aromatic isomers' behavior in MIL-47(V). Here, we demonstrated from a simulation perspective that metal-organic frameworks MIL-47(V) with one-dimensional (1D) diamond channels can identify C8 aromatic isomers. Molecular dynamics (MD) simulations have shown that organic ligands with guest response sites of MIL-47(V) can effectively distinguish between C8 aromatic isomers by adaptation to the shape of a specific isomer. MIL-47(V) has high adsorption and an excellent separation sequence between C8 aromatic isomers: oX > pX ≈ mX > EB. Significant differences exist in π-π superposition interactions between C8 aromatic isomers and between C8 aromatic isomers and the skeletons. This phenomenon is mainly caused by the unique pore structure and guest response characteristics of MIL-47(V). This work is identified as a supplementary instruction to experimental research and is expected to provide profound insights into research on developing C8 aromatic isomers' adsorption and separation and theoretical support.
Collapse
Affiliation(s)
- Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hao Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhen Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tong Meng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xueke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
10
|
Gao MY, Wang SQ, Bezrukov AA, Darwish S, Song BQ, Deng C, Matos CMO, Liu L, Tang B, Dai S, Yang S, Zaworotko MJ. Switching Adsorbent Layered Material that Enables Stepwise Capture of C 8 Aromatics via Single-Crystal-to-Single-Crystal Transformations. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10001-10008. [PMID: 38107195 PMCID: PMC10720335 DOI: 10.1021/acs.chemmater.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Separation of the C8 aromatic isomers, xylenes (PX, MX, and OX) and ethylbenzene (EB), is important to the petrochemical industry. Whereas physisorptive separation is an energy-efficient alternative to current processes, such as distillation, physisorbents do not generally exhibit strong C8 selectivity. Herein, we report the mixed-linker square lattice (sql) coordination network [Zn2(sba)2(bis)]n·mDMF (sql-4,5-Zn, H2sba or 4 = 4,4'-sulfonyldibenzoic acid, bis or 5 = trans-4,4'-bis(1-imidazolyl)stilbene) and its C8 sorption properties. sql-4,5-Zn was found to exhibit high uptake capacity for liquid C8 aromatics (∼20.2 wt %), and to the best of our knowledge, it is the first sorbent to exhibit selectivity for PX, EB, and MX over OX for binary, ternary, and quaternary mixtures from gas chromatography. Single-crystal structures of narrow-pore, intermediate-pore, and large-pore phases provided insight into the phase transformations, which were enabled by flexibility of the linker ligands and changes in the square grid geometry and interlayer distances. This work adds to the library of two-dimensional coordination networks that exhibit high uptake, thanks to clay-like expansion, and strong selectivity, thanks to shape-selective binding sites, for C8 isomers.
Collapse
Affiliation(s)
- Mei-Yan Gao
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
- Agency
for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, 138634 Republic
of Singapore
| | - Andrey A. Bezrukov
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Bai-Qiao Song
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Chenghua Deng
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Catiúcia
R. M. O. Matos
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Lunjie Liu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Boya Tang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shan Dai
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
11
|
Yu L, Zhang J, Ullah S, Yao J, Luo H, Huang J, Xia Q, Thonhauser T, Li J, Wang H. Separating Xylene Isomers with a Calcium Metal-Organic Framework. Angew Chem Int Ed Engl 2023; 62:e202310672. [PMID: 37563093 DOI: 10.1002/anie.202310672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
The purification of p-xylene (pX) from its xylene isomers represents a challenging but important industrial process. Herein, we report the efficient separation of pX from its ortho- and meta- isomers by a microporous calcium-based metal-organic framework material (HIAM-203) with a flexible skeleton. At 30 °C, all three isomers are accommodated but the adsorption kinetics of o-xylene (oX) and m-xylene (mX) are substantially slower than that of pX, and at an elevated temperature of 120 °C, oX and mX are fully excluded while pX can be adsorbed. Multicomponent column breakthrough measurements and vapor-phase/liquid-phase adsorption experiments have demonstrated the capability of HIAM-203 for efficient separation of xylene isomers. Ab initio calculations have provided useful information for understanding the adsorption mechanism.
Collapse
Affiliation(s)
- Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen, 518055, P. R. China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen, 518055, P. R. China
| | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoyuan Luo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiajin Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
12
|
Chen Y, Lu W, Schröder M, Yang S. Analysis and Refinement of Host-Guest Interactions in Metal-Organic Frameworks. Acc Chem Res 2023; 56:2569-2581. [PMID: 37646412 PMCID: PMC10552526 DOI: 10.1021/acs.accounts.3c00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 09/01/2023]
Abstract
ConspectusMetal-organic frameworks (MOFs) are a class of hybrid porous materials characterized by their periodic assembly using metal ions and organic ligands through coordination bonds. Their high crystallinity, extensive surface area, and adjustable pore sizes make them promising candidates for a wide array of applications. These include gas adsorption and separation, substrate binding, and catalysis, of relevance to tackling pressing global issues such as climate change, energy challenges, and pollution. In comparison to traditional porous materials such as zeolites and activated carbons, the design flexibility of organic ligands in MOFs, coupled with their orderly arrangement with associated metal centers, allows for the precise engineering of uniform pore environments. This unique feature enables a rich variety of interactions between the MOF host and adsorbed gas molecules, which are fundamental to understanding the observed uptake capacity and selectivity for target gas molecules and thus the overall performance of the material.In this Account, a data set for three-dimensional MOFs has been constructed based upon the structural analysis of host-guest interactions using the largest experimental database, the Cambridge Structural Database (CSD). A full screening was performed on structures with guest molecules of H2, C2H2, CO2, and SO2, and the relationship between the primary binding site, the isosteric heats of adsorption (Qst), and the adsorption uptake was extracted and established. We review the methodologies to refine host-guest interactions based primarily on our studies on the host-guest chemistry of MOFs. The methods include ligand functionalization, variation of metal centers, formation of defects, addition of single atom sites, and control of pore size and structure. In situ structural and dynamic investigations using diffraction and spectroscopic techniques are powerful tools to visualize the details of host-guest interactions upon the above modifications, affording key insights into functional performance at a molecular level. Finally, we give an outlook of future research priorities in the study of host-guest chemistry in MOF materials. We hope this Account will encourage the rational development and improvement of future MOF-based sorbents for applications in challenging gas adsorption, separations, and catalysis.
Collapse
Affiliation(s)
- Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Du S, Huang B, Hao GP, Huang J, Liu Z, Oschatz M, Xiao J, Lu AH. pH-Regulated Refinement of Pore Size in Carbon Spheres for Size-Sieving of Gaseous C 8 , C 6 and C 3 Hydrocarbon Pairs. CHEMSUSCHEM 2023; 16:e202300215. [PMID: 37186177 DOI: 10.1002/cssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Selective separation of industrial important C8 , C6 and C3 hydrocarbon pairs by physisorbents can greatly reduce the energy intensity related to the currently used cryogenic distillation techniques. The achievement of size-sieving based on carbonaceous materials is desirable, but commonly hindered by the random structure of carbons often with a broad pore size distribution. Herein, a pH-regulated pre-condensation strategy was introduced to control the carbon pore architecture by the sp2 /sp3 hybridization of precursor. The lower pH value during pre-condensation of glucose facilitates the growth of aromatic nanodomains, rearrangement of stacked layers and a concomitant transition from sp3 -C to sp2 -C. The subsequent pyrolysis endows the pore size manipulated from 6.8 to 4.8 Å and narrowly distributed over a range of 0.2 Å. The refined pores enable effective size-sieving of C8 , C6 and C3 hydrocarbon pairs with high separation factor of 1.9 and 4.9 for C8 xylene (X) isomers para-X/meta-X and para-X/ortho-X, respectively, 5.1 for C6 alkane isomers n-hexane/3-methylpentane, and 22.0 for C3 H6 /C3 H8 . The excellent separation performance based-on size exclusion effect is validated by static adsorption isotherms and dynamic breakthrough experiments. This synthesis strategy provides a means of exploring advanced carbonaceous materials with controlled hybridized structure and pore sizes for challenging separation needs.
Collapse
Affiliation(s)
- Shengjun Du
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Baolin Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiawu Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zewei Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Jing Xiao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
14
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
15
|
Song X, Huang Q, Liu J, Xie H, Idrees KB, Hou S, Yu L, Wang X, Liu F, Qiao Z, Wang H, Chen Y, Li Z, Farha OK. Reticular Chemistry in Pore Engineering of a Y-Based Metal-Organic Framework for Xenon/Krypton Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18229-18235. [PMID: 36996577 DOI: 10.1021/acsami.3c01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fine-tuning of metal-organic framework (MOF) pore structures is of critical importance in developing energy-efficient xenon/krypton (Xe/Kr) separation techniques. Capitalizing on reticular chemistry, we constructed a robust Y-based MOF (NU-1801) that is isoreticular to NPF-500 with a shortened organic ligand and a larger metal radius while maintaining the 4,8-connected flu topology, giving rise to a narrowed pore structure for the efficient separation of a Xe/Kr mixture. At 298 K and 1 bar, NU-1801 possessed a moderate Xe uptake of 2.79 mmol/g but exhibited a high Xe/Kr selectivity of 8.2 and an exceptional Xe/Kr uptake ratio of about 400%. NU-1801 could efficiently separate a Xe/Kr mixture (20:80, v/v), as validated by breakthrough experiments, due to the outstanding discrimination in van der Waals interactions of Xe and Kr toward the framework confirmed by grand canonical Monte Carlo simulations. This work highlights the importance of reticular chemistry in designing structure-specific MOFs for gas separation.
Collapse
Affiliation(s)
- Xiyu Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qiuhong Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shujing Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
17
|
Xue S, Rong Y, Ding N, Zhao C, Sun Q, Li S, Pang S. Simultaneous Recognition and Separation of Organic Isomers Via Cooperative Control of Pore-Inside and Pore-Outside Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204963. [PMID: 36307904 PMCID: PMC9798982 DOI: 10.1002/advs.202204963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the desirability of organic isomer recognition and separation, current strategies are expensive and complicated. Here, a simple strategy for simultaneously recognizing and separating organic isomers using pillararene-based charge-transfer cocrystals through the cooperative control of pore-inside and pore-outside intermolecular interactions is presented. This strategy is illustrated using 1-bromobutane (1-BBU), which is often produced as an isomeric mixture with 2-bromobutane (2-BBU). According to its structure, perethylated pillar[5]arene (EtP5) and 3,5-dinitrobenzonitrile (DNB) are strategically chosen as a donor and an acceptor. As a result, their cocrystal exhibited stronger pore-inside interactions and much weaker pore-outside interactions with 1-BBU than with 2-BBU. Consequently, nearly 100% 1-BBU selectivity is achieved in two-component mixtures, even in those containing trace 1-BBU (1%), whereas free EtP5 only achieved 89.80% selectivity. The preference for linear bromoalkanes is retained in 1-bromopentane/3-bromopentane and 1-bromohexane/2-bromohexane mixtures, demonstrating the generality of this strategy. Selective adsorption of linear bromoalkanes induced a naked-eye-detectable color change from red to white. Moreover, the cocrystal are used over multiple cycles without losing selectivity.
Collapse
Affiliation(s)
- Shaomin Xue
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yujia Rong
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ning Ding
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Chaofeng Zhao
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Qi Sun
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shenghua Li
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Yangtze Delta Region AcademyBeijing Institute of TechnologyJiaxing314019P. R. China
| | - Siping Pang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
18
|
Zhou J, Ke T, Song Y, Cai H, Wang Z, Chen L, Xu Q, Zhang Z, Bao Z, Ren Q, Yang Q. Highly Efficient Separation of C8 Aromatic Isomers by Rationally Designed Nonaromatic Metal–Organic Frameworks. J Am Chem Soc 2022; 144:21417-21424. [DOI: 10.1021/jacs.2c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Yifei Song
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Hongyi Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhuo’an Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Luyao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Qianqian Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- School of Pharmaceutical and Materials Engineering, Taizhou University, 318000 Taizhou, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
19
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Aliphatic-Bridged Early Lanthanide Metal–Organic Frameworks: Topological Polymorphism and Excitation-Dependent Luminescence. INORGANICS 2022. [DOI: 10.3390/inorganics10100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Six new three-dimensional metal–organic frameworks based on early lanthanide(III) cations and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) were obtained. Their crystal structures were determined by single-crystal X-ray diffraction analysis. The structure of [La2(H2O)4(chdc)3]·2DMF·H2O (1; DMF = N,N-dimethylformamide) contains one-dimensional infinite La(III)-carboxylate chains interconnected by cyclohexane moieties to form a highly porous polymeric lattice with 30% solvent accessible volume. Compounds [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and Sm3+; phen = 1,10-phenanthroline) are based on binuclear carboxylate building blocks, which are decorated by chelate phenanthroline ligands and interconnected by cyclohexane moieties to form more dense isostructural coordination frameworks with primitive cubic pcu topology. Compound [Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3) is based on secondary building units similar to 2Ln and contains a coordination lattice isomeric to 2Ln with a rare hexagonal helical snz topology. Thermal stability and luminescent properties were investigated. For 2Sm, a strong and nonmonotonous dependence of the luminescence color on the variation of excitation wavelength was revealed, changing its emission from pinkish red at λex = 340 nm to white at λex = 400 nm, and then to yellow at lower excitation energies. Such nonlinear behavior was rationalized in terms of the contribution of several different luminescence mechanisms. Thus, 2Sm is a rather rare example of a highly tunable monometallic lanthanide-based luminophore with possible applications in light-emitting devices and optical data processing.
Collapse
|
21
|
Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhou J, Ke T, Steinke F, Stock N, Zhang Z, Bao Z, He X, Ren Q, Yang Q. Tunable Confined Aliphatic Pore Environment in Robust Metal-Organic Frameworks for Efficient Separation of Gases with a Similar Structure. J Am Chem Soc 2022; 144:14322-14329. [PMID: 35849509 DOI: 10.1021/jacs.2c05448] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fine-tuning of the pore structure of metal-organic frameworks (MOFs) is of critical importance to developing energy-efficient processes for the challenging separation of structurally similar molecules. Herein, we demonstrate a strategy to realize a quasi-three-dimensional refinement of the pore structure that utilizes the tunability of ring size and number in polycycloalkane-dicarboxylate ligands. Two hydrolytically stable MOFs with a confined aliphatic pore environment, ZUL-C1 and ZUL-C2, were, for the first time, synthesized and applied in separating low-concentration C2-C3 hydrocarbons from natural gas and ultralow-concentration Xe from used nuclear fuel (UNF) off-gas. Validated by X-ray diffraction and modeling, an expansion of the polycycloalkane moiety enables sub-angstrom contraction in specific directions and forms a pore surface with more alkyl sites, which affords stronger trapping of guest molecules with relatively higher polarizability. The resultant material exhibits record C2H6/CH4 and C3H8/CH4 selectivities coupled with a benchmark low-pressure C2H6 capacity in alkane mixture separation and also a benchmark Xe capacity at extremely diluted feed concentration and record Kr productivity for the Xe/Kr (20:80, v/v) mixture in Xe/Kr separation.
Collapse
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Felix Steinke
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China.,Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China.,Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Xin He
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China.,Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China.,Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
24
|
Li L, Guo L, Olson DH, Xian S, Zhang Z, Yang Q, Wu K, Yang Y, Bao Z, Ren Q, Li J. Discrimination of xylene isomers in a stacked coordination polymer. Science 2022; 377:335-339. [DOI: 10.1126/science.abj7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The separation and purification of xylene isomers is an industrially important but challenging process. Developing highly efficient adsorbents is crucial for the implementation of simulated moving bed technology for industrial separation of these isomers. Herein, we report a stacked one-dimensional coordination polymer {[Mn(dhbq)(H
2
O)
2
], H
2
dhbq = 2,5-dihydroxy-1,4-benzoquinone} that exhibits an ideal molecular recognition and sieving of xylene isomers. Its distinct temperature-adsorbate–dependent adsorption behavior enables full separation of
p
-,
m
-, and
o
-xylene isomers in both vapor and liquid phases. The delicate stimuli-responsive swelling of the structure imparts this porous material with exceptionally high flexibility and stability, well-balanced adsorption capacity, high selectivity, and fast kinetics at conditions mimicking industrial settings. This study may offer an alternative approach for energy-efficient and adsorption-based industrial xylene separation and purification processes.
Collapse
Affiliation(s)
- Liangying Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - David H. Olson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shikai Xian
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kaiyi Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| |
Collapse
|
25
|
Qin P, Day BA, Okur S, Li C, Chandresh A, Wilmer CE, Heinke L. VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends. ACS Sens 2022; 7:1666-1675. [PMID: 35674347 DOI: 10.1021/acssensors.2c00301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection and recognition of volatile organic compounds (VOCs) are crucial in many applications. While pure VOCs can be detected by various sensors, the discrimination of VOCs in mixtures, especially of similar molecules, is hindered by cross-sensitivities. Isomer identification in mixtures is even harder. Metal-organic frameworks (MOFs) with their well-defined, nanoporous, and versatile structures have the potential to improve the VOC sensing performance by tailoring the adsorption affinities. Here, we detect and identify ternary xylene isomer mixtures by using an array of six gravimetric, quartz crystal microbalance (QCM)-based sensors coated with selected MOF films with different isomer affinities. We use classical molecular simulations to provide insights into the sensing mechanism. In addition to the attractive interaction between the analytes and the MOF film, the isomer discrimination is caused by the rigid crystalline framework sterically controlling the access of the isomers to different adsorption sites in the MOFs. The sensor array has a very low limit of detection of 1 ppm for each pure isomer and allows the isomer discrimination in mixtures. At 100 ppm, 16 different ternary o-p-m-xylene mixtures were identified with high classification accuracy (96.5%). This work shows the unprecedented performance of MOF-sensor arrays, also referred to as MOF-electronic nose (MOF-e-nose), for sensing VOC mixtures. Based on the study, guidelines for detecting and discriminating complex mixtures of volatile molecules are also provided.
Collapse
Affiliation(s)
- Peng Qin
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brian A Day
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Unites States
| | - Salih Okur
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chun Li
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher E Wilmer
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Unites States.,Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Unites States
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Xu M, Meng SS, Cai P, Gu YH, Yan TA, Yan TH, Zhang QH, Gu L, Liu DH, Zhou HC, Gu ZY. Homogeneously Mixing Different Metal-Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS CENTRAL SCIENCE 2022; 8:184-191. [PMID: 35233451 PMCID: PMC8874727 DOI: 10.1021/acscentsci.1c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/01/2023]
Abstract
Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu-Hao Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tong-An Yan
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qing-Hua Zhang
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Huan Liu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| | - Zhi-Yuan Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
27
|
Ma L, Xie Y, Khoo RSH, Arman H, Wang B, Zhou W, Zhang J, Lin RB, Chen B. An Adaptive Hydrogen-Bonded Organic Framework for the Exclusive Recognition of p-Xylene. Chemistry 2022; 28:e202104269. [PMID: 34982835 DOI: 10.1002/chem.202104269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Separation of xylene isomers is one of the most important but most challenging and energy-intensive separation processes in the petrochemical industry. Here, we report an adaptive hydrogen-bonded organic framework (HOF-29) constructed from a porphyrin based organic building block 4,4',4'',4'''-(porphyrin-5,10,15,20-tetrayl) tetrabenzonitrile (PTTBN), exhibiting the exclusive molecular recognition of p-xylene (pX) over its isomers of o-xylene (oX) and m-xylene (mX), as clearly demonstrated in the single crystal structure transformation and 1 H NMR studies. Single crystal structure studies show that single-crystal-to-single-crystal transformation from the as-synthesized HOF-29 to the pX exclusively included HOF-29⊃pX is triggered by the encapsulation of pX molecules, accompanied by sliding of the 2D layers and local distortion of the ligand, which provides multiple C-H⋅⋅⋅π interactions.
Collapse
Affiliation(s)
- Li Ma
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Rebecca Shu Hui Khoo
- Organic and Macromolecular Synthesis Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 67R6110, Berkeley, CA 94720, USA
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Bin Wang
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards & Technology, Gaithersburg, Maryland, 20899-6102, USA
| | - Jian Zhang
- Organic and Macromolecular Synthesis Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 67R6110, Berkeley, CA 94720, USA
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|
28
|
Wang J, Zhang Y, Su Y, Liu X, Zhang P, Lin RB, Chen S, Deng Q, Zeng Z, Deng S, Chen B. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C 2H 2/CO 2 separation. Nat Commun 2022; 13:200. [PMID: 35017555 PMCID: PMC8752597 DOI: 10.1038/s41467-021-27929-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023] Open
Abstract
The separation of C2H2/CO2 is not only industrially important for acetylene purification but also scientifically challenging owing to their high similarities in physical properties and molecular sizes. Ultramicroporous metal-organic frameworks (MOFs) can exhibit a pore confinement effect to differentiate gas molecules of similar size. Herein, we report the fine-tuning of pore sizes in sub-nanometer scale on a series of isoreticular MOFs that can realize highly efficient C2H2/CO2 separation. The subtle structural differences lead to remarkable adsorption performances enhancement. Among four MOF analogs, by integrating appropriate pore size and specific binding sites, [Cu(dps)2(SiF6)] (SIFSIX-dps-Cu, SIFSIX = SiF62-, dps = 4.4'-dipyridylsulfide, also termed as NCU-100) exhibits the highest C2H2 uptake capacity and C2H2/CO2 selectivity. At room temperature, the pore space of SIFSIX-dps-Cu significantly inhibits CO2 molecules but takes up a large amount of C2H2 (4.57 mmol g-1), resulting in a high IAST selectivity of 1787 for C2H2/CO2 separation. The multiple host-guest interactions for C2H2 in both inter- and intralayer cavities are further revealed by dispersion-corrected density functional theory and grand canonical Monte Carlo simulations. Dynamic breakthrough experiments show a clean C2H2/CO2 separation with a high C2H2 working capacity of 2.48 mmol g-1.
Collapse
Affiliation(s)
- Jun Wang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Yan Zhang
- Jiangxi University of Chinese Medicine, Nanchang, 330031, Jiangxi, PR China
| | - Yun Su
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Liu
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Peixin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Shixia Chen
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Qiang Deng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Zheling Zeng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, USA.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
29
|
Sun W, Jin Y, Wu Y, Lou W, Yuan Y, Duttwyler S, Wang L, Zhang Y. A new boron cluster anion pillared metal organic framework with ligand inclusion and its selective acetylene capture properties. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00890d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel microporous boron cluster pillared metal–organic framework BSF-10 was synthesized with ligand inclusion for efficient C2H2/CO2 and C2H2/C2H4 adsorption separation.
Collapse
Affiliation(s)
- Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Jin
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, P. R. China
| | - Yilian Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wushuang Lou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanbin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, P. R. China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
30
|
Kovalenko KA, Potapov AS, Fedin VP. Micro- and mesoporous metal-organic coordination polymers for separation of hydrocarbons. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Ming M, Zhou H, Mao YN, Li HR, Chen J. Selective perrhenate/pertechnetate removal by a MOF-based molecular trap. Dalton Trans 2022; 51:4458-4465. [DOI: 10.1039/d1dt04175d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational design of anion-exchange materials for selective elimination of radioactive anionic contaminants poses a great challenge. Rather than relying on a size-compatible effect, combination of nano-sieve pore, hydrophobic cationic cavity,...
Collapse
|
32
|
Wang P, Kajiwara T, Otake KI, Yao MS, Ashitani H, Kubota Y, Kitagawa S. Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52144-52151. [PMID: 34347426 DOI: 10.1021/acsami.1c10061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xylene isomers are crucial chemical intermediates in great demand worldwide; the almost identical physicochemical properties render their current separation approach energy consuming. In this study, we utilized the soft porous coordination polymer (PCP)'s isomer-specific structural transformation, realizing o-xylene (oX) recognition/separation from the binary and ternary isomer mixtures. This PCP has a flexible structure that contains flexible aromatic pendant groups, which both work as recognition sites and induce structural flexibility of the global framework. The PCP exhibits guest-triggered "breathing"-type structural changes, which are accompanied by the rearrangement of the intraframework π-π interaction. By rebuilding π-π stacking with isomer species, the PCP discriminated oX from the other isomers by its specific guest-loading configuration and separated oX from the isomer mixture via selective adsorption. The xylene-selective property of the PCP is dependent on the solvent; in diluted hexane solution, the PCP favors p-xylene (pX) uptake. The separation results combined with crystallographic analyses revealed the effect of the isomer selectivity of the PCP on xylene isomer separation via structural transition and demonstrated its potential as a versatile selective adsorptive medium for challenging separations.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Zhao Y, Zhao H, Liu D. Selective Adsorption and Separation of o-Xylene Using an Aluminum-Based Metal–Organic Framework. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingjie Zhao
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huifang Zhao
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dahuan Liu
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
34
|
Wu Y, Weckhuysen BM. Separation and Purification of Hydrocarbons with Porous Materials. Angew Chem Int Ed Engl 2021; 60:18930-18949. [PMID: 33784433 PMCID: PMC8453698 DOI: 10.1002/anie.202104318] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/11/2022]
Abstract
This Minireview focuses on the developments of the adsorptive separation of methane/nitrogen, ethene/ethane, propene/propane mixtures as well as on the separation of C8 aromatics (i.e. xylene isomers) with a wide variety of materials, including carbonaceous materials, zeolites, metal-organic frameworks, and porous organic frameworks. Some recent important developments for these adsorptive separations are also highlighted. The advantages and disadvantages of each material category are discussed and guidelines for the design of improved materials are proposed. Furthermore, challenges and future developments of each material type and separation processes are discussed.
Collapse
Affiliation(s)
- Yaqi Wu
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
35
|
Wu Y, Weckhuysen BM. Separation and Purification of Hydrocarbons with Porous Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yaqi Wu
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
36
|
Drake HF, Xiao Z, Day GS, Vali SW, Chen W, Wang Q, Huang Y, Yan TH, Kuszynski JE, Lindahl PA, Ryder MR, Zhou HC. Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal-organic frameworks containing open metal sites. MATERIALS ADVANCES 2021; 2:5487-5493. [PMID: 34458847 PMCID: PMC8366390 DOI: 10.1039/d1ma00163a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The effect of metal-cluster redox identity on the thermal decarboxylation of a series of isostructural metal-organic frameworks (MOFs) with tetracarboxylate-based ligands and trinuclear μ3-oxo clusters was investigated. The PCN-250 series of MOFs can consist of various metal combinations (Fe3, Fe/Ni, Fe/Mn, Fe/Co, Fe/Zn, Al3, In3, and Sc3). The Fe-based system can undergo a thermally induced reductive decarboxylation, producing a mixed valence cluster with decarboxylated ligand fragments subsequently eliminated to form uniform mesopores. We have extended the analysis to alternative monometallic and bimetallic PCN-250 systems to observe the cluster's effect on the decarboxylation process. Our results suggest that the propensity to undergo decarboxylation is directly related to the cluster redox accessibility, with poorly reducible metals, such as Al, In, and Sc, unable to thermally reduce at the readily accessible temperatures of the Fe-containing system. In contrast, the mixed-metal variants are all reducible. We report improvements in gas adsorption behavior, significantly the uniform increase in the heat of adsorption going from the microporous to hierarchically induced decarboxylated samples. This, along with Fe oxidation state changes from 57Fe Mössbauer spectroscopy, suggests that reduction occurs at the clusters and is essential for mesopore formation. These results provide insight into the thermal behavior of redox-active MOFs and suggest a potential future avenue for generating mesoporosity using controlled cluster redox chemistry.
Collapse
Affiliation(s)
- Hannah F Drake
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Gregory S Day
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | - Wenmiao Chen
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Qi Wang
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Yutao Huang
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Tian-Hao Yan
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Jason E Kuszynski
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | - Matthew R Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
37
|
Li Y, Wang HT, Zhao YL, Lv J, Zhang X, Chen Q, Li JR. Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Dvořák P, Alvarez-Carreño C, Ciordia S, Paradela A, de Lorenzo V. An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors. Environ Microbiol 2021; 23:4418-4433. [PMID: 34097798 DOI: 10.1111/1462-2920.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
A revised model of the aromatic binding A domain of the σ54 -dependent regulator XylR of Pseudomonas putida mt-2 was produced based on the known 3D structures of homologous regulators PoxR, MopR and DmpR. The resulting frame was instrumental for mapping a number of mutations known to alter effector specificity, which were then reinterpreted under a dependable spatial reference. Some of these changes involved the predicted aromatic binding pocket but others occurred in distant locations, including dimerization interfaces and putative zinc binding site. The effector pocket was buried within the protein structure and accessible from the outside only through a narrow tunnel. Yet, several loop regions of the A domain could provide the flexibility required for widening such a tunnel for passage of aromatic ligands. The model was experimentally validated by treating the cells in vivo and the purified protein in vitro with benzyl bromide, which reacts with accessible nucleophilic residues on the protein surface. Structural and proteomic analyses confirmed the predicted in/out distribution of residues but also supported two additional possible scenarios of interaction of the A domain with aromatic effectors: a dynamic interaction of the fully structured yet flexible protein with the aromatic partner and/or inducer-assisted folding of the A domain.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Brno, Kamenice 753/5, 62500, Czech Republic
| | - Carlos Alvarez-Carreño
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain.,Centro Tecnológico José Lladó, División de Desarrollo de Tecnologías Propias, Técnicas Reunidas, Calle Sierra Nevada, 16, San Fernando de Henares, Madrid, 28830, Spain
| | - Sergio Ciordia
- Proteomics Core Facilit, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Alberto Paradela
- Proteomics Core Facilit, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
39
|
Meng SS, Xu M, Han T, Gu YH, Gu ZY. Regulating metal-organic frameworks as stationary phases and absorbents for analytical separations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1318-1331. [PMID: 33629983 DOI: 10.1039/d0ay02310h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are highly ordered framework systems composed of metal centers and organic linkers formed through coordination bonds. The diversity of metal elements and easily modified organic ligands, together with controllable synthetic approaches, gives rise to the designability of various MOF structures and topologies and the capability of MOFs to be functionalized. Their structural diversity provides MOFs with many unique properties, such as permanent porosity, flexible structures, thermostability, and high adsorption capacity, leading to great practicability in technical applications. In this review, we concentrate on the applications of MOFs in the field of gas chromatography, high-performance liquid chromatography, and the enrichment of biomolecules, based on rational arrangements in the structures and functions of MOFs. Moreover, we emphasize the importance of structural and chemical regulations for the improvement of separation efficiency.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
40
|
Li YZ, Wang GD, Ma LN, Hou L, Wang YY, Zhu Z. Multiple Functions of Gas Separation and Vapor Adsorption in a New MOF with Open Tubular Channels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4102-4109. [PMID: 33463146 DOI: 10.1021/acsami.0c21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separation or purification is one of the difficult problems in the petrochemical industry. To help solve the difficulty of separation or purification for C2H2/CO2 and C2Hn/CH4 in the chemical industry, we synthesized a new metal-organic framework (MOF), [Ni(dpip)]·2.5DMF·H2O (1), by a bipyridyl-substituted isophthalic acid ligand. The MOF includes two types of one-dimensional (1D) tubular channels with different sizes and porous environments. The unique tubular channels lead to not only remarkable gas sorption capacity of C2H4, C2H2, and CO2, but also good selectivity for C2H2/CH4, C2H2/CH4, CO2/CH4, and C2H2/CO2, as demonstrated by single-component sorption isotherm results, ideal adsorbed solution theory calculations, and dynamic breakthrough curves. Grand canonical Monte Carlo (GCMC) simulation reveals preferential adsorption sites in the MOF for CO2, C2H2, and C2H4. The MOF also exhibits an obvious size-selective absorption effect on vapor molecules.
Collapse
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|