1
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024; 19:1105-1120. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Xu YY, Chen T, Ding H, Chen Q, Fan QL. Melatonin inhibits circadian gene DEC1 and TLR2/MyD88/NF-κB signaling pathway to alleviate renal injury in type 2 diabetic mice. Acta Diabetol 2024; 61:1455-1474. [PMID: 38896283 DOI: 10.1007/s00592-024-02312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear. METHODS We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA. RESULTS Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin's potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK's effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway. CONCLUSION Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tong Chen
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiong Chen
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| | - Qiu-Ling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
3
|
Przybylska-Piech AS, Diedrich V, Herwig A. Seasonal changes in activity of hypothalamic thyroid hormone system in different winter phenotypes of Djungarian hamster (Phodopus sungorus). PLoS One 2024; 19:e0309591. [PMID: 39453953 PMCID: PMC11508246 DOI: 10.1371/journal.pone.0309591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/15/2024] [Indexed: 10/27/2024] Open
Abstract
Although the Djungarian hamster (Phodopus sungorus) is a seasonality model, it presents substantial variability in winter acclimation. In response to short photoperiod, some individuals express a suite of winter traits such as low body mass, regressed gonads, white fur, and daily torpor, while others develop only some adjustments or maintain a summer phenotype. Despite comprehensive research, the mechanisms underlying polymorphism of winter phenotype are still unknown. We compared key elements of the hypothalamic thyroid hormone system, as well as the tanycyte architecture in hamsters of both sexes. Individuals presented different responses to short photoperiod characterized either as phenotypes (non-responder, partial-responder and full-responder) or photoresponsive index. We measured the expression of genes coding iodothyronine deiodinase 2 and 3, monocarboxylate transporter 8, thyrotropin-releasing hormone, and somatostatin in 40 individuals and counted the number of immunolabeled tanycyte processes in standardized regions of interest around the third ventricle in 30 individuals. Animals acclimated to short photoperiod presented a downregulation of diodinase 2 and somatostatin and an upregulation of deiodinase 3, as well as a decreased number of tanycyte processes, compared to long photoperiod-exposed individuals. Although phenotypes did not differ in gene expression, the higher the photoresponsive index, the lower was the deiodinase 2 expression and the higher the deiodinase 3 expression. Partial-responders and full-responders had less tanycyte processes than non-responders, and the number of tanycyte processes correlated with the photoresponsive index. Sexes differed neither in their seasonal response, nor hypothalamic gene expression, but females had more tanycyte processes. Our results are in accordance with studies emphasizing the pivotal role of thyroid hormones in seasonal response. We suggest that the whole spectrum of winter phenotypes exists within the population of Djungarian hamsters and that it is reflected also at the level of neuroendocrine regulation. However, the neuroendocrine underpinnings of winter phenotype polymorphism require further investigation.
Collapse
Affiliation(s)
- Anna S. Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Appenroth D, West AC, Wood SH, Hazlerigg DG. Tanycytes from a bird's eye view: gene expression profiling of the tanycytic region under different seasonal states in the Svalbard ptarmigan. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01716-3. [PMID: 39299992 DOI: 10.1007/s00359-024-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In mammals and birds, tanycytes are known to regulate thyroid hormone conversion, and this process is central to the control of seasonal reproduction. In mammals, this cell type is also implicated in retinoic acid signalling, neurogenesis, and nutritional gatekeeping, all of which have been linked to hypothalamic regulation of energy metabolism. Less is known about these potential wider roles of tanycytes in birds. To address this gap, we combined LASER capture microdissection and transcriptomics to profile the tanycytic region in male Svalbard ptarmigan, a High Arctic species with photoperiod-dependent seasonal rhythms in reproductive activation and body mass. Short photoperiod (SP) adapted birds were transferred to constant light (LL) to trigger breeding and body mass loss. After five months under LL, the development of photorefractoriness led to spontaneous re-emergence of the winter phenotype, marked by the termination of breeding and gain in body mass. The transfer from SP to LL initiated gene expression changes in both thyroid hormone and retinoic acid pathways, as described in seasonal mammals. Furthermore, transcriptomic signatures of cell differentiation and migration were observed. Comparison to data from Siberian hamsters demonstrated that a photoperiod-dependent re-organisation of the hypothalamic tanycytic region is likely a conserved feature. Conversely, the spontaneous development of photorefractoriness showed a surprisingly small number of genes that reverted in expression level, despite reversal of the reproductive and metabolic phenotype. Our data suggest general conservation of tanycyte biology between photoperiodic birds and mammals and raise questions about the mechanistic origins of the photorefractory state.
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
6
|
de Andrade TG, Beale AD. Darwin and the biological rhythms. PNAS NEXUS 2024; 3:pgae318. [PMID: 39192844 PMCID: PMC11348560 DOI: 10.1093/pnasnexus/pgae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
While the formalization of chronobiology as a scientific discipline occurred in the mid-20th century, the exploration of rhythmic phenomena has a longer history, notably exemplified by De Mairan's observations of Mimosa pudica in darkness in 1729. In this historical narrative, Charles Darwin is known for his investigations into the "sleep movements" of plants. Nevertheless, the complete scope of Darwin's exploration of biological rhythms remains incompletely understood. Through a detailed examination of Darwin's writings, meticulous observations, experiments, and conceptualizations, we unveil a depth of engagement that surpasses his widely acknowledged work on plants, revealing a more extensive interest in and insight into biological rhythms than traditionally recognized.
Collapse
Affiliation(s)
- Tiago G de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Campus A.C. Simões, Av. Lourival Melo Mota, s/n - Tabuleiro do Martins, 57072-900, Maceió, Alagoas, Brazil
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, 01223 267000, Cambridge, United Kingdom
| |
Collapse
|
7
|
Saito T, Wang S, Ohkawa K, Ohara H, Kondo S. Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds. TREE PHYSIOLOGY 2024; 44:tpae072. [PMID: 38905284 DOI: 10.1093/treephys/tpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
8
|
Dardente H, Lomet D, Robert V, Lasserre O, Gonzalez AA, Mialhe X, Beltramo M. Photoperiod, but not progesterone, has a strong impact upon the transcriptome of the medio-basal hypothalamus in female goats and ewes. Mol Cell Endocrinol 2024; 588:112216. [PMID: 38556161 DOI: 10.1016/j.mce.2024.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.
Collapse
Affiliation(s)
- Hugues Dardente
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Didier Lomet
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vincent Robert
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | | |
Collapse
|
9
|
Payton L, Last KS, Grigor J, Noirot C, Hüppe L, Conway DVP, Dannemeyer M, Wilcockson D, Meyer B. Revealing the profound influence of diapause on gene expression: Insights from the annual transcriptome of the copepod Calanus finmarchicus. Mol Ecol 2024; 33:e17425. [PMID: 38847383 DOI: 10.1111/mec.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- CNRS, Univ. Bordeaux, Bordeaux INP, EPOC, UMR 5805, Arcachon, F-33120, France
| | - Kim S Last
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - Jordan Grigor
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - Céline Noirot
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, Castanet-Tolosan, France
| | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - David V P Conway
- Marine Biological Association of the UK, the Laboratory, Plymouth, UK
| | - Mona Dannemeyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Avila A, Zhang SL. A circadian clock regulates the blood-brain barrier across phylogeny. VITAMINS AND HORMONES 2024; 126:241-287. [PMID: 39029975 DOI: 10.1016/bs.vh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
As the central regulatory system of an organism, the brain is responsible for overseeing a wide variety of physiological processes essential for an organism's survival. To maintain the environment necessary for neurons to function, the brain requires highly selective uptake and elimination of specific molecules through the blood-brain barrier (BBB). As an organism's activities vary throughout the day, how does the BBB adapt to meet the changing needs of the brain? A mechanism is through temporal regulation of BBB permeability via its circadian clock, which will be the focal point of this chapter. To comprehend the circadian clock's role within the BBB, we will first examine the anatomy of the BBB and the transport mechanisms enabling it to fulfill its role as a restrictive barrier. Next, we will define the circadian clock, and the discussion will encompass an introduction to circadian rhythms, the Transcription-Translation Feedback Loop (TTFL) as the mechanistic basis of circadian timekeeping, and the organization of tissue clocks found in organisms. Then, we will cover the role of the circadian rhythms in regulating the cellular mechanisms and functions of the BBB. We discuss the implications of this regulation in influencing sleep behavior, the progression of neurodegenerative diseases, and finally drug delivery for treatment of neurological diseases.
Collapse
Affiliation(s)
- Ashley Avila
- Cell Biology Department, Emory University, Atlanta, GA, United States
| | - Shirley L Zhang
- Cell Biology Department, Emory University, Atlanta, GA, United States.
| |
Collapse
|
11
|
Manoogian ENC, Bahiru MS, Wang EJ, Holder M, Bittman EL. Neuroendocrine effects of the duper mutation in Syrian hamsters: a role for Cryptochrome 1. Front Physiol 2024; 15:1351682. [PMID: 38444761 PMCID: PMC10912188 DOI: 10.3389/fphys.2024.1351682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Molecular and physiological determinants of the timing of reproductive events, including the pre-ovulatory LH surge and seasonal fluctuations in fertility, are incompletely understood. We used the Cryptochrome 1-deficient duper mutant to examine the role of this core circadian clock gene in Syrian hamsters. We find that the phase of the LH surge and its stability upon shifts of the light: dark cycle are altered in duper mutants. The intensity of immunoreactive PER1 in GnRH cells of the preoptic area peaks earlier in the day in duper than wild type hamsters. We note that GnRH fibers coursing through the suprachiasmatic nucleus (SCN) contact vasopressin- and VIP-immunoreactive cells, suggesting a possible locus of circadian control of the LH surge. Unlike wild types, duper hamsters do not regress their gonads within 8 weeks of constant darkness, despite evidence of melatonin secretion during the subjective night. In light of the finding that the duper allele is a stop codon in Cryptochrome 1, our results suggest important neuroendocrine functions of this core circadian clock gene.
Collapse
Affiliation(s)
| | | | | | | | - Eric L. Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Chang J, Xu Y, Fu Y, Liu J, Jiang D, Pan J, Ouyang H, Liu W, Xu J, Tian Y, Huang Y, Ruan J, Shen X. The dynamic landscape of chromatin accessibility and active regulatory elements in the mediobasal hypothalamus influences the seasonal activation of the reproductive axis in the male quail under long light exposure. BMC Genomics 2024; 25:197. [PMID: 38373887 PMCID: PMC10877898 DOI: 10.1186/s12864-024-10097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.
Collapse
Affiliation(s)
- Jianye Chang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanglong Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuting Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaxin Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510642, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
13
|
Majumdar G, Liddle TA, Stewart C, Marshall CJ, Bain M, Stevenson T. FSHβ links photoperiodic signaling to seasonal reproduction in Japanese quail. eLife 2023; 12:RP87751. [PMID: 38150309 PMCID: PMC10752586 DOI: 10.7554/elife.87751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Annual cycles in daylength provide an initial predictive environmental cue that plants and animals use to time seasonal biology. Seasonal changes in photoperiodic information acts to entrain endogenous programs in physiology to optimize an animal's fitness. Attempts to identify the neural and molecular substrates of photoperiodic time measurement in birds have, to date, focused on blunt changes in light exposure during a restricted period of photoinducibility. The objectives of these studies were first to characterize a molecular seasonal clock in Japanese quail and second, to identify the key transcripts involved in endogenously generated interval timing that underlies photosensitivity in birds. We hypothesized that the mediobasal hypothalamus (MBH) provides the neuroendocrine control of photoperiod-induced changes in reproductive physiology, and that the pars distalis of the pituitary gland contains an endogenous internal timer for the short photoperiod-dependent development of reproductive photosensitivity. Here, we report distinct seasonal waveforms of transcript expression in the MBH, and pituitary gland and discovered the patterns were not synchronized across tissues. Follicle-stimulating hormone-β (FSHβ) expression increased during the simulated spring equinox, prior to photoinduced increases in prolactin, thyrotropin-stimulating hormone-β, and testicular growth. Diurnal analyses of transcript expression showed sustained elevated levels of FSHβ under conditions of the spring equinox, compared to autumnal equinox, short (<12L) and long (>12L) photoperiods. FSHβ expression increased in quail held in non-stimulatory short photoperiod, indicative of the initiation of an endogenously programmed interval timer. These data identify that FSHβ establishes a state of photosensitivity for the external coincidence timing of seasonal physiology. The independent regulation of FSHβ expression provides an alternative pathway through which other supplementary environmental cues, such as temperature, can fine tune seasonal reproductive maturation and involution.
Collapse
Affiliation(s)
- Gaurav Majumdar
- Department of Zoology, Science Campus, University of AllahabadPrayagrajIndia
| | - Timothy A Liddle
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Calum Stewart
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Christopher J Marshall
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Maureen Bain
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| | - Tyler Stevenson
- School of Biodiversity, One Health and Veterinary Medicine University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
14
|
Nakayama T, Tanikawa M, Okushi Y, Itoh T, Shimmura T, Maruyama M, Yamaguchi T, Matsumiya A, Shinomiya A, Guh YJ, Chen J, Naruse K, Kudoh H, Kondo Y, Naoki H, Aoki K, Nagano AJ, Yoshimura T. A transcriptional program underlying the circannual rhythms of gonadal development in medaka. Proc Natl Acad Sci U S A 2023; 120:e2313514120. [PMID: 38109538 PMCID: PMC10756274 DOI: 10.1073/pnas.2313514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.
Collapse
Affiliation(s)
- Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Miki Tanikawa
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Yuki Okushi
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Thoma Itoh
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Michiyo Maruyama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Taiki Yamaguchi
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Akiko Matsumiya
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Ying-Jey Guh
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Junfeng Chen
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Yohei Kondo
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Honda Naoki
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima739-8511, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Atsushi J. Nagano
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Otsu520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka997-0052, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research, Nagoya University, Nagoya464-8601, Japan
| |
Collapse
|
15
|
Hazlerigg DG, Appenroth D, Tomotani BM, West AC, Wood SH. Biological timekeeping in polar environments: lessons from terrestrial vertebrates. J Exp Biol 2023; 226:jeb246308. [PMID: 38031958 DOI: 10.1242/jeb.246308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.
Collapse
Affiliation(s)
- David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Barbara M Tomotani
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
16
|
Nakagawa S, Yamaguchi Y. Spontaneous recurrence of a summer-like diel rhythm in the body temperature of the Syrian hamster after hibernation. Proc Biol Sci 2023; 290:20230922. [PMID: 37848068 PMCID: PMC10581774 DOI: 10.1098/rspb.2023.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Mammalian hibernation is a survival strategy characterized by metabolic suppression and drastically lowering body temperature (Tb), used during harsh seasons with food shortages and cold. The Syrian hamster commences hibernation in response to a short photoperiod and cold but spontaneously concludes hibernation after several months without environmental cues. Little is known about the changes in diel rhythms during hibernation. Using long-term and high-resolution Tb data, we analysed the diel Tb rhythm time-course changes in Syrian hamsters raised under summer-like conditions (long photoperiod (LP) and warm; LP-warm) and transferred to winter-like conditions (short photoperiod (SP) and cold; SP-cold). The diel Tb rhythm was undetectable during the hibernation period (HIBP), reappearing after the HIBP. The phase of this returning rhythm reverted to the LP entrainment phase characteristics despite the ambient SP and then re-entrained to the ambient SP as if the hamsters were transferred from the LP-warm to SP-cold conditions. The diel Tb rhythm reverted from the SP- to LP-type in a hibernation-dependent manner. Under constant dark and cold conditions, the circadian Tb rhythm recovered without photic stimuli following the HIBP. These findings suggest that hibernation involves a program that anticipates the ambient photoperiod when animals emerge from hibernation.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo 060-0819, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshifumi Yamaguchi
- Graduate School of Environmental Sciences, Hokkaido University, Sapporo 060-0819, Japan
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
- Inamori Research Institute for Science, Kyoto 600-8411, Japan
| |
Collapse
|
17
|
Pérez-Villa A, Echeverría-Garcés G, Ramos-Medina MJ, Prathap L, Martínez-López M, Ramírez-Sánchez D, García-Cárdenas JM, Armendáriz-Castillo I, Guerrero S, Paz C, López-Cortés A. Integrated multi-omics analysis reveals the molecular interplay between circadian clocks and cancer pathogenesis. Sci Rep 2023; 13:14198. [PMID: 37648722 PMCID: PMC10469199 DOI: 10.1038/s41598-023-39401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein-protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy.
Collapse
Affiliation(s)
- Andy Pérez-Villa
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mayra Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Isaac Armendáriz-Castillo
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Clara Paz
- Grupo de Investigación Bienestar, Salud y Sociedad, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
18
|
Kulshrestha S, Devkar R. Circadian control of Nocturnin and its regulatory role in health and disease. Chronobiol Int 2023; 40:970-981. [PMID: 37400970 DOI: 10.1080/07420528.2023.2231081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Circadian rhythms are generated by intrinsic 24-h oscillations that anticipate the extrinsic changes associated with solar day. A conserved transcriptional-translational feedback loop generates these molecular oscillations of clock genes at the organismal and the cellular levels. One of the recently discovered outputs of circadian clock is Nocturnin (Noct) or Ccrn4l. In mice, Noct mRNA is broadly expressed in cells throughout the body, with a particularly high-amplitude rhythm in liver. NOCT belongs to the EEP family of proteins with the closest similarity to the CCR4 family of deadenylases. Multiple studies have investigated the role of Nocturnin in development, adipogenesis, lipid metabolism, inflammation, osteogenesis, and obesity. Further, mice lacking Noct (Noct KO or Noct-/-) are protected from high-fat diet-induced obesity and hepatic steatosis. Recent studies had provided new insights by investigating various aspects of Nocturnin, ranging from its sub-cellular localization to identification of its target transcripts. However, a profound understanding of its molecular function remains elusive. This review article seeks to integrate the available literature into our current understanding of the functions of Nocturnin, their regulatory roles in key tissues and to throw light on the existing scientific lacunae.
Collapse
Affiliation(s)
- Shruti Kulshrestha
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
19
|
Liu J, Xu Y, Wang Y, Zhang J, Fu Y, Liufu S, Jiang D, Pan J, Ouyang H, Huang Y, Tian Y, Shen X. The DNA methylation status of the serotonin metabolic pathway associated with reproductive inactivation induced by long-light exposure in Magang geese. BMC Genomics 2023; 24:355. [PMID: 37365488 DOI: 10.1186/s12864-023-09342-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Domestic geese are seasonal breeders and have the lowest reproductive capacity among all poultry species. Magang geese is a topical short-day breeder, short photoperiod exposure stimulates its reproductive activity while long photoperiod inhibits. To explore epigenetic change that could influence reproductive activity, we performed whole genome bisulfite sequencing and transcriptome sequencing in the hypothalamus at three reproductive stages during long-light exposure in male Magang geese. RESULTS A total number of 10,602 differentially methylated regions (DMRs) were identified among three comparison groups. We observed that the vast majority of DMRs were enriched in intron regions. By integrating the BS-sequencing and RNA-seq data, the correlation between methylation changes of CG DMRs and expression changes of their associated genes was significant only for genes containing CG DMRs in their intron. A total of 278 DMR-associated DEGs were obtained among the three stages. KEGG analysis revealed that the DMR-associated DEGs were mainly involved in 11 pathways. Among them, the neuroactive ligand-receptor interaction pathway was significantly enriched in both two comparisons (RA vs.RD and RD vs.RI); the Wnt signaling pathway, apelin signaling pathway, melanogenesis, calcium signaling pathway, focal adhesion, and adherens junction were significantly enriched in the RA vs. RI comparison. In addition, the expression level of two serotonin-metabolic genes was significantly altered during reproductive axis inactivation by the methylation status of their promoter region (TPH2) and intron region (SLC18A2), respectively. These results were confirmed by Bisulfite sequencing PCR (BSP), pyrosequencing, and real-time qPCR, indicating that serotonin metabolic signaling may play a key role in decreasing the reproductive activity of Magang geese induced by long-light exposure. Furthermore, we performed a metabolomics approach to investigate the concentration of neurotransmitters among the three stages, and found that 5-HIAA, the last product of the serotonin metabolic pathway, was significantly decreased in the hypothalamus during RI. CONCLUSIONS Our study reveals that the methylation status of the serotonin metabolic pathway in the hypothalamus is associated with reproductive inactivation, and provided new insight into the effect of DNA methylation on the reproductive regulation of the hypothalamus in Magang geese.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yushuai Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Jinning Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yuting Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
20
|
Purple RJ, Cosgrave J, Alexander I, Middleton B, Foster RG, Porcheret K, Wulff K. Phenotypic divergence in sleep and circadian cycles linked by affective state and environmental risk related to psychosis. Sleep 2023; 46:zsac311. [PMID: 36516465 PMCID: PMC9995776 DOI: 10.1093/sleep/zsac311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES Environmental cues influence circadian rhythm timing and neurochemicals involved in the regulation of affective behavior. How this interplay makes them a probable nonspecific risk factor for psychosis is unclear. We aimed to identify the relationship between environmental risk for psychosis and circadian timing phenotypes sampled from the general population. METHODS Using an online survey, we devised a cumulative risk exposure score for each of the 1898 survey respondents based on 23 empirically verified transdiagnostic risks for psychosis, three dimensions of affect severity, psychotic-like experiences, and help-seeking behavior. Quantitative phenotyping of sleep and circadian rhythms was undertaken using at-home polysomnography, melatonin and cortisol profiles, and 3-week rest-activity behavior in individuals with a high-risk exposure load (top 15% of survey respondents, n = 22) and low-risk exposure load (bottom 15% of respondents, n = 22). RESULTS Psychiatric symptoms were present in 100% of the high-load participants and 14% of the low-load participants. Compared to those with a low-load, high-load participants showed a later melatonin phase which was reflected by a greater degree of dispersion in circadian timing. Phase relationships between later circadian melatonin phase and later actigraphic sleep onsets were maintained and these were strongly correlated with self-reported sleep mid-points. No differences were identified from polysomnography during sleep between groups. CONCLUSION Distinguishing circadian timing from other sleep phenotypes will allow adaptation for dosage of time-directed intervention, useful in stabilizing circadian timekeeping physiology and potentially reducing the multisystemic disruption in mental health disorders.
Collapse
Affiliation(s)
- Ross J Purple
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Jan Cosgrave
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Iona Alexander
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Benita Middleton
- Department of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kate Porcheret
- Norwegian Centre for Violence and Traumatic Stress Studies, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katharina Wulff
- Department of Radiation Sciences and Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 2023; 33:675-687.e5. [PMID: 36708710 PMCID: PMC9992282 DOI: 10.1016/j.cub.2023.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maribel Anguiano
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus). Sci Rep 2023; 13:3019. [PMID: 36810752 PMCID: PMC9944912 DOI: 10.1038/s41598-023-29826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Non-synonymous variation (NSV) of protein coding genes represents raw material for selection to improve adaptation to the diverse environmental scenarios in wild and livestock populations. Many aquatic species face variations in temperature, salinity and biological factors throughout their distribution range that is reflected by the presence of allelic clines or local adaptation. The turbot (Scophthalmus maximus) is a flatfish of great commercial value with a flourishing aquaculture which has promoted the development of genomic resources. In this study, we developed the first atlas of NSVs in the turbot genome by resequencing 10 individuals from Northeast Atlantic Ocean. More than 50,000 NSVs where detected in the ~ 21,500 coding genes of the turbot genome, and we selected 18 NSVs to be genotyped using a single Mass ARRAY multiplex on 13 wild populations and three turbot farms. We detected signals of divergent selection on several genes related to growth, circadian rhythms, osmoregulation and oxygen binding in the different scenarios evaluated. Furthermore, we explored the impact of NSVs identified on the 3D structure and functional relationship of the correspondent proteins. In summary, our study provides a strategy to identify NSVs in species with consistently annotated and assembled genomes to ascertain their role in adaptation.
Collapse
|
23
|
Epigenetic Regulation of miR-25 and Lnc107153 on Expression of Seasonal Estrus Key Gene CHGA in Sheep. BIOLOGY 2023; 12:biology12020250. [PMID: 36829527 PMCID: PMC9952879 DOI: 10.3390/biology12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Pituitary pars tuberalis (PT) plays an important role as the transmission center in the seasonal reproduction of animals. It helps convert external photoperiod signals into intrinsic seasonal reproduction signals. In sheep PT, specific expression patterns of several genes (including short photoperiod-induced gene CHGA and long photoperiod genes EYA3 and TSHβ) under different photoperiods are crucial characteristics during this signal transduction. Recent studies have revealed the role of epigenetics in regulating the expression of seasonal reproductive key genes. Therefore, we explored whether microRNAs and LncRNAs regulated the expressions of the above key genes. Firstly, the expression of miR-25 and CHGA showed a significant negative correlation in sheep PT. Results of the dual luciferase reporter assay and miR-25 overexpression indicated that miR-25 could inhibit the expression of CHGA by specifically binding to its 3'UTR region in pituitary cells. Then, expression negative correlation and dual luciferase reporter analyses were used to screen and identify the candidate LncRNA (Lnc107153) targeted by miR-25. Finally, the results of fluorescence in situ hybridization and Lnc107153 overexpression suggested that Lnc107153 and miR-25 were involved in the epigenetic regulation of CHGA expression. However, the expressions of EYA3 and TSHβ were not regulated by miRNAs. These results will provide new insights into the epigenetic regulatory network of key genes in sheep seasonal reproduction.
Collapse
|
24
|
Kim R, Nijhout HF, Reed MC. Mathematical insights into the role of dopamine signaling in circadian entrainment. Math Biosci 2023; 356:108956. [PMID: 36581152 DOI: 10.1016/j.mbs.2022.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The circadian clock in the mammalian brain comprises interlocked molecular feedback loops that have downstream effects on important physiological functions such as the sleep-wake cycle and hormone regulation. Experiments have shown that the circadian clock also modulates the synthesis and breakdown of the neurotransmitter dopamine. Imbalances in dopamine are linked to a host of neurological conditions including Parkinson's disease, attention-deficit/hyperactivity disorder, and mood disorders, and these conditions are often accompanied by circadian disruptions. We have previously created a mathematical model using nonlinear ordinary differential equations to describe the influences of the circadian clock on dopamine at the molecular level. Recent experiments suggest that dopamine reciprocally influences the circadian clock. Dopamine receptor D1 (DRD1) signaling has been shown to aid in the entrainment of the clock to the 24-hour light-dark cycle, but the underlying mechanisms are not well understood. In this paper, we use our mathematical model to support the experimental hypothesis that DRD1 signaling promotes circadian entrainment by modulating the clock's response to light. We model the effects of a phase advance or delay, as well as the therapeutic potential of a REV-ERB agonist. In addition to phase shifts, we study the influences of photoperiod, or day length, in the mathematical model, connect our findings with the experimental and clinical literature, and determine the parameter that affects the critical photoperiod that signals seasonal changes to physiology.
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, 48109, MI, USA.
| | - H Frederik Nijhout
- Department of Biology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Durham, 27708, NC, USA
| |
Collapse
|
25
|
Stewart C, Marshall CJ. Seasonality of prolactin in birds and mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:919-938. [PMID: 35686456 PMCID: PMC9796654 DOI: 10.1002/jez.2634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
In most animals, annual rhythms in environmental cues and internal programs regulate seasonal physiology and behavior. Prolactin, an evolutionarily ancient hormone, serves as a molecular correlate of seasonal timing in most species. Prolactin is highly pleiotropic with a wide variety of well-documented physiological effects; in a seasonal context prolactin is known to regulate annual changes in pelage and molt. While short-term homeostatic variation of prolactin secretion is under the control of the hypothalamus, long-term seasonal rhythms of prolactin are programmed by endogenous timers that reside in the pituitary gland. The molecular basis of these rhythms is generally understood to be melatonin dependent in mammals. Prolactin rhythmicity persists for several years in many species, in the absence of hypothalamic signaling. Such evidence in mammals has supported the hypothesis that seasonal rhythms in prolactin derive from an endogenous timer within the pituitary gland that is entrained by external photoperiod. In this review, we describe the conserved nature of prolactin signaling in birds and mammals and highlight its role in regulating multiple diverse physiological systems. The review will cover the current understanding of the molecular control of prolactin seasonality and propose a mechanism by which long-term rhythms may be generated in amniotes.
Collapse
Affiliation(s)
- Calum Stewart
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Christopher J. Marshall
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
26
|
Liddle TA, Stevenson TJ, Majumdar G. Photoperiodic regulation of avian physiology: From external coincidence to seasonal reproduction. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:890-901. [PMID: 35535960 DOI: 10.1002/jez.2604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Seasonal cycles of environmental cues generate variation in the timing of life-history transition events across taxa. It is through the entrainment of internal, endogenous rhythms of organisms to these external, exogenous rhythms in environment, such as cycling temperature and daylight, by which organisms can regulate and time life history transitions. Here, we review the current understanding of how photoperiod both stimulates and terminates seasonal reproduction in birds. The review describes the role of external coincidence timing, the process by which photoperiod is proposed to stimulate reproductive development. Then, the molecular basis of light detection and the photoperiodic regulation of neuroendocrine timing of seasonal reproduction in birds is presented. Current data indicates that vertebrate ancient opsin is the predominant photoreceptor for light detection by the hypothalamus, compared to neuropsin and rhodopsin. The review then connects light detection to well-characterized hypothalamic and pituitary gland molecules involved in the photoperiodic regulation of reproduction. In birds, Gonadotropin-releasing hormone synthesis and release are controlled by photoperiodic cues via thyrotropin-stimulating hormone-β (TSHβ) independent and dependent pathways, respectively. The review then highlights the role of D-box and E-box binding motifs in the promoter regions of photoperiodic genes, in particular Eyes-absent 3, as the key link between circadian clock function and photoperiodic time measurement. Based on the available evidence, the review proposes that at least two molecular programs form the basis for external coincidence timing in birds: photoperiodic responsiveness by TSHβ pathways and endogenous internal timing by gonadotropin synthesis.
Collapse
Affiliation(s)
- Timothy Adam Liddle
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler John Stevenson
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Gaurav Majumdar
- Laboratory of Seasonal Biology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
28
|
Chmura HE, Williams CT. A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Horm Behav 2022; 144:105215. [PMID: 35687987 DOI: 10.1016/j.yhbeh.2022.105215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The regulation of seasonality has been an area of interest for decades, yet global climate change has created extra urgency in the quest to understand how sensory circuits and neuroendocrine control systems interact to generate flexibility in biological timekeeping. The capacity of temperature to alter endogenous or photoperiod-regulated neuroendocrine mechanisms driving seasonality, either as a direct cue or through temperature-dependent effects on energy and metabolism, is at the heart of this phenological flexibility. However, until relatively recently, little research had been done on the integration of temperature information in canonical seasonal neuroendocrine pathways, particularly in vertebrates. We review recent advances from research in vertebrates that deepens our understanding of how temperature cues are perceived and integrated into seasonal hypothalamic thyroid hormone (TH) signaling, which is a critical regulator of downstream seasonal phenotypic changes such as those regulated by the BPG (brain-pituitary-gonadal) axis. Temperature perception occurs through cutaneous transient receptor potential (TRP) neurons, though sensitivity of these neurons varies markedly across taxa. Although photoperiod is the dominant cue used to trigger seasonal physiology or entrain circannual clocks, across birds, mammals, fish, reptiles and amphibians, seasonality appears to be temperature sensitive and in at least some cases this appears to be related to phylogenetically conserved TH signaling in the hypothalamus. Nevertheless, the exact mechanisms through which temperature modulates seasonal neuroendocrine pathways remains poorly understood.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA; Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave., Missoula, MT 59801, USA.
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
29
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Wang W, He X, Di R, Wang X, Chu M. Photoperiods induced the circRNA differential expression in the thyroid gland of OVX+E 2 ewes. Front Endocrinol (Lausanne) 2022; 13:974518. [PMID: 36105406 PMCID: PMC9464909 DOI: 10.3389/fendo.2022.974518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. However, little is known regarding photoperiods induced circRNAs in the thyroid gland. In this study, we performed a comprehensive analysis of circRNA profiles in the thyroid gland of OVX+E2 ewes at different photoperiods by whole transcriptome sequencing. A total of 37,470 novel circRNAs were detected in different photoperiods (42 days of short photoperiod treatment, SP42; 42 days of long photoperiod treatment, LP42; SP42 transfer to LP42, SPLP42), with a total of 817 circRNAs for SP42-LP42 (down: 132; up: 114), LP42-SPLP42 (down: 136; up: 112) and SP42-SPLP42 (down: 182; up: 141) having differentially expressed. Functional enrichment annotation analysis of DE-circRNAs for GO and KEGG by R package, features that influence photoperiod response in Sunite ewes through the Inositol phosphate metabolism, cGMP-PKG signaling pathway, Calcium signaling pathway, MAPK signaling pathway, and Oocyte meiosis. In addition, competitive endogenous RNA (ceRNA) network analysis revealed target binding sites for identified miRNAs in DE-cirRNAs such as oar-miR-10b, oar-miR-200c, oar-miR-21, oar-miR-370-3p, oar-miR-377-3p, oar-miR-181a, oar-miR-432, and oar-miR-495-3p. These results of this study will provide some new information for understanding circRNA function as well as the changes in the sheep thyroid gland under different photoperiods.
Collapse
|
31
|
Prevot V. International Neuroendocrine Federation: Year 2020 in Review. J Neuroendocrinol 2021; 33:e13059. [PMID: 34738672 DOI: 10.1111/jne.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
In this “Year 2020 in Review”, we highlight a few major achievements selected from the work of 10 member societies of the International Neuroendocrine Federation, encompassing national, regional and thematic societies from around 30 countries. Despite the Covid‐19 pandemic, many remarkable breakthroughs have come to light in 2020, testifying to the dedication of our researchers and providing a ray of optimism as we head towards the 10th International Congress of Neuroendocrinology (ICN) to be held in Glasgow in August 2022.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, 59000, France
| |
Collapse
|
32
|
Abstract
Foster provides an overview of the hormone melatonin, discussing its role in seasonal biology and its more controversial function in human sleep.
Collapse
Affiliation(s)
- Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, New Biochemistry Building, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
33
|
Hartsock MJ, Strnad HK, Spencer RL. Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. J Biol Rhythms 2021; 37:29-42. [PMID: 34781753 DOI: 10.1177/07487304211058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the "gating of receptivity to subsequent signals that repeats on a cyclic timebase." The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity-that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | | | | |
Collapse
|
34
|
Crabtree J. Update on the management of anoestrus and transitional phase in horses. IN PRACTICE 2021. [DOI: 10.1002/inpr.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Leclercq B, Hicks D, Laurent V. Photoperiod integration in C3H rd1 mice. J Pineal Res 2021; 71:e12711. [PMID: 33326640 DOI: 10.1111/jpi.12711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCN) constitute the main circadian clock, receiving input from the retina which allows synchronization of endogenous biological rhythms with the daily light/dark cycle. Over the year, the SCN encodes photoperiodic variations through duration of melatonin secretion, with abundant nocturnal levels in winter and lower levels in summer. Thus, light information is critical to regulate seasonal reproduction in many species and is part of the central photoperiodic integration. Since intrinsically photosensitive retinal ganglion cells (ipRGCs) are vital for circadian photoentrainment and other nonvisual functions, we studied the contribution of ipRGCs in photoperiod integration in C3H retinal degeneration 1 (rd1) mice. We assessed locomotor activity and melatonin secretion in mice exposed to short or long photoperiods. Our results showed that rd1 mice are still responsive to photoperiod variations in term of locomotor activity, melatonin secretion, and regulation of the reproductive axis. In addition, retinas of animals exposed to short photoperiod exhibit higher melanopsin labeling intensity compared with the long photoperiod condition, suggesting seasonal-dependent changes within this photoreceptive system. These results show that ipRGCs in rd1 mice can still measure photoperiod and suggest a key role of melanopsin cells in photoperiod integration and the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Bastien Leclercq
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - Virginie Laurent
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Dos Santos BM, Pereira PH, Garcia CR. Molecular basis of synchronous replication of malaria parasites in the blood stage. Curr Opin Microbiol 2021; 63:210-215. [PMID: 34428626 DOI: 10.1016/j.mib.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The search for host factors that leads to malaria parasite synchronization has been the focus of several laboratories. The host hormone melatonin synchronizes Plasmodium falciparum in culture by increasing the number of mature parasite stages through a PLC-IP3 activation. Melatonin signaling is linked to crosstalk between Ca2+-cAMP that results in PKA activation. Two other kinases, PfPK7 and PfeIK1, and the nuclear protein PfMORC that lacks melatonin sensitivity in the inducible knock-down parasites are also identified as part of the hormone-signal transduction pathways. Melatonin also modulates P. falciparum mitochondrial fission genes FIS1, DYN1, and DYN2 in a stage-specific manner. How these multiple molecular mechanisms are orchestrated to lead to parasite synchronization is a fascinating and opened biological question.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pedro Hs Pereira
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Célia Rs Garcia
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
37
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
The Eyes Absent proteins in development and in developmental disorders. Biochem Soc Trans 2021; 49:1397-1408. [PMID: 34196366 PMCID: PMC8286820 DOI: 10.1042/bst20201302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.
Collapse
|
39
|
Ebling FJP, Fletcher J, Hazlerigg DG, Loudon ASI. Gerald Lincoln: A man for all seasons. J Neuroendocrinol 2021; 33:e12968. [PMID: 33942392 DOI: 10.1111/jne.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and naturalist who was a seminal figure in developing our understanding of the neuroendocrine mechanisms underlying seasonal rhythmicity. This review considers his life and some of his major scientific contributions to our understanding of seasonality, photoperiodism and circannual rhythmicity. It is based on a presentation at the online 2nd annual seasonality symposium (2 October 2020) that was supported financially by the Journal of Neuroendocrinology.
Collapse
Affiliation(s)
| | | | - David G Hazlerigg
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Andrew S I Loudon
- Centre for Biological Timing & School of Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Appenroth D, Wagner GC, Hazlerigg DG, West AC. Evidence for circadian-based photoperiodic timekeeping in Svalbard ptarmigan, the northernmost resident bird. Curr Biol 2021; 31:2720-2727.e5. [PMID: 33930302 DOI: 10.1016/j.cub.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 01/24/2023]
Abstract
The high Arctic archipelago of Svalbard (74°-81° north) experiences extended periods of uninterrupted daylight in summer and uninterrupted night in winter, apparently relaxing the major driver for the evolution of circadian rhythmicity. Svalbard ptarmigan (Lagopus muta hyperborea) is the only year-round resident terrestrial bird species endemic to the high Arctic and is remarkably adapted to the extreme annual variation in environmental conditions.1 Here, we demonstrate that, although circadian control of behavior disappears rapidly upon transfer to constant light conditions, consistent with the loss of daily activity patterns observed during the polar summer and polar night, Svalbard ptarmigans nonetheless employ a circadian-based mechanism for photoperiodic timekeeping. First, we show the persistence of rhythmic clock gene expression under constant light within the mediobasal hypothalamus and pars tuberalis, the key tissues in the seasonal neuroendocrine cascade. We then employ a "sliding skeleton photoperiod" protocol, revealing that the driving force behind seasonal biology of the Svalbard ptarmigan is rhythmic sensitivity to light, a feature that depends on a functioning circadian rhythm. Hence, the unusual selective pressures of life in the high Arctic have favored decoupling of the circadian clock from organization of daily activity patterns, while preserving its importance for seasonal synchronization.
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 42, 9019 Tromsø, Norway
| | - Gabriela C Wagner
- Arctic Seasonal Timekeeping Initiative (ASTI), Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 42, 9019 Tromsø, Norway; Divisjon for skog og utmark, NIBIO, Holtveien 66, 9016 Tromsø, Norway
| | - David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 42, 9019 Tromsø, Norway.
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 42, 9019 Tromsø, Norway.
| |
Collapse
|
41
|
Dardente H, Migaud M. Thyroid hormone and hypothalamic stem cells in seasonal functions. VITAMINS AND HORMONES 2021; 116:91-131. [PMID: 33752829 DOI: 10.1016/bs.vh.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Seasonal rhythms are a pervasive feature of most living organisms, which underlie yearly timeliness in breeding, migration, hibernation or weight gain and loss. To achieve this, organisms have developed inner timing devices (circannual clocks) that endow them with the ability to predict then anticipate changes to come, usually using daylength as the proximate cue. In Vertebrates, daylength interpretation involves photoperiodic control of TSH production by the pars tuberalis (PT) of the pituitary, which governs a seasonal switch in thyroid hormone (TH) availability in the neighboring hypothalamus. Tanycytes, specialized glial cells lining the third ventricle (3V), are responsible for this TH output through the opposite, PT-TSH-driven, seasonal control of deiodinases 2/3 (Dio 2/3). Tanycytes comprise a photoperiod-sensitive stem cell niche and TH is known to play major roles in cell proliferation and differentiation, which suggests that seasonal control of tanycyte proliferation may be involved in the photoperiodic synchronization of seasonal rhythms. Here we review our current knowledge of the molecular and neuroendocrine pathway linking photoperiodic information to seasonal changes in physiological functions and discuss the potential implication of tanycytes, TH and cell proliferation in seasonal timing.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France.
| | - Martine Migaud
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
42
|
Colditz IG. Adrenergic Tone as an Intermediary in the Temperament Syndrome Associated With Flight Speed in Beef Cattle. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.652306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The temperament of farm animals can influence their resilience to everyday variations within the managed production environment and has been under strong direct and indirect selection during the course of domestication. A prominent objective measure used for assessing temperament in beef cattle is the behavioral flight response to release from confinement in a crush or chute. This behavioral measure, termed flight speed (also known as escape velocity) is associated with physiological processes including body temperature, feeding behavior, growth rate, carcass composition, immune function, and health outcomes. This review examines the functional links between this suite of traits and adrenergic activity of the sympathetic nervous system and the adrenomedullary hormonal system. It is suggested that flight speed is the behavioral aspect of an underlying “flightiness” temperament syndrome, and that elevated adrenergic tone in animals with a high level of flightiness (i.e., flighty animals) tunes physiological activities toward a sustained “fight or flight” defense profile that reduces productivity and the capacity to flourish within the production environment. Nonetheless, despite a common influence of adrenergic tone on this suite of traits, variation in each trait is also influenced by other regulatory pathways and by the capacity of tissues to respond to a range of modulators in addition to adrenergic stimuli. It is suggested that tuning by adrenergic tone is an example of homeorhetic regulation that can help account for the persistent expression of behavioral and somatic traits associated with the flight speed temperament syndrome across the life of the animal. At a population level, temperament may modulate ecological fit within and across generations in the face of environmental variability and change. Associations of flight speed with the psychological affective state of the animal, and implications for welfare are also considered. The review will help advance understanding of the developmental biology and physiological regulation of temperament syndromes.
Collapse
|
43
|
Massa AT, Mousel MR, Herndon MK, Herndon DR, Murdoch BM, White SN. Genome-Wide Histone Modifications and CTCF Enrichment Predict Gene Expression in Sheep Macrophages. Front Genet 2021; 11:612031. [PMID: 33488675 PMCID: PMC7817998 DOI: 10.3389/fgene.2020.612031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Alveolar macrophages function in innate and adaptive immunity, wound healing, and homeostasis in the lungs dependent on tissue-specific gene expression under epigenetic regulation. The functional diversity of tissue resident macrophages, despite their common myeloid lineage, highlights the need to study tissue-specific regulatory elements that control gene expression. Increasing evidence supports the hypothesis that subtle genetic changes alter sheep macrophage response to important production pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid researchers in identifying genetic mutations of immunological consequence. Here we report the first genome-wide survey of regulatory elements in any sheep immune cell, utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep to determine cis-regulatory DNA elements and chromatin domain boundaries that control immunity-related gene expression. Histone modifications included H3K4me3 (denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674 reproducible regulatory elements, which allowed assignment of putative biological function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and ENCODE standards of 20 million and 45 million useable fragments for narrow and broad marks, respectively. Active elements showed consensus with RNA-seq data and were predictive of gene expression in alveolar macrophages from the publicly available Sheep Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but rather for repressed developmental genes. CTCF enrichment enabled identification of 11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the first report to use immunoprecipitated CTCF to determine putative topological domains in sheep immune cells. Furthermore, these data will empower phenotype-associated mutation discovery since most causal variants are within regulatory elements.
Collapse
Affiliation(s)
- Alisha T Massa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Michelle R Mousel
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Maria K Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - David R Herndon
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Brenda M Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Stephen N White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
44
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|