1
|
Li DY, Huang ZY, Kang LX, Wang BX, Fu JH, Wang Y, Xing GY, Zhao Y, Zhang XY, Liu PN. Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures. Nat Commun 2024; 15:9545. [PMID: 39500872 PMCID: PMC11538238 DOI: 10.1038/s41467-024-53927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Cyclodehydrogenation is an important ring-formation reaction that can directly produce planar-conjugated carbon-based nanomaterials from nonplanar molecules. However, inherently high C-H bond energy necessitates a high temperature during dehydrogenation, and the ubiquity of C - H bonds in molecules and small differences in their bond energies hinder the selectivity of dehydrogenation. Here, we report a room-temperature cyclodehydrogenation reaction on Au(111) via radical addition of open-shell resonance structures and demonstrate that radical addition significantly decreases cyclodehydrogenation temperature and further improves the chemoselectivity of dehydrogenation. Using scanning tunneling microscopy and non-contact atomic force microscopy, we visualize the cascade reaction process involved in cyclodehydrogenation and determine atomic structures and molecular orbitals of the planar acetylene-linked oxa-nanographene products. The nonplanar intermediates observed during progression annealing, combined with density functional theory calculations, suggest that room-temperature cyclodehydrogenation involves the formation of transient radicals, intramolecular radical addition, and hydrogen elimination; and that the high chemoselectivity of cyclodehydrogenation arises from the reversibility and different thermodynamics of radical addition step.
Collapse
Affiliation(s)
- Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
| | - Zheng-Yang Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Li-Xia Kang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Bing-Xin Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Jian-Hui Fu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Guang-Yan Xing
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Yan Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Pei-Nian Liu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China.
| |
Collapse
|
2
|
Pérez-Elvira E, Barragán A, Gallardo A, Santos J, Martín-Fuentes C, Lauwaet K, Gallego JM, Miranda R, Sakurai H, Urgel JI, Björk J, Martín N, Écija D. Coronene-Based 2D Networks by On-Surface Skeletal Rearrangement of Sumanene Precursors. Angew Chem Int Ed Engl 2024:e202414583. [PMID: 39193816 DOI: 10.1002/anie.202414583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
The design of novel low-dimensional carbon materials is at the forefront of modern chemistry. Recently, on-surface covalent synthesis has emerged as a powerful strategy to synthesize previously precluded compounds and polymers. Here, we report a scanning probe microscopy study, complemented by theoretical calculations, on the sequential skeletal rearrangement of sumanene-based precursors into a coronene-based organometallic network by stepwise intra- and inter-molecular reactions on Au(111). Interestingly, upon higher annealing, the formed organometallic networks evolve into two-dimensional coronene-based covalently linked patches through intermolecular homocoupling reactions. A new reaction mechanism is proposed based on the role of C-Au-C motifs to promote two stepwise carbon-carbon couplings to form cyclobutadiene bridges. Our results pave avenues for the conversion of molecular precursors on surfaces, affording the design of unexplored two-dimensional organometallic and covalent materials.
Collapse
Affiliation(s)
- Elena Pérez-Elvira
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Barragán
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José Santos
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense
| | | | - Koen Lauwaet
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - José I Urgel
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| | - Jonas Björk
- Materials Design Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Nazario Martín
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense
| | - David Écija
- IMDEA Nanoscience, C/, Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| |
Collapse
|
3
|
Urgel JI, Sánchez-Grande A, Vicent DJ, Jelínek P, Martín N, Écija D. On-Surface Covalent Synthesis of Carbon Nanomaterials by Harnessing Carbon gem-Polyhalides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402467. [PMID: 38864470 DOI: 10.1002/adma.202402467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The design of innovative carbon-based nanostructures stands at the forefront of both chemistry and materials science. In this context, π-conjugated compounds are of great interest due to their impact in a variety of fields, including optoelectronics, spintronics, energy storage, sensing and catalysis. Despite extensive research efforts, substantial knowledge gaps persist in the synthesis and characterization of new π-conjugated compounds with potential implications for science and technology. On-surface synthesis has emerged as a powerful discipline to overcome limitations associated with conventional solution chemistry methods, offering advanced tools to characterize the resulting nanomaterials. This review specifically highlights recent achievements in the utilization of molecular precursors incorporating carbon geminal (gem)-polyhalides as functional groups to guide the formation of π-conjugated 0D species, as well as 1D, quasi-1D π-conjugated polymers, and 2D nanoarchitectures. By delving into reaction pathways, novel structural designs, and the electronic, magnetic, and topological features of the resulting products, the review provides fundamental insights for a new generation of π-conjugated materials.
Collapse
Affiliation(s)
- José I Urgel
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Ana Sánchez-Grande
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Diego J Vicent
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Nazario Martín
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Écija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
4
|
Kojima T, Xie C, Sakaguchi H. On-Surface Fabrication toward Polar 2D Macromolecular Crystals. Chempluschem 2024; 89:e202300775. [PMID: 38439510 DOI: 10.1002/cplu.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Polar 2D macromolecular structures have attracted significant attention because of their ferroelectricity and ferro-magnetism. However, it is challenging to synthesize them experimentally because dipoles or spins of these macromolecules tend to cancel each other. So far, there has been no successful strategy for assembling macromolecules in a unidirectional manner, achieving stereoregular polymerization on metal surfaces, and creating polar 2D polymer crystals. Recent progress in molecular assembly, on-surface polymer synthesis, and direct control of molecules using electric field applications provides an opportunity to develop such strategies. In this regard, we first review past studies on chiral and achiral molecular assembly, on-surface polymer synthesis, and orientation control of polar molecules. Then, we discuss our newly developed approach called "vectorial on-surface synthesis", which is based on "dynamic chirality" of compass precursors, stereoselective polymerization, and favorable interchain interactions originating from CH-π interactions. Finally, we conclude with a prospective outlook.
Collapse
Affiliation(s)
- Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Cong Xie
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
5
|
Báez-Grez R, Rios RP. Is azulene's local aromaticity and relative stability driven by the Glidewell-Lloyd rule? Phys Chem Chem Phys 2024; 26:12162-12167. [PMID: 38590242 DOI: 10.1039/d4cp00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The local aromaticity of azulene has been studied to understand their electronic properties. For this purpose, we have used the magnetic criterion through magnetically induced current density maps, ring current strengths, NICSzz(1), and the bifurcation value of three-dimensional surfaces of NICSzz. On the other hand, the delocalization criterion was used by calculating the MCI and ELFπ. The results show that the five-membered ring (5-MR) is more aromatic than the seven-membered ring (7-MR) and more aromatic than the free C5H5- ring. The opposite case is seen for the seven-membered ring, which is less aromatic than the free C7H7+. The local aromatic rings in azulene are formed due to an intramolecular electron transfer from the 7-MR to the 5-MR. In addition, the proposed resonance structures that allow explaining the properties of azulene, such as the dipole moment or the relative stability (in comparison to other isomers), show a preference for the formation of 5-MRs; for this reason, it is possible to conclude that the aromaticity and relative stability of azulene is driven by the Glidewell-Lloyd rule.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Facultad de Ciencias, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Ricardo Pino Rios
- Centro de Investigación Medicina de Altura - CEIMA, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| |
Collapse
|
6
|
Jalife S, Tsybizova A, Gershoni-Poranne R, Wu JI. Modulating Paratropicity in Heteroarene-Fused Expanded Pentalenes. Org Lett 2024; 26:1293-1298. [PMID: 38307038 DOI: 10.1021/acs.orglett.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Pentalenes are formally eight-π-electron antiaromatic, but π-expanded pentalenes can display varying levels of paratropicity depending on the choice of annelated (hetero)arenes and the geometry of π-expansion (i.e., linear vs bent topologies) around the [4n] core. Here, we explain the effects of annelation on the paratropicity of π-expanded pentalenes by relating the electronic structure of pentalenes to a pair of conjoined pentafulvenes.
Collapse
Affiliation(s)
- Said Jalife
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Alexandra Tsybizova
- Laboratory for Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8092, Switzerland
| | - Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Wang L, Peng X, Su J, Wang J, Gallardo A, Yang H, Chen Q, Lyu P, Jelínek P, Liu J, Wong MW, Lu J. Highly Selective On-Surface Ring-Opening of Aromatic Azulene Moiety. J Am Chem Soc 2024; 146:1563-1571. [PMID: 38141030 DOI: 10.1021/jacs.3c11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| |
Collapse
|
8
|
Luo Q, Liu W, Zhuo Q. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products. ACS OMEGA 2024; 9:753-770. [PMID: 38222567 PMCID: PMC10785781 DOI: 10.1021/acsomega.3c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024]
Abstract
Ozone was injected into a coal-water suspension, and an HRTEM test was carried out on the separated oxidation products. The results show that from the perspective of visualization the macromolecular network structure of coal contains a large number of graphite-like structures. However, the chemical reaction mechanism between the coal surface and O3 is not clear, and the microscopic formation mechanism of oxygen-containing functional groups in carbon quantum dots has not been explained. As a result, the reaction process between O3 and methylene on the coal surface was studied by the DFT method. We found that OH• generated by O3 in water can oxidize two adjacent carbon atoms in methylene into double bonds (C=C), and finally, aldehydes and carboxylic acids were generated. By calculation of thermodynamic parameters ΔG and ΔH, it is found that all reactions are spontaneous exothermic processes. The above chemical reaction is based on the physical adsorption of OH• with Ar-(CH2)6-Ar and O3 with Ar-CH2-CH=CH-(CH2)3-Ar. The calculated adsorption energies of the two systems are -9.41 and -12.55 kcal/mol, respectively. Then, the charge transfer and atomic orbital interaction before and after adsorption are analyzed from the perspectives of Mulliken charge, density of states, deformation density, and total charge density. The results show that the electrostatic attraction is the main driving force of adsorption. The ether bond (C-O-C) in coal is finally oxidized to an ester group (RCOOR'), the hydroxyl group (CH2-CH-OH) on the aliphatic chain is oxidized to a carbonyl group (CH2-C=O), and the benzene with two OH• forms phenol hydroxyl and one molecule of water. Finally, the coal and the corresponding coal-based carbon quantum dots were investigated by infrared spectroscopy; the difference in functional groups before and after oxidation was clarified, and the result was in good agreement with the simulation.
Collapse
Affiliation(s)
- Qing Luo
- School
of Materials and Chemical Engineering, Henan
University of Urban Construction, Daxiangshan Road, Pingdingshan 467036, Henan Province, China
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wenli Liu
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiming Zhuo
- School
of Chemical and Environment Engineering, China University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
9
|
Zuzak R, Quiroga S, Engelund M, Pérez D, Peña D, Godlewski S, Melle-Franco M. Sequential On-Surface Cyclodehydrogenation in a Nonplanar Nanographene. J Phys Chem Lett 2023; 14:10442-10449. [PMID: 37962022 DOI: 10.1021/acs.jpclett.3c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
On-surface synthesis has emerged as an attractive method for the atomically precise synthesis of new molecular nanostructures, being complementary to the widespread approach based on solution chemistry. It has been particularly successful in the synthesis of graphene nanoribbons and nanographenes. In both cases, the target compound is often generated through cyclodehydrogenation reactions, leading to planarization and the formation of hexagonal rings. To improve the flexibility and tunability of molecular units, however, the incorporation of other, nonbenzenoid, subunits is highly desirable. In this letter, we thoroughly analyze sequential cyclodehydrogenation reactions with a custom-designed molecular precursor. We demonstrate the step-by-step formation of hexagonal and pentagonal rings from the nonplanar precursor within fjord and cove regions, respectively. Computer models comprehensively support the experimental observations, revealing that both reactions imply an initial hydrogen abstraction and a final [1,2] hydrogen shift, but the formation of a pentagonal ring proceeds through a radical mechanism.
Collapse
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348 Kraków, Poland
| | - Sabela Quiroga
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mads Engelund
- Espeem S.A.R.L., L-4365 Esch-sur-Alzette, Luxembourg
| | - Dolores Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348 Kraków, Poland
| | - Manuel Melle-Franco
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Wu F, Barragán A, Gallardo A, Yang L, Biswas K, Écija D, Mendieta-Moreno JI, Urgel JI, Ma J, Feng X. Structural Expansion of Cyclohepta[def]fluorene towards Azulene-Embedded Non-Benzenoid Nanographenes. Chemistry 2023; 29:e202301739. [PMID: 37339368 DOI: 10.1002/chem.202301739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid non-alternant nanographenes (NGs) have attracted increasing attention on account of their distinct electronic and structural features in comparison to their isomeric benzenoid counterparts. In this work, we present a series of unprecedented azulene-embedded NGs on Au(111) during the attempted synthesis of cyclohepta[def]fluorene-based high-spin non-Kekulé structure. Comprehensive scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) evidence the structures and conformations of these unexpected products. The dynamics of the precursor bearing 9-(2,6-dimethylphenyl)anthracene and dihydro-dibenzo-cyclohepta[def]fluorene units and its reaction products on the surface are analyzed by density functional theory (DFT) and molecular dynamics (MD) simulations. Our study sheds light on the fundamental understanding of precursor design for the fabrication of π-extended non-benzenoid NGs on a metal surface.
Collapse
Affiliation(s)
- Fupeng Wu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
11
|
Wang T, Fan Q, Zhu J. Steering On-Surface Reactions by Kinetic and Thermodynamic Strategies. J Phys Chem Lett 2023; 14:2251-2262. [PMID: 36821589 DOI: 10.1021/acs.jpclett.3c00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
On-surface synthesis has emerged as a powerful tool to fabricate various functional low-dimensional nanostructures with atomic precision, thus becoming a promising platform for the preparation of next-generation semiconductive, magnetic, and topological nanodevices. With the aid of scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy, both the chemical structures and physical properties of the obtained products can be well characterized. A major challenge in this field is how to efficiently steer reaction pathways and improve the yield/quality of products. To address this problem, in recent years various kinetic and thermodynamic strategies have been successfully employed to control on-surface reactions. In this Perspective, we discuss these strategies in view of basic reaction steps on surfaces, including molecular adsorption, diffusion, and reaction. We hope this Perspective will help readers to deepen the understanding of the mechanisms of on-surface reactions and rationally design reaction procedures for the fabrication of high-quality functional nanomaterials on surfaces.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Donostia International Physics Center, San Sebastián 20018, Spain
| | - Qitang Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
12
|
Jiménez-Martín A, Villalobos F, Mallada B, Edalatmanesh S, Matěj A, Cuerva JM, Jelínek P, Campaña AG, de la Torre B. On-surface synthesis of non-benzenoid conjugated polymers by selective atomic rearrangement of ethynylarenes. Chem Sci 2023; 14:1403-1412. [PMID: 36794197 PMCID: PMC9906656 DOI: 10.1039/d2sc04722e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Here, we report a new on-surface synthetic strategy to precisely introduce five-membered units into conjugated polymers from specifically designed precursor molecules that give rise to low-bandgap fulvalene-bridged bisanthene polymers. The selective formation of non-benzenoid units is finely controlled by the annealing parameters, which govern the initiation of atomic rearrangements that efficiently transform previously formed diethynyl bridges into fulvalene moieties. The atomically precise structures and electronic properties have been unmistakably characterized by STM, nc-AFM, and STS and the results are supported by DFT theoretical calculations. Interestingly, the fulvalene-bridged bisanthene polymers exhibit experimental narrow frontier electronic gaps of 1.2 eV on Au(111) with fully conjugated units. This on-surface synthetic strategy can potentially be extended to other conjugated polymers to tune their optoelectronic properties by integrating five-membered rings at precise sites.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Brehova 7 Prague 1 115 19 Czech Republic.,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| | - Federico Villalobos
- Departamento de Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. Fuentenueva Granada 18071 Spain
| | - Benjamin Mallada
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,J. Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc 78371 Czech Republic.,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| | - Shayan Edalatmanesh
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,J. Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc 78371 Czech Republic.,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| | - Adam Matěj
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,J. Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc 78371 Czech Republic.,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| | - Juan M. Cuerva
- Departamento de Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. FuentenuevaGranada 18071Spain
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| | - Araceli G. Campaña
- Departamento de Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. FuentenuevaGranada 18071Spain
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc Olomouc 783 71 Czech Republic .,Institute of Physics, Czech Academy of Sciences Prague 162 00 Czech Republic
| |
Collapse
|
13
|
Zou Z, Sala A, Panighel M, Tosi E, Lacovig P, Lizzit S, Scardamaglia M, Kokkonen E, Cepek C, Africh C, Comelli G, Günther S, Patera LL. In Situ Observation of C-C Coupling and Step Poisoning During the Growth of Hydrocarbon Chains on Ni(111). Angew Chem Int Ed Engl 2023; 62:e202213295. [PMID: 36325959 PMCID: PMC10108169 DOI: 10.1002/anie.202213295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/06/2022]
Abstract
The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface. Exploiting X-ray photoelectron spectroscopy up to near-ambient pressures, the intermediate species and reaction products have been identified. Complementary in situ scanning tunneling microscopy observations shed light onto the C-C coupling mechanism. While the step edges of the metal catalyst are commonly assumed to be the active sites for the C-C coupling, we showed that the polymerization occurs instead on the flat terraces of the metallic surface.
Collapse
Affiliation(s)
- Zhiyu Zou
- CNR-IOM Materials Foundry Institute34149TriesteItaly
| | - Alessandro Sala
- CNR-IOM Materials Foundry Institute34149TriesteItaly
- Department of PhysicsUniversity of Trieste34127TriesteItaly
| | | | | | | | | | | | | | - Cinzia Cepek
- CNR-IOM Materials Foundry Institute34149TriesteItaly
| | | | - Giovanni Comelli
- CNR-IOM Materials Foundry Institute34149TriesteItaly
- Department of PhysicsUniversity of Trieste34127TriesteItaly
| | - Sebastian Günther
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
| | - Laerte L. Patera
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| |
Collapse
|
14
|
Zhu YC, Xue FH, Kang LX, Liu JW, Wang Y, Li DY, Liu PN. Synthesis of Dendronized Polymers on the Au(111) Surface. J Phys Chem Lett 2022; 13:10589-10596. [PMID: 36346870 DOI: 10.1021/acs.jpclett.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dendronized polymers (DPs) consist of a linear polymeric backbone with dendritic side chains. Fine-tuning of the functional groups in the side chains enriches the structural versatility of the DPs and imparts a variety of novel physical properties. Herein, the first on-surface synthesis of DPs is achieved via the postfunctionalization of polymers on Au(111), in which the surface-confinement-induced planar conformation and chiral configurations were unambiguously characterized. While the dendronized monomer was synthesized in situ on Au(111), the subsequent polymerization afforded only short, cross-linked DP chains owing to multiple side reactions. The postfunctionalization approach selectively produced brominated polyphenylene backbone moieties by the deiodination polymerization of 4-bromo-4″-iodo-5'-(4-iodophenyl)-1,1':3',1″-terphenyl on Au(111), which smoothly underwent divergent cross-coupling reactions with two different isocyanides to form two types of DPs as individual long chains.
Collapse
Affiliation(s)
- Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fu-Hua Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Wei Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Mallada B, Chen Q, Chutora T, Sánchez‐Grande A, Cirera B, Santos J, Martín N, Ecija D, Jelínek P, de la Torre B. Resolving Atomic‐Scale Defects in Conjugated Polymers On‐Surfaces. Chemistry 2022; 28:e202200944. [DOI: 10.1002/chem.202200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Benjamín Mallada
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
- Department of Physical Chemistry Faculty of Science Palacký University 78371 Olomouc Czech Republic
- Institute of Physics Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Qifan Chen
- Institute of Physics Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Taras Chutora
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
- Current address: Department of Physics University of Alberta Edmonton Alberta T6G 2J1 Canada
| | | | - Borja Cirera
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco Madrid Spain
| | - José Santos
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco Madrid Spain
| | - Nazario Martín
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco Madrid Spain
| | - David Ecija
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco Madrid Spain
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
- Institute of Physics Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
- Institute of Physics Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
16
|
Sánchez‐Grande A, Urgel JI, García‐Benito I, Santos J, Biswas K, Lauwaet K, Gallego JM, Rosen J, Miranda R, Björk J, Martín N, Écija D. Surface-Assisted Synthesis of N-Containing π-Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200407. [PMID: 35604199 PMCID: PMC9259725 DOI: 10.1002/advs.202200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
On-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr2 ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms. On Ag(111) the dissociation of bromine atoms at room temperature triggers the homocoupling of tetraazapentacene units together with the binding of silver adatoms to the nitrogen atoms of the monomers giving rise to a N-containing conjugated coordination polymer (P1). Subsequently, P1 undergoes ladderization at 200 °C, affording a pyrrolopyrrole-bridged conjugated polymer (P2). On Au(111) the formation of the intermediate polymer P1 is not observed and, instead, after annealing at 100 °C, the conjugated ladder polymer P2 is obtained, revealing the crucial role of metal adatoms on Ag(111) as compared to Au(111). Finally, on Ag(100) the loss of :CBr2 groups affords the formation of tetraazapentacene monomers, which coexist with polymer P1. Our results contribute to introduce protocols for the synthesis of N-containing conjugated polymers, illustrating the selective role of the metallic support in the underlying reaction mechanisms.
Collapse
Affiliation(s)
| | - José I. Urgel
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
| | - Inés García‐Benito
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
- Departamento de Química Orgánica. Facultad de Ciencias QuímicasUniversidad ComplutenseMadrid28040Spain
| | - José Santos
- Departamento de Química Orgánica. Facultad de Ciencias QuímicasUniversidad ComplutenseMadrid28040Spain
| | - Kalyan Biswas
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
| | - Koen Lauwaet
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
| | - José M. Gallego
- Instituto de Ciencia de Materiales de MadridCSICCantoblancoMadrid28049Spain
| | - Johanna Rosen
- Department of PhysicsChemistry and BiologyIFMLinköping UniversityLinköping58183Sweden
| | - Rodolfo Miranda
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Jonas Björk
- Department of PhysicsChemistry and BiologyIFMLinköping UniversityLinköping58183Sweden
| | - Nazario Martín
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
- Departamento de Química Orgánica. Facultad de Ciencias QuímicasUniversidad ComplutenseMadrid28040Spain
| | - David Écija
- IMDEA NanoscienceC/ Faraday 9, Campus de CantoblancoMadrid28049Spain
| |
Collapse
|
17
|
Biswas K, Urgel JI, Ajayakumar MR, Ma J, Sánchez-Grande A, Edalatmanesh S, Lauwaet K, Mutombo P, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. Synthesis and Characterization of peri-Heptacene on a Metallic Surface. Angew Chem Int Ed Engl 2022; 61:e202114983. [PMID: 35170842 DOI: 10.1002/anie.202114983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/09/2022]
Abstract
The synthesis of long n-peri-acenes (n-PAs) is challenging as a result of their inherent open-shell radical character, which arises from the presence of parallel zigzag edges beyond a certain n value. They are considered as π-electron model systems to study magnetism in graphene nanostructures; being potential candidates in the fabrication of optoelectronic and spintronic devices. Here, we report the on-surface formation of the largest pristine member of the n-PA family, i.e. peri-heptacene (n=7, 7-PA), obtained on an Au(111) substrate under ultra-high vacuum conditions. Our high-resolution scanning tunneling microscopy investigations, complemented by theoretical simulations, provide insight into the chemical structure of this previously elusive compound. In addition, scanning tunneling spectroscopy reveals the antiferromagnetic open-shell singlet ground state of 7-PA, exhibiting singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 49 meV.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - M R Ajayakumar
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Shayan Edalatmanesh
- Institute of Physics of the Czech Academy of Science, 16253, Praha, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 771 46, Olomouc, Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science, 16253, Praha, Czech Republic
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain.,Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, 16253, Praha, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 771 46, Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany
| | - David Écija
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
18
|
Biswas K, Urgel JI, Ajayakumar MR, Ma J, Sánchez‐Grande A, Edalatmanesh S, Lauwaet K, Mutombo P, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. Synthesis and Characterization of
peri
‐Heptacene on a Metallic Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - José I. Urgel
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - M. R. Ajayakumar
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ana Sánchez‐Grande
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Shayan Edalatmanesh
- Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc 771 46 Olomouc Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid CSIC 28049 Madrid Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
- Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc 771 46 Olomouc Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - David Écija
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
19
|
Li DY, Wang Y, Hou XY, Ren YT, Kang LX, Xue FH, Zhu YC, Liu JW, Liu M, Shi XQ, Qiu X, Liu PN. On-Surface Synthesis of [3]Radialenes via [1+1+1] Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202117714. [PMID: 35179282 DOI: 10.1002/anie.202117714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 01/20/2023]
Abstract
[3]Radialenes are the smallest carbocyclic structures with unusual topologies and cross-conjugated π-electronic structures. Here, we report a novel [1+1+1] cycloaddition reaction for the synthesis of aza[3]radialenes on the Ag(111) surface, where the steric hindrance of the chlorine substituents guides the selective and orientational assembling of the isocyanide precursors. By combining scanning tunneling microscopy, non-contact atomic force microscopy, and time-of-flight secondary ion mass spectrometry, we determined the atomic structure of the produced aza[3]radialenes. Furthermore, two reaction pathways including synergistic and stepwise are proposed based on density functional theory calculations, which reveal the role of the chlorine substituents in the activation of the isocyano groups via electrostatic interaction.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiao-Yu Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin-Ti Ren
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Hua Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Qiang Shi
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
20
|
Li D, Wang Y, Hou X, Ren Y, Kang L, Xue F, Zhu Y, Liu J, Liu M, Shi X, Qiu X, Liu P. On‐Surface Synthesis of [3]Radialenes via [1+1+1] Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deng‐Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Xiao‐Yu Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences Beijing 100049 China
| | - Yin‐Ti Ren
- College of Physics Science and Technology Hebei University Baoding 071002 China
| | - Li‐Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Fu‐Hua Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Ya‐Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Jian‐Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing‐Qiang Shi
- College of Physics Science and Technology Hebei University Baoding 071002 China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pei‐Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
21
|
Ajayakumar MR, Ma J, Feng X. π‐Extended peri‐Acenes: Recent Progress in Synthesis and Characterization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. R. Ajayakumar
- Dresden University of Technology: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry Dresden GERMANY
| | - Ji Ma
- Dresden University of Technology: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry 01069 Dresden GERMANY
| | - Xinliang Feng
- Technische Universitaet Dresden Chair for Molecular Functional Materials Mommsenstrasse 4 01062 Dresden GERMANY
| |
Collapse
|
22
|
Liu X, Matej A, Kratky T, Mendieta‐Moreno JI, Günther S, Mutombo P, Decurtins S, Aschauer U, Repp J, Jelinek P, Liu S, Patera LL. Exploiting Cooperative Catalysis for the On-Surface Synthesis of Linear Heteroaromatic Polymers via Selective C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202112798. [PMID: 34788494 PMCID: PMC9299585 DOI: 10.1002/anie.202112798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Regiospecific C-H activation is a promising approach to achieve extended polymers with tailored structures. While a recent on-surface synthetic approach has enabled regioselective homocoupling of heteroaromatic molecules, only small oligomers have been achieved. Herein, selective C-H activation for dehydrogenative C-C couplings of hexaazatriphenylene by Scholl reaction is reported for the first time. By combining low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM), we revealed the formation of one-dimensional polymers with a double-chain structure. The details of the growth process are rationalized by density functional theory (DFT) calculations, pointing out a cooperative catalytic action of Na and Ag adatoms in steering the C-H selectivity for the polymerization.
Collapse
Affiliation(s)
- Xunshan Liu
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of Bern3012BernSwitzerland
- Department of ChemistryZhejiang Sci-Tech UniversityHangzhouChina
| | - Adam Matej
- Institute of Physics of Czech Academy of Sciences16200PragueCzech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University Olomouc78371OlomoucCzech Republic
| | - Tim Kratky
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
| | | | - Sebastian Günther
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
| | - Pingo Mutombo
- Institute of Physics of Czech Academy of Sciences16200PragueCzech Republic
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of Bern3012BernSwitzerland
| | - Ulrich Aschauer
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of Bern3012BernSwitzerland
| | - Jascha Repp
- Institute of Experimental and Applied PhysicsUniversity of Regensburg93053RegensburgGermany
| | - Pavel Jelinek
- Institute of Physics of Czech Academy of Sciences16200PragueCzech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University Olomouc78371OlomoucCzech Republic
| | - Shi‐Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of Bern3012BernSwitzerland
| | - Laerte L. Patera
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
- Institute of Experimental and Applied PhysicsUniversity of Regensburg93053RegensburgGermany
| |
Collapse
|
23
|
Liu X, Matej A, Kratky T, Mendieta‐Moreno JI, Günther S, Mutombo P, Decurtins S, Aschauer U, Repp J, Jelinek P, Liu S, Patera LL. Einsatz der kooperativen Katalyse für die Oberflächensynthese linearer heteroaromatischer Polymere durch selektive C‐H‐Aktivierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xunshan Liu
- Departement für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou China
| | - Adam Matej
- Institute of Physics of Czech Academy of Sciences 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
| | - Tim Kratky
- Chemie Department und Zentralinstitut für Katalyseforschung Technische Universität München 85748 Garching Deutschland
| | | | - Sebastian Günther
- Chemie Department und Zentralinstitut für Katalyseforschung Technische Universität München 85748 Garching Deutschland
| | - Pingo Mutombo
- Institute of Physics of Czech Academy of Sciences 16200 Prague Czech Republic
| | - Silvio Decurtins
- Departement für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Ulrich Aschauer
- Departement für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Jascha Repp
- Institut für Experimentelle und Angewandte Physik Universität Regensburg 93053 Regensburg Deutschland
| | - Pavel Jelinek
- Institute of Physics of Czech Academy of Sciences 16200 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc 78371 Olomouc Czech Republic
| | - Shi‐Xia Liu
- Departement für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Laerte L. Patera
- Chemie Department und Zentralinstitut für Katalyseforschung Technische Universität München 85748 Garching Deutschland
- Institut für Experimentelle und Angewandte Physik Universität Regensburg 93053 Regensburg Deutschland
| |
Collapse
|
24
|
Hong C, Baltazar J, Tovar JD. Manifestations of antiaromaticity in organic materials: case studies of cyclobutadiene, borole, and pentalene. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - John D. Tovar
- Johns Hopkins University Department of Chemistry Department of Materials Science and Engineering 3400 N. Charles StreetNCB 316 MD 21218 Baltimore UNITED STATES
| |
Collapse
|
25
|
Kitao T, Zhang X, Uemura T. Nanoconfined synthesis of conjugated ladder polymers. Polym Chem 2022. [DOI: 10.1039/d2py00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in controlled synthesis of conjugated ladder polymers using templates.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
26
|
Cao N, Riss A, Corral-Rascon E, Meindl A, Auwärter W, Senge MO, Ebrahimi M, Barth JV. Surface-confined formation of conjugated porphyrin-based nanostructures on Ag(111). NANOSCALE 2021; 13:19884-19889. [PMID: 34842889 DOI: 10.1039/d1nr06451g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrin-based oligomers were synthesized from the condensation of adsorbed 4-benzaldehyde-substituted porphyrins through the formation of CC linkages, following a McMurry-type coupling scheme. Scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy data evidence both the dissociation of aldehyde groups and the formation of CC linkages. Our approach provides a path for the on-surface synthesis of porphyrin-based oligomers coupled by CC bridges - as a means to create functional conjugated nanostructures.
Collapse
Affiliation(s)
- Nan Cao
- Physics Department E20, Technical University of Munich, Garching D-85748, Germany
| | - Alexander Riss
- Physics Department E20, Technical University of Munich, Garching D-85748, Germany
| | | | - Alina Meindl
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich, Garching D-85748, Germany
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenberg-Str. 2a, 85748 Garching, Germany.
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenberg-Str. 2a, 85748 Garching, Germany.
| | - Maryam Ebrahimi
- Physics Department E20, Technical University of Munich, Garching D-85748, Germany
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada, M. E. is a Tier 2 Canada Research Chair in Low-Dimensional Nanomaterials.
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, Garching D-85748, Germany
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenberg-Str. 2a, 85748 Garching, Germany.
| |
Collapse
|
27
|
Li DY, Qiu X, Li SW, Ren YT, Zhu YC, Shu CH, Hou XY, Liu M, Shi XQ, Qiu X, Liu PN. Ladder Phenylenes Synthesized on Au(111) Surface via Selective [2+2] Cycloaddition. J Am Chem Soc 2021; 143:12955-12960. [PMID: 34397213 DOI: 10.1021/jacs.1c05586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ladder phenylenes (LPs) composed of alternating fused benzene and cyclobutadiene rings have been synthesized in solution with a maximum length no longer than five units. Longer polymeric LPs have not been obtained so far because of their poor stability and insolubility. Here, we report the synthesis of linear LP chains on the Au(111) surface via dehalogenative [2+2] cycloaddition, in which the steric hindrance of the methyl groups in the 1,2,4,5-tetrabromo-3,6-dimethylbenzene precursor improves the chemoselectivity as well as the orientation orderliness. By combining scanning tunneling microscopy and noncontact atomic force microscopy, we determined the atomic structure and the electronic properties of the LP chains on the metallic substrate and NaCl/Au(111). The tunneling spectroscopy measurements revealed the charged state of chains on the NaCl layer, and this finding is supported by density functional theory calculations, which predict an indirect bandgap and antiferromagnetism in the polymeric LP chains.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xia Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shi-Wen Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yin-Ti Ren
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Hui Shu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiao-Yu Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Qiang Shi
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
28
|
Urgel JI, Bock J, Di Giovannantonio M, Ruffieux P, Pignedoli CA, Kivala M, Fasel R. On-surface synthesis of π-conjugated ladder-type polymers comprising nonbenzenoid moieties. RSC Adv 2021; 11:23437-23441. [PMID: 34276968 PMCID: PMC8251514 DOI: 10.1039/d1ra03253d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023] Open
Abstract
On-surface synthesis provides a powerful approach toward the atomically precise fabrication of π-conjugated ladder polymers (CLPs). We report herein the surface-assisted synthesis of nonbenzenoid CLPs from cyclopenta-annulated anthracene monomers on Au(111) under ultrahigh vacuum conditions. Successive thermal annealing steps reveal the dehalogenative homocoupling to yield an intermediate 1D polymer and the subsequent cyclodehydrogenation to form the fully conjugated ladder polymer. Notably, neighbouring monomers may fuse in two different ways, resulting in six- and five-membered rings, respectively. The structure and electronic properties of the reaction products have been investigated via low-temperature scanning tunneling microscopy and spectroscopy, complemented by density-functional theory calculations. Our results provide perspectives for the on-surface synthesis of nonbenzenoid CLPs with the potential to be used for organic electronic devices.
Collapse
Affiliation(s)
- José I Urgel
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Julian Bock
- Institute of Organic Chemistry, Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials, Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Carlo A Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Milan Kivala
- Institute of Organic Chemistry, Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials, Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
- Department of Chemistry and Biochemistry, University of Bern 3012 Bern Switzerland
| |
Collapse
|
29
|
Czichy M, Janasik P, Motyka R, Zassowski P, Grabiec E, Wolinska-Grabczyk A, Lapkowski M. Influence of isomeric phthaloperinone monomers on the formation of π-dimers and σ-bonded segments in electrochemically-crosslinked products. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Konishi A, Yasuda M. Breathing New Life into Nonalternant Hydrocarbon Chemistry: Syntheses and Properties of Polycyclic Hydrocarbons Containing Azulene, Pentalene, and Heptalene Frameworks. CHEM LETT 2021. [DOI: 10.1246/cl.200650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|