1
|
Mouillot D, Velez L, Albouy C, Casajus N, Claudet J, Delbar V, Devillers R, Letessier TB, Loiseau N, Manel S, Mannocci L, Meeuwig J, Mouquet N, Nuno A, O'Connor L, Parravicini V, Renaud J, Seguin R, Troussellier M, Thuiller W. The socioeconomic and environmental niche of protected areas reveals global conservation gaps and opportunities. Nat Commun 2024; 15:9007. [PMID: 39424792 PMCID: PMC11489723 DOI: 10.1038/s41467-024-53241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/11/2024] [Indexed: 10/21/2024] Open
Abstract
The global network of protected areas has rapidly expanded in the past decade and is expected to cover at least 30% of land and sea by 2030 to halt biodiversity erosion. Yet, the distribution of protected areas is highly heterogeneous on Earth and the social-environmental preconditions enabling or hindering protected area establishment remain poorly understood. Here, using fourteen socioeconomic and environmental factors, we characterize the multidimensional niche of terrestrial and marine protected areas, which we use to accurately establish, at the global scale, whether a particular location has preconditions favourable for paestablishment. We reveal that protected areas, particularly the most restrictive ones, over-aggregate where human development and the number of non-governmental organizations are high. Based on the spatial distribution of vertebrates and the likelihood to convert non-protected areas into strictly protected areas, we identify 'potential' versus 'unrealistic' conservation gains on land and sea, which we define as areas of high vertebrate diversity that are, respectively, favourable and unfavourable to protected area establishment. Where protected areas are unrealistic, alternative strategies such as other effective area-based conservation measures or privately protected areas, could deliver conservation outcomes.
Collapse
Affiliation(s)
- David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France.
- Institut Universitaire de France, IUF, Paris, France.
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | | | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Vincent Delbar
- La TeleScop, Maison de la Télédétection, Montpellier, France
| | | | - Tom B Letessier
- Institute of Zoology, Zoological Society of London, London, UK
- Marine Futures Laboratory and Oceans Institute, University of Western Australia, Crawley, WA, Australia
- School of Biological and Marine Sciences Portland Square B304 Drake Circus, University of Plymouth, Devon PL4 8AA, Plymouth, United Kingdom
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Stéphanie Manel
- Institut Universitaire de France, IUF, Paris, France
- CEFE, Univ Montpellier, CNRS, IRD, EPHE, Univ Paul Valéry, Montpellier, France
| | - Laura Mannocci
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- FRB - CESAB, 34000, Montpellier, France
| | - Jessica Meeuwig
- Marine Futures Laboratory and Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- FRB - CESAB, 34000, Montpellier, France
| | - Ana Nuno
- Interdisciplinary Centre of Social Sciences, School of Social Sciences and Humanities, NOVA University Lisbon, Lisbon, Portugal
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Louise O'Connor
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Valeriano Parravicini
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Julien Renaud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Raphael Seguin
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
2
|
Zhao J, Yuan T, Huang H, Lu X. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Biointerphases 2024; 19:051002. [PMID: 39316422 DOI: 10.1116/6.0003811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.
Collapse
Affiliation(s)
- Jinglun Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Tao Yuan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, University of Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, University of Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
3
|
Loiseau N, Mouillot D, Velez L, Seguin R, Casajus N, Coux C, Albouy C, Claverie T, Duhamet A, Fleure V, Langlois J, Villéger S, Mouquet N. Inferring the extinction risk of marine fish to inform global conservation priorities. PLoS Biol 2024; 22:e3002773. [PMID: 39208027 PMCID: PMC11361419 DOI: 10.1371/journal.pbio.3002773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.
Collapse
Affiliation(s)
- Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Raphaël Seguin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | - Camille Albouy
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Thomas Claverie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ENTROPIE, Univ La Réunion, IRD, IFREMER, Univ Nouvelle-Calédonie, CNRS, Saint-Denis, France CUFR of Mayotte, Dembeni, France
| | - Agnès Duhamet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Valentine Fleure
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ZooParc de Beauval & Beauval Nature, Saint-Aignan, France
| | | | | | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB–CESAB, Montpellier, France
| |
Collapse
|
4
|
Protection from overheating of simulated Sceloporus horridus lizards in a biosphere reserve of seasonally dry tropical forest in central Mexico. J Therm Biol 2023; 112:103462. [PMID: 36796907 DOI: 10.1016/j.jtherbio.2023.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
In seasonally dry ecosystems, loss of vegetation cover leads to warmer microclimates that can increase lizards' body temperatures to the point of threatening their performance. Preserving vegetation by establishing protected areas may mitigate these effects. We used remote sensing to test these ideas in the Sierra de Huautla Biosphere Reserve (REBIOSH) and surrounding areas. First, we determined whether vegetation cover was higher in the REBIOSH compared to adjacent unprotected areas to the north (NAA) and south (SAA). Then, we used a mechanistic niche model to test whether simulated Sceloporus horridus lizards in the REBIOSH experienced a cooler microclimate, higher thermal safety margin, longer foraging duration, and lower basal metabolic rate compared to adjacent unprotected areas. We compared these variables between 1999, when the reserve was declared, and 2020. We found that vegetation cover increased from 1999 to 2020 in all three areas; it was higher in the REBIOSH than in the more anthropized NAA, and was intermediate in the less anthropized SAA in both years. The microclimate temperature decreased from 1999 to 2020 and was lower in the REBIOSH and SAA than in the NAA. Thermal safety margin increased from 1999 to 2020; it was higher in the REBIOSH than in the NAA and intermediate in the SAA. Foraging duration increased from 1999 to 2020 and was similar among the three polygons. Basal metabolic rate decreased from 1999 to 2020 and was higher in the NAA than in the REBIOSH and SAA. Our results suggest that the REBIOSH provides cooler microclimates that increase the thermal safety margin and lower the metabolic rate of this generalist lizard compared to the NAA, and that the REBIOSH could contribute to increased vegetation cover in its surroundings. Besides, protecting original vegetation cover is an important part of climate change mitigation strategies more generally.
Collapse
|
5
|
Structural Connectivity of Asia’s Protected Areas Network: Identifying the Potential of Transboundary Conservation and Cost-Effective Zones. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11070408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human activities can degrade landscape connectivity and disrupt ecological flows, jeopardising the functional integrity of processes. This study presents a quantitative assessment of Asia’s protected areas’ (PAs) structural connectivity using landscape metrics, as well as analyses of the Cost-Effective Zones’ (CEZs). Using nine landscape metrics, we assessed connectivity at zonal (country borders and interior), national, regional, and geographical (islands and continent) levels. The results showed that the structural connectivity of Asia’s PAs network measured by a Connectance index was very low (0.08% without country borders and 9.06% for the average country analysis). In general, connectivity was higher within borders (0.36%) than within the countries (0.22%). Islands exhibited significantly higher Area-weighted mean patch area, Proximity index and Largest patch index, suggesting more integrity and connectiveness. When comparing Asian regions, Western Asia presented the lowest values for Percentage of landscape and Proximity index. We found that only 15% of the CEZs in Asia were under PAs designation, and more CEZs are located in the interior, but the majority with the highest priority was in the borders (9%). We advocate that expanding PAs coverage, specifically targeting areas that increase connectivity (e.g., through transboundary PAs), should be a priority to maintain their ecological function.
Collapse
|