1
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Khan M, Farooqi S, Mitchell KL, Chowdhury SKR, Cabrera-Ayala M, Huang J, Wallace DC, Weiss SL. Effect of sodium butyrate on kidney and liver mitochondrial dysfunction in a lipopolysaccharide mouse model. FASEB J 2024; 38:e70228. [PMID: 39641547 DOI: 10.1096/fj.202401379rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Sodium butyrate can reduce inflammation, but it is not known if butyrate can improve mitochondrial dysfunction during sepsis. We tested butyrate to prevent or reverse lipopolysaccharide (LPS)-induced mitochondrial dysfunction in murine kidney and liver. C57BL/6 mice were grouped as control (n = 9), intraperitoneal (IP) LPS (n = 8), pretreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 8) followed 2 h later by LPS, posttreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 7) 1 h after LPS, or butyrate 1200 mg/kg only (n = 8). Kidney and liver tissue were collected at 24 h to measure mitochondrial respiration, electron transport system (ETS) complex activity and subunit expression, and content (citrate synthase [CS] activity and mtDNA/nDNA). Kidney mitochondrial respiration was decreased after LPS compared to controls. Pretreatment with butyrate 1200 mg/kg increased kidney OXPHOSCI+II, ETSCI+II, ETSCII, and CIV respiration compared to LPS; posttreatment did not achieve significant increases except for OXPHOSCI. Liver mitochondrial respiration exhibited a similar pattern as in kidney, but differences were not significant. ETS complex and CS activity did not differ between groups, but CI and CII subunit expression trended higher with butyrate in kidney. Changes in mtDNA/nDNA followed a similar pattern as respiration in kidney and liver with a decrease after LPS that was not present with butyrate pretreatment. These data show that butyrate can prevent-but not significantly reverse-the LPS-induced decrease in kidney mitochondrial respiration without a clear effect in liver. Mitochondrial protection was not attributable to changes in ETS complex activity but may reflect maintenance of ETS subunit expression.
Collapse
Affiliation(s)
- Muznah Khan
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Sumera Farooqi
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Katherine L Mitchell
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Subir Kumar Roy Chowdhury
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Marian Cabrera-Ayala
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Jessica Huang
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott L Weiss
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Liu J, Wang W, Wang K, Liu W, Zhao Y, Han X, Wang L, Jiang BH. HDAC1 and FOXK1 mediate EGFR-TKI resistance of non-small cell lung cancer through miR-33a silencing. J Transl Med 2024; 22:793. [PMID: 39198847 PMCID: PMC11350990 DOI: 10.1186/s12967-024-05563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The development of acquired EGFR-TKI treatment resistance is still a major clinical challenge in the treatment of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of HDAC1/FOXK1/miR-33a signaling in EGFR-TKI resistance. METHODS The expression levels of miR-33a, HDAC1, and FOXK1 were examined using quantitative polymerase chain reaction (PCR) and bioinformatics analysis. Cell proliferation, migration, and apoptosis were explored by cell number assay, Transwell, and flow cytometry assays, respectively. After overexpression or knockdown of HDAC1, miR-33a expression in the cells, cell functions were tested. Immunoprecipitation and correlation analyses were used to evaluate the interaction between HDAC1 and FOXK1 protein. The tumor-suppressive role of miR-33a was investigated by animal experiments. RESULTS The suppression of miR-33a increased TKI resistance by affecting cell proliferation, migration, and apoptosis in gefitinib-resistant cells. HDAC1 is the key upstream molecule that inhibits miR-33 expression. HDAC1 upregulation increased gefitinib resistance by its binding to FOXK1 in cells to silence miR-33a expression. MiR-33a overexpression exerts tumor-suppressive effects by negatively regulating ABCB7 and p70S6K1 expression. Moreover, overexpression of miR-33a inhibited tumor growth in a xenograft nude mouse model. CONCLUSIONS HDAC1/FOXK1 upregulation and miR-33a silencing are new mechanisms of EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jie Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wei Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kunkun Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Wenjing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanqiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiao Han
- Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
6
|
Li W, Dong M, Gao K, Guan J, Liu Y. Genome-wide CRISPR screens identify PTPN21 and WDR26 as modulators of the mitochondrial stress-induced ISR. LIFE METABOLISM 2024; 3:loae020. [PMID: 39872503 PMCID: PMC11749115 DOI: 10.1093/lifemeta/loae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Wen Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingyue Dong
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kaiyu Gao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| |
Collapse
|
7
|
Pei H, Lin Z, Yao K, Luo Y, Tong P, Chen H, Wu Y, Wu Z, Gao J. Ovalbumin promotes innate immune response of Caenorhabditis elegans through DAF-16 and SKN-1 pathways in insulin/IGF-1 signaling. J Physiol Biochem 2024; 80:541-559. [PMID: 38632209 DOI: 10.1007/s13105-024-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Ovalbumin (OVA) is a major allergen in eggs and could induce severe allergic reactions in sensitive individuals, where the innate immune system works as a regulator. The mechanism of how innate immunity adjusts to food allergy is relatively well-studied, however, the effects of allergen uptake on the innate immune system remain unclear. Therefore, the Caenorhabditis elegans (C. elegans) model was utilized to assess the effects of OVA on its innate immune system. OVA enhanced the immune response of C. elegans with higher survival rates under Pseudomonas aeruginosa infection. Moreover, sustaining OVA treatment improved the health states that were reflected in the prolonged lifespan, alleviated oxidative stress, accelerated growth, and promoted motility. RNA-sequencing analysis and the slow-killing assays in the mutants of insulin/IGF-1 signaling (IIS)-related genes confirmed that IIS was necessary for OVA to regulate innate immunity. Besides, OVA activated SKN-1 temporarily and facilitated the nuclear localization of DAF-16 for improving immunity and health status in C. elegans. Together, OVA could enhance the innate immune responses via DAF-16 and SKN-1 pathways in the IIS of C. elegans, and this work will provide novel insights into the regulation of innate immunity by OVA in higher organisms.
Collapse
Affiliation(s)
- Haibing Pei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Zhiyin Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Kexin Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Yeqing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China.
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, P.R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, 330047, P.R. China.
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, 330047, P.R. China.
| |
Collapse
|
8
|
Charmpilas N, Sotiriou A, Axarlis K, Tavernarakis N, Hoppe T. Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans. Cell Rep 2024; 43:114336. [PMID: 38852157 DOI: 10.1016/j.celrep.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Axarlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPR mt): what we know thus far. Front Cell Dev Biol 2024; 12:1405393. [PMID: 38882057 PMCID: PMC11176431 DOI: 10.3389/fcell.2024.1405393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
Collapse
Affiliation(s)
- Angie K Torres
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Veronika Fleischhart
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
10
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Emerson FJ, Chiu C, Lin LY, Riedel CG, Zhu M, Lee SS. The chromatin factors SET-26 and HCF-1 oppose the histone deacetylase HDA-1 in longevity and gene regulation in C. elegans. Nat Commun 2024; 15:2320. [PMID: 38485937 PMCID: PMC10940595 DOI: 10.1038/s41467-024-46510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.
Collapse
Affiliation(s)
- Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Caitlin Chiu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Laura Y Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ming Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Xiao Y, Hong CA, Liu F, Shi D, Zhu X, Yu C, Jiang N, Li S, Liu Y. Caffeic acid activates mitochondrial UPR to resist pathogen infection in Caenorhabditis elegans via the transcription factor ATFS-1. Infect Immun 2024; 92:e0049423. [PMID: 38294242 PMCID: PMC10929418 DOI: 10.1128/iai.00494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cao-an Hong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Shi
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
15
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
16
|
Liu Q, Yan X, Yuan Y, Li R, Zhao Y, Fu J, Wang J, Su J. HTRA2/OMI-Mediated Mitochondrial Quality Control Alters Macrophage Polarization Affecting Systemic Chronic Inflammation. Int J Mol Sci 2024; 25:1577. [PMID: 38338855 PMCID: PMC10855076 DOI: 10.3390/ijms25031577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
17
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
18
|
Alexander KD, Ramachandran S, Biswas K, Lambert CM, Russell J, Oliver DB, Armstrong W, Rettler M, Liu S, Doitsidou M, Bénard C, Walker AK, Francis MM. The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling. Nat Commun 2023; 14:7520. [PMID: 37980357 PMCID: PMC10657367 DOI: 10.1038/s41467-023-43281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
Collapse
Affiliation(s)
- Kellianne D Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia Russell
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Devyn B Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William Armstrong
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monika Rettler
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria Doitsidou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Claire Bénard
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Lin Z, He H, Xian Y, Cai J, Ge Q, Guo M, Zheng Q, Liu X, Mo C, Zhang X, Qi W, Zhang Y, Liang L, Yu X, Zhu YZ. Discovery of deoxyandrographolide and its novel effect on vascular senescence by targeting HDAC1. MedComm (Beijing) 2023; 4:e338. [PMID: 37600507 PMCID: PMC10435835 DOI: 10.1002/mco2.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Aconitum carmichaelii (Fuzi) is a traditional Chinese medicine that has been widely used in the clinic to save the dying life for over several thousand years. However, the medicinal components of Fuzi in treating vascular senescence (VS) and its potential mechanism remain unclear. In this study, a network pharmacology method was used to explore the possible components and further validated by experiments to get a candidate compound, deoxyandrographolide (DA). DA restrains aging biomarkers, such as p16, p21, γH2A.X, and p53 in vitro and in vivo blood co-culture studies. Histone deacetylase 1 (HDAC1), mouse double minute2 (MDM2), cyclin-dependent kinase 4, and mechanistic target of rapamycin kinase (mTOR) are predicted to be the possible targets of DA based on virtual screening. Subsequent bio-layer interferometry results indicated that DA showed good affinity capability with HDAC1. DA enhances the protein expression of HDAC1 in the angiotensin II-induced senescence process by inhibiting its ubiquitination degradation. Loss of HDAC1 by CRISPR/Cas9 leads to the disappearance of DA's anti-aging property. The enhancement of HDAC1 represses H3K4me3 (a biomarker of chromosomal activity) and improves chromosome stability. RNA sequencing results also confirmed our hypothesis. Our evidence illuminated that DA may achieve as a novel compound in the treatment of VS by improving chromosome stability.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Yu Xian
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Qinyang Ge
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Minghao Guo
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Quan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Xiaoyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Chengke Mo
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Lu Liang
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| | - Xi‐Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
- Department of PharmacologyShanghai Key Laboratory of Bioactive Small MoleculesSchool of PharmacyFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
22
|
Li TY, Wang Q, Gao AW, Li X, Sun Y, Mottis A, Shong M, Auwerx J. Lysosomes mediate the mitochondrial UPR via mTORC1-dependent ATF4 phosphorylation. Cell Discov 2023; 9:92. [PMID: 37679337 PMCID: PMC10484937 DOI: 10.1038/s41421-023-00589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Lysosomes are central platforms for not only the degradation of macromolecules but also the integration of multiple signaling pathways. However, whether and how lysosomes mediate the mitochondrial stress response (MSR) remain largely unknown. Here, we demonstrate that lysosomal acidification via the vacuolar H+-ATPase (v-ATPase) is essential for the transcriptional activation of the mitochondrial unfolded protein response (UPRmt). Mitochondrial stress stimulates v-ATPase-mediated lysosomal activation of the mechanistic target of rapamycin complex 1 (mTORC1), which then directly phosphorylates the MSR transcription factor, activating transcription factor 4 (ATF4). Disruption of mTORC1-dependent ATF4 phosphorylation blocks the UPRmt, but not other similar stress responses, such as the UPRER. Finally, ATF4 phosphorylation downstream of the v-ATPase/mTORC1 signaling is indispensable for sustaining mitochondrial redox homeostasis and protecting cells from ROS-associated cell death upon mitochondrial stress. Thus, v-ATPase/mTORC1-mediated ATF4 phosphorylation via lysosomes links mitochondrial stress to UPRmt activation and mitochondrial function resilience.
Collapse
Affiliation(s)
- Terytty Yang Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yu Sun
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Liu J, Lu W, Yan D, Guo J, Zhou L, Shi B, Su X. Mitochondrial respiratory complex I deficiency inhibits brown adipogenesis by limiting heme regulation of histone demethylation. Mitochondrion 2023; 72:22-32. [PMID: 37451354 DOI: 10.1016/j.mito.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dongyue Yan
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Junyuan Guo
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Li Zhou
- Department of Nutrition, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
Ma C, Xue T, Peng Q, Zhang J, Guan J, Ding W, Li Y, Xia P, Zhou L, Zhao T, Wang S, Quan L, Li CY, Liu Y. A novel N 6-Deoxyadenine methyltransferase METL-9 modulates C. elegans immunity via dichotomous mechanisms. Cell Res 2023; 33:628-639. [PMID: 37271765 PMCID: PMC10397248 DOI: 10.1038/s41422-023-00826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
N6-Methyldeoxyadenine (6mA) has been rediscovered as a DNA modification with potential biological function in metazoans. However, the physiological function and regulatory mechanisms regarding the establishment, maintenance and removal of 6mA in eukaryotes are still poorly understood. Here we show that genomic 6mA levels change in response to pathogenic infection in Caenorhabditis elegans (C. elegans). We further identify METL-9 as the methyltransferase that catalyzes DNA 6mA modifications upon pathogen infection. Deficiency of METL-9 impairs the induction of innate immune response genes and renders the animals more susceptible to pathogen infection. Interestingly, METL-9 functions through both 6mA-dependent and -independent mechanisms to transcriptionally regulate innate immunity. Our findings reveal that 6mA is a functional DNA modification in immunomodulation in C. elegans.
Collapse
Affiliation(s)
- Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Research Center for Stem Cell and Regenerative Medicine, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China.
| | - Tingling Xue
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qi Peng
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tianyu Zhao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, China
| | - Li Quan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
| |
Collapse
|
25
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
26
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
27
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R, Zhang Z, Liu J, Dai Z, Xie Y, Zhang Z, Liu G, Dong M, Yu ZJ, Li S, Yang X. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 2023; 20:15. [PMID: 37005686 PMCID: PMC10067304 DOI: 10.1186/s12979-023-00339-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.
Collapse
Affiliation(s)
- Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zena Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Dong
- Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6Th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Emerson FJ, Chiu C, Lin LY, Riedel CG, Zhu M, Lee SS. The chromatin factors SET-26 and HCF-1 oppose the histone deacetylase HDA-1 in longevity and gene regulation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.531974. [PMID: 36993207 PMCID: PMC10055255 DOI: 10.1101/2023.03.20.531974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. We propose a model in which SET-26 recruits HCF-1 to chromatin in somatic cells, where they stabilize each other at the promoters of a subset of genes, particularly mitochondrial function genes, and regulate their expression. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.
Collapse
Affiliation(s)
- Felicity J. Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Caitlin Chiu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura Y. Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christian G. Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ming Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
29
|
Gong X, Gui Z, Ye X, Li X. Jatrorrhizine ameliorates Schwann cell myelination via inhibiting HDAC3 ability to recruit Atxn2l for regulating the NRG1-ErbB2-PI3K-AKT pathway in diabetic peripheral neuropathy mice. Phytother Res 2023; 37:645-657. [PMID: 36218239 DOI: 10.1002/ptr.7641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic complication associated with nerve dysfunction and uncontrolled hyperglycemia. Unfortunately, due to its complicated etiology, there has been no successful therapy for DPN. Our research recently revealed that jatrorrhizine (JAT), one of the active constituents of Rhizoma Coptidis, remarkably ameliorated DPN. This work highlighted the potential mechanism through which JAT relieves DPN using db/db mice. The results indicated that JAT treatment significantly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity. Histopathological analysis revealed that JAT significantly increased the number of sciatic nerve fibers and axons, myelin thickness, and axonal diameters. Additionally, JAT markedly elevated the expression of myelination-associated proteins (MBP, MPZ, and Pmp22). The screening of histone deacetylases (HDAC) determined that histone deacetylase 3 (HDAC3) is an excellent target for JAT-induced myelination enhancement. Liquid chromatography-mass spectrometry-(MS)/MS and coimmunoprecipitation analyses further confirmed that HDAC3 antagonizes the NRG1-ErbB2-PI3K-AKT signaling axis by interacting with Atxn2l to augment SCs myelination. Thus, JAT ameliorates SCs myelination in DPN mice via inhibiting the recruitment of Atxn2l by HDAC3 to regulate the NRG1-ErbB2-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiaobao Gong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Zhenwei Gui
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Romero-González A, Suárez-Rivero JM, Romero-Domínguez JM, Sánchez-Alcázar JA. mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021482. [PMID: 36674998 PMCID: PMC9865803 DOI: 10.3390/ijms24021482] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.
Collapse
|
31
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Haynes CM, Hekimi S. Mitochondrial dysfunction, aging, and the mitochondrial unfolded protein response in Caenorhabditis elegans. Genetics 2022; 222:iyac160. [PMID: 36342845 PMCID: PMC9713405 DOI: 10.1093/genetics/iyac160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
We review the findings that establish that perturbations of various aspects of mitochondrial function, including oxidative phosphorylation, can promote lifespan extension, with different types of perturbations acting sometimes independently and additively on extending lifespan. We also review the great variety of processes and mechanisms that together form the mitochondrial unfolded protein response. We then explore the relationships between different types of mitochondrial dysfunction-dependent lifespan extension and the mitochondrial unfolded protein response. We conclude that, although several ways that induce extended lifespan through mitochondrial dysfunction require a functional mitochondrial unfolded protein response, there is no clear indication that activation of the mitochondrial unfolded protein response is sufficient to extend lifespan, despite the fact that the mitochondrial unfolded protein response impacts almost every aspect of mitochondrial function. In fact, in some contexts, mitochondrial unfolded protein response activation is deleterious. To explain this pattern, we hypothesize that, although triggered by mitochondrial dysfunction, the lifespan extension observed might not be the result of a change in mitochondrial function.
Collapse
Affiliation(s)
- Cole M Haynes
- Molecular, Cell and Cancer Biology, UMass-Chan Medical School, Worcester, MA 01655, USA
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
33
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
34
|
Mahmud SA, Qureshi MA, Pellegrino MW. On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS J 2022; 289:7014-7037. [PMID: 34270874 PMCID: PMC9192128 DOI: 10.1111/febs.16126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens employ a variety of tactics to persist in their host and promote infection. Pathogens often target host organelles in order to benefit their survival, either through manipulation or subversion of their function. Mitochondria are regularly targeted by bacterial pathogens owing to their diverse cellular roles, including energy production and regulation of programmed cell death. However, disruption of normal mitochondrial function during infection can be detrimental to cell viability because of their essential nature. In response, cells use multiple quality control programs to mitigate mitochondrial dysfunction and promote recovery. In this review, we will provide an overview of mitochondrial recovery programs including mitochondrial dynamics, the mitochondrial unfolded protein response (UPRmt ), and mitophagy. We will then discuss the various approaches used by bacterial pathogens to target mitochondria, which result in mitochondrial dysfunction. Lastly, we will discuss how cells leverage mitochondrial recovery programs beyond their role in organelle repair, to promote host defense against pathogen infection.
Collapse
Affiliation(s)
- Siraje A Mahmud
- Department of Biology, University of Texas Arlington, TX, USA
| | | | | |
Collapse
|
35
|
Liu Y, Zhou J, Zhang N, Wu X, Zhang Q, Zhang W, Li X, Tian Y. Two sensory neurons coordinate the systemic mitochondrial stress response via GPCR signaling in C. elegans. Dev Cell 2022; 57:2469-2482.e5. [DOI: 10.1016/j.devcel.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
36
|
Li J, Cui J, Tian Y. Neuron-periphery mitochondrial stress communication in aging and diseases. LIFE MEDICINE 2022; 1:168-178. [PMID: 39871928 PMCID: PMC11749785 DOI: 10.1093/lifemedi/lnac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 01/29/2025]
Abstract
The nervous system is the central hub of the body, detecting environmental and internal stimuli to regulate organismal metabolism via communications to the peripheral tissues. Mitochondria play an essential role in neuronal activity by supplying energy, maintaining cellular metabolism, and buffering calcium levels. A variety of mitochondrial conditions are associated with aging and age-related neurological disorders. Beyond regulating individual neuron cells, mitochondria also coordinate signaling in tissues and organs during stress conditions to mediate systemic metabolism and enable organisms to adapt to such stresses. In addition, peripheral organs and immune cells can also produce signaling molecules to modulate neuronal function. Recent studies have found that mitokines released upon mitochondrial stresses affect metabolism and the physiology of different tissues and organs at a distance. Here, we summarize recent advances in understanding neuron-periphery mitochondrial stress communication and how mitokine signals contribute to the systemic regulation of metabolism and aging with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
37
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
38
|
Xia P, Zhou L, Guan J, Ding W, Liu Y. Splicing factor PRP-19 regulates mitochondrial stress response. LIFE METABOLISM 2022; 1:81-93. [PMID: 39872685 PMCID: PMC11749837 DOI: 10.1093/lifemeta/loac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 01/30/2025]
Abstract
Animals respond to mitochondrial perturbation by activating the mitochondrial unfolded protein response (UPRmt) to induce the transcription of mitochondrial stress response genes. In Caenorhabditis elegans, activation of UPRmt allows the animals to maintain organismal homeostasis, activate the innate immune response, and promote lifespan extension. Here, we show that splicing factors such as Precursor RNA processing 19 (PRP-19) are required for the induction of UPRmt in C. elegans. PRP-19 also modulates mitochondrial perturbation-induced innate immune response and lifespan extension. Knockdown of PRP-19 in mammalian cells suppresses UPRmt activation and disrupts the mitochondrial network. These findings reveal an evolutionarily conserved mechanism that maintains mitochondrial homeostasis and controls innate immunity and lifespan through splicing factors.
Collapse
Affiliation(s)
- Peixue Xia
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jialiang Guan
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanqiu Ding
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
39
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
40
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
41
|
Li X, Li J, Zhu D, Zhang N, Hao X, Zhang W, Zhang Q, Liu Y, Wu X, Tian Y. Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPR mt activation and lifespan extension in C. elegans. Cell Rep 2022; 39:110931. [PMID: 35675782 DOI: 10.1016/j.celrep.2022.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Coordination of inter-tissue stress signaling is essential for organismal fitness. Neuronal mitochondrial perturbations activate the mitochondrial unfolded-protein response (UPRmt) in the intestine via the mitokine Wnt signaling in Caenorhabditis elegans. Here, we found that the protein disulfide isomerase PDI-6 coordinates inter-tissue UPRmt signaling via regulating the Wnt ligand EGL-20. PDI-6 is expressed in the endoplasmic reticulum (ER) and interacts with EGL-20 through disulfide bonds that are essential for EGL-20 stability and secretion. pdi-6 deficiency results in misfolded EGL-20, which leads to its degradation via ER-associated protein degradation (ERAD) machinery. Expression of PDI-6 declines drastically with aging, and animals with pdi-6 deficiency have decreased lifespan. Overexpression of PDI-6 is sufficient to maintain Wnt/EGL-20 protein levels during aging, activating the UPRmt, and significantly extending lifespan in a Wnt- and UPRmt-dependent manner. Our study reveals that protein disulfide isomerase facilitates Wnt secretion to coordinate the inter-tissue UPRmt signaling and organismal aging.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangli Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
42
|
Tian J, Tang Y, Yang L, Ren J, Qing Q, Tao Y, Xu J, Zhu J. Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Appl Biochem Biotechnol 2022; 194:4817-4835. [PMID: 35666378 DOI: 10.1007/s12010-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Cold plasma pretreatment has the potential of anti-aging. However, its molecular mechanism is still not clear. Here, cold plasma pretreatment was firstly used to investigate the anti-aging effects of Caenorhabditis elegans using transcriptomic technique. It showed that the optimal parameters of discharge power, processing time, and working pressure for cold plasma pretreatment were separately 100 W, 15 s, and 135 Pa. The released 0.32 mJ/cm2 of the moderate apparent energy density was possibly beneficial to the strong positive interaction between plasma and C. elegans. The longest lifespan (13.67 ± 0.50 for 30 days) was obviously longer than the control (10.37 ± 0.46 for 23 days). Furthermore, compared with the control, frequencies of head thrashes with an increase of 26.01% and 37.31% and those of body bends with an increase of 33.37% and 34.51% on the fourth and eighth day, respectively, indicated movement behavior was improved. In addition, the variation of the enzyme activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) hinted that the cold plasma pretreatment contributed to the enhanced anti-aging effects in nematodes. Transcriptomics analysis revealed that cold plasma pretreatment resulted in specific gene expression. Anatomical structure morphogenesis, response to stress, regulation of biological quality, phosphate-containing compound metabolic process, and phosphorus metabolic process were the most enriched biological process for GO analysis. Cellular response to heat stress and HSF1-dependent transactivation were the two most enriched KEGG pathways. This work would provide the methodological basis using cold plasma pretreatment and the potential gene modification targets for anti-aging study.
Collapse
Affiliation(s)
- Jiamei Tian
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yumeng Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Linsong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qing Qing
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jieting Xu
- Wimi Biotechnology (Jiangsu) Co., Ltd, Changzhou, 213032, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China. .,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
43
|
Weiss SL, Zhang D, Farooqi S, Wallace DC. Sodium butyrate reverses lipopolysaccharide-induced mitochondrial dysfunction in lymphoblasts. J Cell Mol Med 2022; 26:3290-3293. [PMID: 35587004 PMCID: PMC9170810 DOI: 10.1111/jcmm.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Butyrate is a short-chain fatty acid that is produced by commensal microbes within the intestinal microbiome through fermentation of dietary fibre. Microbial-derived butyrate has been shown to promote immunologic and metabolic homeostasis, in part through its beneficial effects on mitochondrial function, and thus has been proposed as a possible anti-inflammatory therapy. We tested the hypothesis that butyrate could mitigate the decrease in mitochondrial respiration in immune cells under septic conditions as a preliminary step towards better understanding the potential for butyrate as a novel therapy in sepsis. Mitochondrial respiration and content (measured as citrate synthase activity) were compared within four Epstein-Barr virus-transformed lymphoblast (LB) cell lines exposed to either control media or lipopolysaccharide (LPS) 100 ng/ml. Both co-incubation of LBs with LPS + butyrate and treatment with butyrate after LPS stimulation reversed the decrease in mitochondrial respiration observed in LBs exposed to LPS without butyrate. Neither LPS nor butyrate led to significant changes in citrate synthase activity. The preliminary findings support further investigation of a potential mitochondrial-based mechanism through which butyrate may help to mitigate the immuno-inflammatory response in sepsis.
Collapse
Affiliation(s)
- Scott L. Weiss
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Pediatric Sepsis Program at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Donglan Zhang
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Sumera Farooqi
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
44
|
Golden NL, Foley MK, Kim Guisbert KS, Guisbert E. Divergent regulatory roles of NuRD chromatin remodeling complex subunits GATAD2 and CHD4 in Caenorhabditis elegans. Genetics 2022; 221:iyac046. [PMID: 35323946 PMCID: PMC9071545 DOI: 10.1093/genetics/iyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
During proteotoxic stress, a pathway known as the heat shock response is induced to maintain protein-folding homeostasis or proteostasis. Previously, we identified the Caenorhabditis elegans GATAD2 ortholog, dcp-66, as a novel regulator of the heat shock response. Here, we extend these findings to show that dcp-66 positively regulates the heat shock response at the cellular, molecular, and organismal levels. As GATAD2 is a subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, we examined other nucleosome remodeling and deacetylase subunits and found that the let-418 (CHD4) nucleosome repositioning core also regulates the heat shock response. However, let-418 acts as a negative regulator of the heat shock response, in contrast to positive regulation by dcp-66. The divergent effects of these two nucleosome remodeling and deacetylase subunits extend to the regulation of other stress responses including oxidative, genotoxic, and endoplasmic reticulum stress. Furthermore, a transcriptomic approach reveals additional divergently regulated pathways, including innate immunity and embryogenesis. Taken together, this work establishes new insights into the role of nucleosome remodeling and deacetylase subunits in organismal physiology. We incorporate these findings into a molecular model whereby different mechanisms of recruitment to promoters can result in the divergent effects of nucleosome remodeling and deacetylase subunits.
Collapse
Affiliation(s)
- Nicole L Golden
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Michaela K Foley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
45
|
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47:645-659. [DOI: 10.1016/j.tibs.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
|
46
|
Zhang L, Wang N, Chen M, Wu S, Zeng J, Zhou F, Wu Q, Liu J, Shi Y. HDAC6/FOXP3/HNF4α axis promotes bile acids induced gastric intestinal metaplasia. Am J Cancer Res 2022; 12:1409-1422. [PMID: 35411233 PMCID: PMC8984877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023] Open
Abstract
Bile reflux is one of the main causes of gastric intestinal metaplasia (IM) which is an important precancerous lesion. Our previous study has shown that ectopic expression of Histone deacetylase 6 (HDAC6) promotes the activation of intestinal markers in bile acids (BA) induced gastric IM cells; however, the mechanism underlying how HDAC6-mediated epigenetic modifications regulate intestinal markers is not clear. In this study, we aimed to investigate the downstream targets of HDAC6 and the underlying mechanism in the process of BA induced gastric IM. We demonstrated that deoxycholic acid (DCA) upregulated HDAC6 in gastric cells, which further inhibited the transcription of Forkhead box protein 3 (FOXP3). Then, FOXP3 transcriptionally inhibited Hepatocyte nuclear factor 4α (HNF4α), which further inhibits the expression of downstream intestinal markers. These molecules have been shown to be clinically relevant, as FOXP3 levels were negatively correlated with HDAC6 and HNF4α in IM tissues. Transgenic mice experiments confirmed that HNF4α overexpression combined with DCA treatment induced gastric mucosa to secrete intestinal mucus and caused an abnormal mucosal structure. Our findings suggest that HDAC6 reduces FOXP3 through epigenetic modification, thus forming a closed loop HDAC6/FOXP3/HNF4α to promote gastric IM. Inhibition of HDAC6 may be a potential approach to prevent gastric IM in patients with bile reflux.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Min Chen
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Siran Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Jiaoxia Zeng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Junye Liu
- Department of Radiation Protective Medicine, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
47
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
48
|
Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E. The Unfolded Protein Responses in Health, Aging, and Neurodegeneration: Recent Advances and Future Considerations. Front Mol Neurosci 2022; 15:831116. [PMID: 35283733 PMCID: PMC8914544 DOI: 10.3389/fnmol.2022.831116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.
Collapse
Affiliation(s)
- Andrew P. K. Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W. Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brent T. Harris
- Department of Pathology, Georgetown University, Washington, DC, United States
- Department of Neurology, Georgetown University, Washington, DC, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Wang G, Fan Y, Cao P, Tan K. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci 2022; 12:18. [PMID: 35180892 PMCID: PMC8857832 DOI: 10.1186/s13578-022-00747-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved protective transcriptional response that maintains mitochondrial proteostasis by inducing the expression of mitochondrial chaperones and proteases in response to various stresses. The UPRmt-mediated transcriptional program requires the participation of various upstream signaling pathways and molecules. The factors regulating the UPRmt in Caenorhabditis elegans (C. elegans) and mammals are both similar and different. Cancer cells, as malignant cells with uncontrolled proliferation, are exposed to various challenges from endogenous and exogenous stresses. Therefore, in cancer cells, the UPRmt is hijacked and exploited for the repair of mitochondria and the promotion of tumor growth, invasion and metastasis. In this review, we systematically introduce the inducers of UPRmt, the biological processes in which UPRmt participates, the mechanisms regulating the UPRmt in C. elegans and mammals, cross-tissue signal transduction of the UPRmt and the roles of the UPRmt in promoting cancer initiation and progression. Disrupting proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.,Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Pengxiu Cao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
50
|
Yang R, Li Y, Wang Y, Zhang J, Fan Q, Tan J, Li W, Zou X, Liang B. NHR-80 senses the mitochondrial UPR to rewire citrate metabolism for lipid accumulation in Caenorhabditis elegans. Cell Rep 2022; 38:110206. [PMID: 35021096 DOI: 10.1016/j.celrep.2021.110206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.
Collapse
Affiliation(s)
- Rendan Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jianlin Tan
- Yunnan Institute of Product Quality Supervision and Inspection and National Agricultural and Sideline Products Quality Supervision and Inspection Center, Kunming 650223, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|