1
|
Bowland K, Lai J, Skaist A, Zhang Y, Teh SSK, Roberts NJ, Thompson E, Wheelan SJ, Hruban RH, Karchin R, Bailey MH, Iacobuzio-Donahue CA, Eshleman JR. Islands of genomic stability in the face of genetically unstable metastatic cancer. PLoS One 2024; 19:e0298490. [PMID: 39700179 DOI: 10.1371/journal.pone.0298490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here, we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. METHODS Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. RESULTS We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. CONCLUSIONS Regions of truncal LOH are strongly retained in the presence of genetic instability and, therefore, represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.
Collapse
Affiliation(s)
- Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Yan Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Selina Shiqing K Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Sarah J Wheelan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| | - Rachel Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Amiri M, Moaveni AK, Majidi Zolbin M, Shademan B, Nourazarian A. Optimizing cancer treatment: the synergistic potential of CAR-T cell therapy and CRISPR/Cas9. Front Immunol 2024; 15:1462697. [PMID: 39582866 PMCID: PMC11581867 DOI: 10.3389/fimmu.2024.1462697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/26/2024] Open
Abstract
Optimizing cancer treatment has become a pivotal goal in modern oncology, with advancements in immunotherapy and genetic engineering offering promising avenues. CAR-T cell therapy, a revolutionary approach that harnesses the body's own immune cells to target and destroy cancer cells, has shown remarkable success, particularly in treating acute lymphoblastic leukemia (ALL), and in treating other hematologic malignancies. While CAR-T cell therapy has shown promise, challenges such as high cost and manufacturing complexity remain. However, its efficacy in solid tumors remains limited. The integration of CRISPR/Cas9 technology, a powerful and precise genome-editing tool, also raises safety concerns regarding unintended edits and off-target effects, offers a synergistic potential to overcome these limitations. CRISPR/Cas9 can enhance CAR-T cell therapy by improving the specificity and persistence of CAR-T cells, reducing off-target effects, and engineering resistance to tumor-induced immunosuppression. This combination can also facilitate the knockout of immune checkpoint inhibitors, boosting the anti-tumor activity of CAR-T cells. Recent studies have demonstrated that CRISPR/Cas9-edited CAR-T cells can target previously untreatable cancer types, offering new hope for patients with refractory cancers. This synergistic approach not only enhances the efficacy of cancer treatment but also paves the way for personalized therapies tailored to individual genetic profiles. This review highlights the ongoing research efforts to refine this approach and explores its potential to revolutionize cancer treatment across a broader range of malignancies. As research progresses, the integration of CAR-T cell therapy and CRISPR/Cas9 holds the promise of transforming cancer treatment, making it more effective and accessible. This review explores the current advancements, challenges, and future prospects of this innovative therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Medical Journalism, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Merlin JPJ, Abrahamse H. Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother 2024; 180:117516. [PMID: 39332185 DOI: 10.1016/j.biopha.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
CRISPR/Cas9 precision genome editing has revolutionized cancer treatment by introducing specific alterations to the cancer genome. But the therapeutic potential of CRISPR/Cas9 is limited by off-target effects, which can cause undesired changes to genomic regions and create major safety concerns. The primary emphasis lies in their implications within the realm of cancer photodynamic therapy (PDT), where precision is paramount. PDT is a promising cancer treatment method; nevertheless, its effectiveness is severely limited and readily leads to recurrence due to the therapeutic resistance of cancer stem cells (CSCs). With a focus on targeted genome editing into cancer cells during PDT and stem cell treatment (SCT), the review aims to further the ongoing search for safer and more accurate CRISPR/Cas9-mediated methods. At the core of this exploration are recent advancements and novel techniques that offer promise in mitigating the risks associated with off-target effects. With a focus on cancer PDT and SCT, this review critically assesses the landscape of off-target effects in CRISPR/Cas9 applications, offering a comprehensive knowledge of their nature and prevalence. A key component of the review is the assessment of cutting-edge delivery methods, such as technologies based on nanoparticles (NPs), to optimize the distribution of CRISPR components. Additionally, the study delves into the intricacies of guide RNA design, focusing on advancements that bolster specificity and minimize off-target effects, crucial elements in ensuring the precision required for effective cancer PDT and SCT. By synthesizing insights from various methodologies, including the exploration of innovative genome editing tools and leveraging robust validation methods and bioinformatics tools, the review aspires to chart a course towards more reliable and precise CRISPR-Cas9 applications in cancer PDT and SCT. For safe PDT and SCT integration in cancer therapy, CRISPR/Cas9 precision optimization is essential. Utilizing sophisticated molecular and computational techniques to address off-target effects is crucial to realizing the therapeutic promise of these technologies, which will ultimately lead to the development of individualized and successful cancer treatment strategies. Our long-term goals are to improve precision genome editing for more potent cancer therapy approaches by refining the way CRISPR/Cas9 is integrated with photodynamic and stem cell therapies.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa
| |
Collapse
|
5
|
McGinnis JH, Enriquez AB, Vandiver F, Bai X, Kim J, Kilgore J, Saha P, O'Hara R, Xie Y, Banaszynski LA, Williams N, McFadden DG. Endogenous EWSR1-FLI1 degron alleles enable control of fusion oncoprotein expression in tumor cell lines and xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620498. [PMID: 39554175 PMCID: PMC11566046 DOI: 10.1101/2024.10.27.620498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pediatric malignancies frequently harbor chromosomal translocations that induce expression of fusion oncoproteins. The EWSR1-FLI1 fusion oncoprotein acts as a neomorphic transcription factor and is the dominant genetic driver of Ewing's sarcoma. Interrogation of the mechanisms by which EWSR1-FLI1 drives tumorigenesis has been limited by a lack of model systems to precisely and selectively control its expression in patient-derived cell lines and xenografts. Here, we report the generation of a panel of patient-derived EWS cell lines in which inducible protein degrons were engineered into the endogenous EWSR1-FLI1 locus. These alleles enabled rapid and efficient depletion of EWSR1-FLI1. Complete suppression of EWSR1-FLI1 induced a reversible cell cycle arrest at the G 1 -S checkpoint, and we identified a core set of transcripts downstream of EWSR1-FLI1 across multiple cell lines and degron systems. Additionally, depletion of EWSR1-FLI1 potently suppressed tumor growth in xenograft models validating efforts to directly target EWSR1-FLI1 in Ewing's sarcoma.
Collapse
|
6
|
Heshmatpour N, Kazemi SM, Schmidt ND, Patnaik SR, Korus P, Wilkens BGC, Macarrón Palacios A. Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes. Front Genome Ed 2024; 6:1427322. [PMID: 39469218 PMCID: PMC11513324 DOI: 10.3389/fgeed.2024.1427322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like PAX5, CD79B, and MYC in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of PAX5 mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of PAX5 and MYC induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.
Collapse
|
7
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Thimiri Govinda Raj DB. Advances in CRISPR-Cas systems for blood cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:261-284. [PMID: 39266186 DOI: 10.1016/bs.pmbts.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas systems have revolutionised precision medicine by enabling personalised treatments tailored to an individual's genetic profile. Various CRISPR technologies have been developed to target specific disease-causing genes in blood cancers, and some have advanced to clinical trials. Although some studies have explored the in vivo applications of CRISPR-Cas systems, several challenges continue to impede their widespread use. Furthermore, CRISPR-Cas technology has shown promise in improving the response of immunotherapies to blood cancers. The emergence of CAR-T cell therapy has shown considerable success in the targeting and correcting of disease-causing genes in blood cancers. Despite the promising potential of CRISPR-Cas in the treatment of blood cancers, issues related to safety, ethics, and regulatory approval remain significant hurdles. This comprehensive review highlights the transformative potential of CRISPR-Cas technology to revolutionise blood cancer therapy.
Collapse
Affiliation(s)
- Bernice Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Phumuzile Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Vanelle Larissa Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak Balaji Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
8
|
S. V. S, Augustine D, Mushtaq S, Baeshen HA, Ashi H, Hassan RN, Alshahrani M, Patil S. Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Front Oncol 2024; 14:1383062. [PMID: 38915370 PMCID: PMC11194394 DOI: 10.3389/fonc.2024.1383062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
This review presents an in-depth analysis of the immense potential of CRISPR-Cas9 technology in revolutionizing oral cancer research. It underscores the inherent limitations of conventional treatments while emphasizing the pressing need for groundbreaking approaches. The unparalleled capability of CRISPR-Cas9 to precisely target and modify specific genes involved in cancer progression heralds a new era in therapeutic intervention. Employing genome-wide CRISPR screens, vulnerabilities in oral cancer cells can be identified, thereby unravelling promising targets for therapeutic interventions. In the realm of oral cancer, the disruptive power of CRISPR-Cas9 manifests through its capacity to perturb genes that are intricately associated with drug resistance, consequently augmenting the efficacy of chemotherapy. To address the challenges that arise, this review diligently examines pertinent issues such as off-target effects, efficient delivery mechanisms, and the ethical considerations surrounding germline editing. Through precise gene editing, facilitated by CRISPR/Cas9, it becomes possible to overcome drug resistance by rectifying mutations, thereby enhancing the efficacy of personalized treatment strategies. This review delves into the prospects of CRISPR-Cas9, illuminating its potential applications in the domains of medicine, agriculture, and biotechnology. It is paramount to emphasize the necessity of ongoing research endeavors and the imperative to develop targeted therapies tailored specifically for oral cancer. By embracing this comprehensive overview, we can pave the way for ground-breaking treatments that instill renewed hope for enhanced outcomes in individuals afflicted by oral cancer.
Collapse
Affiliation(s)
- Sowmya S. V.
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shazia Mushtaq
- College of Applied Medical Sciences, Dental Health Department, King Saud University, Riyadh, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulziz University, Jeddah, Saudi Arabia
| | - Heba Ashi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Nabil Hassan
- Biological Sciences Department (Genome), Faculty of Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Alshahrani
- Endodontic Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|
9
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
10
|
Teh S, Bowland K, Halper-Stromberg E, Kotwal A, Bennett A, Skaist A, Tang J, Cai F, Macoretta A, Liang H, Kamiyama H, Wheelan S, Lin MT, Hruban R, Hung CF, Goldstein M, Scharpf R, Roberts N, Eshleman J. CRISPR-Cas9 for selective targeting of somatic mutations in pancreatic cancers. NAR Cancer 2024; 6:zcae028. [PMID: 38915758 PMCID: PMC11195629 DOI: 10.1093/narcan/zcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Somatic mutations are desirable targets for selective elimination of cancer, yet most are found within noncoding regions. We have adapted the CRISPR-Cas9 gene editing tool as a novel, cancer-specific killing strategy by targeting the subset of somatic mutations that create protospacer adjacent motifs (PAMs), which have evolutionally allowed bacterial cells to distinguish between self and non-self DNA for Cas9-induced double strand breaks. Whole genome sequencing (WGS) of paired tumor minus normal (T-N) samples from three pancreatic cancer patients (Panc480, Panc504, and Panc1002) showed an average of 417 somatic PAMs per tumor produced from single base substitutions. Further analyses of 591 paired T-N samples from The International Cancer Genome Consortium found medians of ∼455 somatic PAMs per tumor in pancreatic, ∼2800 in lung, and ∼3200 in esophageal cancer cohorts. Finally, we demonstrated 69-99% selective cell death of three targeted pancreatic cancer cell lines using 4-9 sgRNAs designed using the somatic PAM discovery approach. We also showed no off-target activity from these tumor-specific sgRNAs in either the patient's normal cells or an irrelevant cancer using WGS. This study demonstrates the potential of CRISPR-Cas9 as a novel and selective anti-cancer strategy, and supports the genetic targeting of adult cancers.
Collapse
Affiliation(s)
- Selina Shiqing K Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eitan Halper-Stromberg
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akhil Kotwal
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Bennett
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Tang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fidel Cai
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonella Macoretta
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hong Liang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sarah Wheelan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Scientific Review Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goldstein
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Lim JJY, Murata Y, Yuri S, Kitamuro K, Kawai T, Isotani A. Generating an organ-deficient animal model using a multi-targeted CRISPR-Cas9 system. Sci Rep 2024; 14:10636. [PMID: 38724644 PMCID: PMC11082136 DOI: 10.1038/s41598-024-61167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.
Collapse
Affiliation(s)
- Jonathan Jun-Yong Lim
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yamato Murata
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Shunsuke Yuri
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Kohei Kitamuro
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan.
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
12
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
13
|
Tyagi S, Singh A, Sharma N, Chaturvedi R, Kushwaha HR. Insights into existing and futuristic treatment approach for chronic myeloid leukaemia. Indian J Med Res 2024; 159:455-467. [PMID: 39382408 PMCID: PMC11463244 DOI: 10.25259/ijmr_1716_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 10/10/2024] Open
Abstract
Oncogenes play a crucial part in human cancer development, and when particular drugs obstruct the proteins produced by these oncogenes, the tumoural process can be ceased. For instance, in chronic myeloid leukaemia (CML), all pathological traits are associated with a single oncogene, BCR-ABL1. CML is a triphasic cancerous disorder of haematopoietic stem cells, marked by a balanced translocation between chromosomes 9 and 22, leading to the genesis of a Philadelphia chromosome encompassing the BCR-ABL1 fusion gene. This fusion oncogene further produces a constitutive active tyrosine kinase protein, enhancing the downstream signalling pathways and constitutes cancer. The treatment for CML has been entirely altered from chemotherapy and immunotherapy to targeted therapy with the emergence of tyrosine kinase inhibitors (TKIs) which inhibit BCR-ABL1 kinase activity. However, the inhibitory mechanism of TKIs is constrained by BCR-ABL1 dependent and independent resistance mechanisms, prompting the exploration of novel therapeutics through extensive clinical trials to develop next-generation drugs with enhanced potency. The persistent challenges posed by CML have motivated researchers to seek innovative strategies for its eradication, such as the application of the genome editing tool CRISPR/Cas9. This review provides insights into existing CML diagnoses, treatment modalities, resistance mechanisms, drugs under trial phases and new potential therapeutic drugs. Furthermore, the review looks ahead to a visionary perspective wherein the CRISPR/Cas9 approach holds the potential to evolve into a prospective curative measure for CML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/therapeutic use
- Gene Editing
- Drug Resistance, Neoplasm/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Sourabh Tyagi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Sharma
- Biomedical Informatics Division, Indian Council of Medical Research, New Delhi, India
| | - Rupesh Chaturvedi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hemant Ritturaj Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Zeng J, Liang X, Duan L, Tan F, Chen L, Qu J, Li J, Li K, Luo D, Hu Z. Targeted disruption of the BCR-ABL fusion gene by Cas9/dual-sgRNA inhibits proliferation and induces apoptosis in chronic myeloid leukemia cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:525-537. [PMID: 38414349 DOI: 10.3724/abbs.2023280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The BCR-ABL fusion gene, formed by the fusion of the breakpoint cluster region protein ( BCR) and the Abl Oncogene 1, Receptor Tyrosine Kinase ( ABL) genes, encodes the BCR-ABL oncoprotein, which plays a crucial role in leukemogenesis. Current therapies have limited efficacy in patients with chronic myeloid leukemia (CML) because of drug resistance or disease relapse. Identification of novel strategies to treat CML is essential. This study aims to explore the efficiency of novel CRISPR-associated protein 9 (Cas9)/dual-single guide RNA (sgRNA)-mediated disruption of the BCR-ABL fusion gene by targeting BCR and cABL introns. A co-expression vector for Cas9 green fluorescent protein (GFP)/dual-BA-sgRNA targeting BCR and cABL introns is constructed to produce lentivirus to affect BCR-ABL expression in CML cells. The effects of dual-sgRNA virus-mediated disruption of BCR-ABL are analyzed via the use of a genomic sequence and at the protein expression level. Cell proliferation, cell clonogenic ability, and cell apoptosis are assessed after dual sgRNA virus infection, and phosphorylated BCR-ABL and its downstream signaling molecules are detected. These effects are further confirmed in a CML mouse model via tail vein injection of Cas9-GFP/dual-BA-sgRNA virus-infected cells and in primary cells isolated from patients with CML. Cas9-GFP/dual-BA-sgRNA efficiently disrupts BCR-ABL at the genomic sequence and gene expression levels in leukemia cells, leading to blockade of the BCR-ABL tyrosine kinase signaling pathway and disruption of its downstream molecules, followed by cell proliferation inhibition and cell apoptosis induction. This method prolongs the lifespan of CML model mice. Furthermore, the effect is confirmed in primary cells derived from patients with CML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Cell Proliferation/genetics
- CRISPR-Cas Systems
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genes, abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Proto-Oncogene Proteins c-bcr/genetics
- Proto-Oncogene Proteins c-bcr/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Jianling Zeng
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Xinquan Liang
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Lili Duan
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Fenghua Tan
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Liujie Chen
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Jiayao Qu
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
| | - Jia Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Kai Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
- The First Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
- National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| |
Collapse
|
15
|
Kim H, Han JH, Kim H, Kim M, Jo SI, Lee N, Cha S, Oh MJ, Choi G, Kim HS. CRISPR/Cas9 targeting of passenger single nucleotide variants in haploinsufficient or essential genes expands cancer therapy prospects. Sci Rep 2024; 14:7436. [PMID: 38548901 PMCID: PMC10978915 DOI: 10.1038/s41598-024-58094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
CRISPR/Cas9 technology has effectively targeted cancer-specific oncogenic hotspot mutations or insertion-deletions. However, their limited prevalence in tumors restricts their application. We propose a novel approach targeting passenger single nucleotide variants (SNVs) in haploinsufficient or essential genes to broaden therapeutic options. By disrupting haploinsufficient or essential genes through the cleavage of DNA in the SNV region using CRISPR/Cas9, we achieved the selective elimination of cancer cells without affecting normal cells. We found that, on average, 44.8% of solid cancer patients are eligible for our approach, a substantial increase compared to the 14.4% of patients with CRISPR/Cas9-applicable oncogenic hotspot mutations. Through in vitro and in vivo experiments, we validated our strategy by targeting a passenger mutation in the essential ribosomal gene RRP9 and haploinsufficient gene SMG6. This demonstrates the potential of our strategy to selectively eliminate cancer cells and expand therapeutic opportunities.
Collapse
Affiliation(s)
- Hakhyun Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hyosil Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Minjee Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seung-Il Jo
- Department of Urology, Seoul National University Hospital, Seoul, 03080, Korea
| | - NaKyoung Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seungbin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung Joon Oh
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - GaWon Choi
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyun Seok Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Wu A, Liu X, Fruhstorfer C, Jiang X. Clinical Insights into Structure, Regulation, and Targeting of ABL Kinases in Human Leukemia. Int J Mol Sci 2024; 25:3307. [PMID: 38542279 PMCID: PMC10970269 DOI: 10.3390/ijms25063307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream signaling molecules to promote cellular survival and inhibit apoptosis. Currently, tyrosine kinase inhibitors (TKIs), which impair ABL1 kinase activity by preventing ATP entry, are widely used as a successful therapeutic in CML treatment. However, disease relapses and the emergence of resistant clones have become a critical issue for CML therapeutics. Two main reasons behind the persisting obstacles to treatment are the acquired mutations in the ABL1 kinase domain and the presence of quiescent CML leukemia stem cells (LSCs) in the bone marrow, both of which can confer resistance to TKI therapy. In this article, we systemically review the structural and molecular properties of the critical domains of BCR::ABL1 and how understanding the essential role of BCR::ABL1 kinase activity has provided a solid foundation for the successful development of molecularly targeted therapy in CML. Comparison of responses and resistance to multiple BCR::ABL1 TKIs in clinical studies and current combination treatment strategies are also extensively discussed in this article.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Andrew Wu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaohu Liu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Clark Fruhstorfer
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
| | - Xiaoyan Jiang
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
17
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Macarrón Palacios A, Korus P, Wilkens BGC, Heshmatpour N, Patnaik SR. Revolutionizing in vivo therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges. Front Genome Ed 2024; 6:1342193. [PMID: 38362491 PMCID: PMC10867117 DOI: 10.3389/fgeed.2024.1342193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Genome editing using the CRISPR/Cas system has revolutionized the field of genetic engineering, offering unprecedented opportunities for therapeutic applications in vivo. Despite the numerous ongoing clinical trials focusing on ex vivo genome editing, recent studies emphasize the therapeutic promise of in vivo gene editing using CRISPR/Cas technology. However, it is worth noting that the complete attainment of the inherent capabilities of in vivo therapy in humans is yet to be accomplished. Before the full realization of in vivo therapeutic potential, it is crucial to achieve enhanced specificity in selectively targeting defective cells while minimizing harm to healthy cells. This review examines emerging studies, focusing on CRISPR/Cas-based pre-clinical and clinical trials for innovative therapeutic approaches for a wide range of diseases. Furthermore, we emphasize targeting cancer-specific sequences target in genes associated with tumors, shedding light on the diverse strategies employed in cancer treatment. We highlight the various challenges associated with in vivo CRISPR/Cas-based cancer therapy and explore their prospective clinical translatability and the strategies employed to overcome these obstacles.
Collapse
|
19
|
Bowland K, Lai J, Skaist A, Zhang Y, Teh SSK, Roberts NJ, Thompson E, Wheelan SJ, Hruban RH, Karchin R, Iacobuzio-Donahue CA, Eshleman JR. Islands of genomic stability in the face of genetically unstable metastatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577508. [PMID: 38352348 PMCID: PMC10862738 DOI: 10.1101/2024.01.26.577508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Introduction Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.
Collapse
Affiliation(s)
- Kirsten Bowland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Yan Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Selina Shiqing K Teh
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sarah J. Wheelan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Rachel Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine A. Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James R. Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
20
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
21
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Muthusamy G, Liu CC, Johnston AN. Deletion of PGAM5 Downregulates FABP1 and Attenuates Long-Chain Fatty Acid Uptake in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4796. [PMID: 37835490 PMCID: PMC10571733 DOI: 10.3390/cancers15194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphoglycerate mutase 5 (PGAM5) is a Ser/His/Thr phosphatase responsible for regulating mitochondrial homeostasis. Overexpression of PGAM5 is correlated with a poor prognosis in hepatocellular carcinoma, colon cancer, and melanoma. In hepatocellular carcinoma, silencing of PGAM5 reduces growth, which has been attributed to decreased mitophagy and enhanced apoptosis. Yet in colon cancer, PGAM5's pro-tumor survival effect is correlated to lipid metabolism. We sought to identify whether deletion of PGAM5 modulated lipid droplet accrual in hepatocellular carcinoma. HepG2 and Huh7 PGAM5 knockout cell lines generated using CRISPR/Cas9 technology were used to measure cell growth, cellular ATP, and long-chain fatty acid uptake. Expression of hepatocellular fatty acid transporters, cluster of differentiation 36 (CD36), solute carrier family 27 member 2 (SLC27A2), solute carrier family 27 member 5 (SLC27A5), and fatty acid binding protein 1 (FABP1) was measured by quantitative PCR and Western blot. We found that deletion of PGAM5 attenuates hepatocellular carcinoma cell growth and ATP production. Further, PGAM5 knockout ameliorates palmitate-induced steatosis and reduces expression of FABP1 in HepG2 and Huh7 cell lines. PGAM5's role in hepatocellular carcinoma includes regulation of fatty acid metabolism, which may be related to expression of the fatty acid transporter, FABP1.
Collapse
Affiliation(s)
| | | | - Andrea N. Johnston
- Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (G.M.); (C.-C.L.)
| |
Collapse
|
23
|
Karger A, Mansouri S, Leisegang MS, Weigert A, Günther S, Kuenne C, Wittig I, Zukunft S, Klatt S, Aliraj B, Klotz LV, Winter H, Mahavadi P, Fleming I, Ruppert C, Witte B, Alkoudmani I, Gattenlöhner S, Grimminger F, Seeger W, Pullamsetti SS, Savai R. ADPGK-AS1 long noncoding RNA switches macrophage metabolic and phenotypic state to promote lung cancer growth. EMBO J 2023; 42:e111620. [PMID: 37545364 PMCID: PMC10505917 DOI: 10.15252/embj.2022111620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Annika Karger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Medical FacultyGoethe University FrankfurtFrankfurtGermany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
| | - Ilka Wittig
- Functional Proteomics, Medical SchoolGoethe University FrankfurtFrankfurtGermany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Stephan Klatt
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Blerina Aliraj
- Institute of Biochemistry I, Faculty of MedicineGoethe University FrankfurtFrankfurtGermany
| | - Laura V Klotz
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Hauke Winter
- Translational Lung Research Center (TLRC), Member of the DZLHeidelbergGermany
- Department of Thoracic SurgeryThoraxklinik at the University Hospital HeidelbergHeidelbergGermany
| | - Poornima Mahavadi
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurtGermany
| | - Clemens Ruppert
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Biruta Witte
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | - Ibrahim Alkoudmani
- Department of General and Thoracic SurgeryUniversity Hospital GiessenGiessenGermany
| | | | - Friedrich Grimminger
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL), Member of the Cardio‐Pulmonary Institute (CPI)Bad NauheimGermany
- Institute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
- Department of Internal MedicineMember of the DZL, Member of CPI, Justus Liebig UniversityGiessenGermany
| |
Collapse
|
24
|
Alinejad T, Modarressi S, Sadri Z, Hao Z, Chen CS. Diagnostic applications and therapeutic option of Cascade CRISPR/Cas in the modulation of miRNA in diverse cancers: promises and obstacles. J Cancer Res Clin Oncol 2023; 149:9557-9575. [PMID: 37222810 PMCID: PMC10423114 DOI: 10.1007/s00432-023-04747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology is a molecular tool specific to sequences for engineering genomes. Among diverse clusters of Cas proteins, the class 2/type II CRISPR/Cas9 system, despite several challenges, such as off-target effects, editing efficiency, and efficient delivery, has shown great promise for driver gene mutation discovery, high-throughput gene screening, epigenetic modulation, nucleic acid detection, disease modeling, and more importantly for therapeutic purposes. CRISPR-based clinical and experimental methods have applications across a wide range of areas, especially for cancer research and, possibly, anticancer therapy. On the other hand, given the influential role of microRNAs (miRNAs) in the regulations of cellular division, carcinogenicity, tumorigenesis, migration/invasion, and angiogenesis in diverse normal and pathogenic cellular processes, in different stages of cancer, miRNAs are either oncogenes or tumor suppressors, according to what type of cancer they are involved in. Hence, these noncoding RNA molecules are conceivable biomarkers for diagnosis and therapeutic targets. Moreover, they are suggested to be adequate predictors for cancer prediction. Conclusive evidence proves that CRISPR/Cas system can be applied to target small non-coding RNAs. However, the majority of studies have highlighted the application of the CRISPR/Cas system for targeting protein-coding regions. In this review, we specifically discuss diverse applications of CRISPR-based tools for probing miRNA gene function and miRNA-based therapeutic involvement in different types of cancers.
Collapse
Affiliation(s)
- Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Shabnam Modarressi
- Department of Food Microbiology, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C. Copenhagen, Denmark
| | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX USA
| | - Zuo Hao
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Cheng Shui Chen
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| |
Collapse
|
25
|
Neldeborg S, Soerensen JF, Møller CT, Bill M, Gao Z, Bak RO, Holm K, Sorensen B, Nyegaard M, Luo Y, Hokland P, Stougaard M, Ludvigsen M, Holm CK. Dual intron-targeted CRISPR-Cas9-mediated disruption of the AML RUNX1-RUNX1T1 fusion gene effectively inhibits proliferation and decreases tumor volume in vitro and in vivo. Leukemia 2023; 37:1792-1801. [PMID: 37464068 PMCID: PMC10457201 DOI: 10.1038/s41375-023-01950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Oncogenic fusion drivers are common in hematological cancers and are thus relevant targets of future CRISPR-Cas9-based treatment strategies. However, breakpoint-location variation in patients pose a challenge to traditional breakpoint-targeting CRISPR-Cas9-mediated disruption strategies. Here we present a new dual intron-targeting CRISPR-Cas9 treatment strategy, for targeting t(8;21) found in 5-10% of de novo acute myeloid leukemia (AML), which efficiently disrupts fusion genes without prior identification of breakpoint location. We show in vitro growth rate and proliferation reduction by 69 and 94% in AML t(8;21) Kasumi-1 cells, following dual intron-targeted disruption of RUNX1-RUNX1T1 compared to a non t(8;21) AML control. Furthermore, mice injected with RUNX1-RUNX1T1-disrupted Kasumi-1 cells had in vivo tumor growth reduction by 69 and 91% compared to controls. Demonstrating the feasibility of RUNX1-RUNX1T1 disruption, these findings were substantiated in isolated primary cells from a patient diagnosed with AML t(8;21). In conclusion, we demonstrate proof-of-principle of a dual intron-targeting CRISPR-Cas9 treatment strategy in AML t(8;21) without need for precise knowledge of the breakpoint location.
Collapse
Affiliation(s)
- Signe Neldeborg
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johannes Frasez Soerensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kasper Holm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Boe Sorensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Hokland
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Life Science Cluster, Copenhagen, Denmark
| | - Maja Ludvigsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
26
|
Larrosa C, Mora J, Cheung NK. Global Impact of Monoclonal Antibodies (mAbs) in Children: A Focus on Anti-GD2. Cancers (Basel) 2023; 15:3729. [PMID: 37509390 PMCID: PMC10378537 DOI: 10.3390/cancers15143729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Monoclonal antibodies (mAbs), as the name implies, are clonal antibodies that bind to the same antigen. mAbs are broadly used as diagnostic or therapeutic tools for neoplasms, autoimmune diseases, allergic conditions, and infections. Although most mAbs are approved for treating adult cancers, few are applicable to childhood malignancies, limited mostly to hematological cancers. As for solid tumors, only anti-disialoganglioside (GD2) mAbs are approved specifically for neuroblastoma. Inequities of drug access have continued, affecting most therapeutic mAbs globally. To understand these challenges, a deeper dive into the complex transition from basic research to the clinic, or between marketing and regulatory agencies, is timely. This review focuses on current mAbs approved or under investigation in pediatric cancer, with special attention on solid tumors and anti-GD2 mAbs, and the hurdles that limit their broad global access. Beyond understanding the mechanisms of drug resistance, the continual discovery of next generation drugs safer for children and easier to administer, the discovery of predictive biomarkers to avoid futility should ease the acceptance by patient, health care professionals and regulatory agencies, in order to expand clinical utility. With a better integration into the multimodal treatment for each disease, protocols that align with the regional clinical practice should also improve acceptance and cost-effectiveness. Communication and collaboration between academic institutions, pharmaceutical companies, and regulatory agencies should help to ensure accessible, affordable, and sustainable health care for all.
Collapse
Affiliation(s)
- Cristina Larrosa
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Jaume Mora
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Nai-Kong Cheung
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
27
|
Martín-Adrados B, Wculek SK, Fernández-Bravo S, Torres-Ruiz R, Valle-Noguera A, Gomez-Sánchez MJ, Hernández-Walias JC, Ferreira FM, Corraliza AM, Sancho D, Esteban V, Rodriguez-Perales S, Cruz-Adalia A, Nakaya HI, Salas A, Bernardo D, Campos-Martín Y, Martínez-Zamorano E, Muñoz-López D, Gómez del Moral M, Cubero FJ, Blumberg RS, Martínez-Naves E. Expression of HMGCS2 in intestinal epithelial cells is downregulated in inflammatory bowel disease associated with endoplasmic reticulum stress. Front Immunol 2023; 14:1185517. [PMID: 37457727 PMCID: PMC10348483 DOI: 10.3389/fimmu.2023.1185517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.
Collapse
Affiliation(s)
- Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Stefanie K. Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Fernández-Bravo
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma of Madrid, Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics & Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro, Madrid, Spain
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Maria José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - José Carlos Hernández-Walias
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | | | - Ana María Corraliza
- Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma of Madrid, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics & Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Azucena Salas
- Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - David Bernardo
- Gut Immunology Research Group, Instituto de Investigación del Hospital Universitario de la Princesa, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas (CSIC)), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Diego Muñoz-López
- Department of Pathology, Hospital Universitario de Toledo, Toledo, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermeddes Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| |
Collapse
|
28
|
Yang H, Hulbatte RS, Kelleher A, Gratsch N, Wang Y, Palmbos PL, Ljungman M. KLIPP - a precision CRISPR approach to target structural variant junctions in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540176. [PMID: 37214957 PMCID: PMC10197680 DOI: 10.1101/2023.05.10.540176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Current cancer therapies typically give rise to dose-limiting normal tissue toxicity. We have developed KLIPP, a precision cancer approach that specifically kills cancer cells using CRISPR/Cas9 technology. The approach consists of guide RNAs that target cancer-specific structural variant junctions to nucleate two parts of a dCas9-conjugated endonuclease, Fok1, leading to its activation. We show that KLIPP causes induction of DNA double strand breaks (DSBs) at the targeted junctions and cell death. When cancer cells were grown orthotopically in mice, activation of Fok1 at only two junctions led to the disappearance of tumor cells in 7/11 mice. This therapeutic approach has high specificity for tumor cells and is independent of tumor-specific drivers. Individualized translation of KLIPP to patients would be transformative and lead to consistent and simplified cancer treatment decisions.
Collapse
|
29
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
30
|
Zhou L, Yao S. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. MOLECULAR BIOMEDICINE 2023; 4:10. [PMID: 37027099 PMCID: PMC10080534 DOI: 10.1186/s43556-023-00115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023] Open
Abstract
Recently, clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 derived editing tools had significantly improved our ability to make desired changes in the genome. Wild-type Cas9 protein recognizes the target genomic loci and induced local double strand breaks (DSBs) in the guidance of small RNA molecule. In mammalian cells, the DSBs are mainly repaired by endogenous non-homologous end joining (NHEJ) pathway, which is error prone and results in the formation of indels. The indels can be harnessed to interrupt gene coding sequences or regulation elements. The DSBs can also be fixed by homology directed repair (HDR) pathway to introduce desired changes, such as base substitution and fragment insertion, when proper donor templates are provided, albeit in a less efficient manner. Besides making DSBs, Cas9 protein can be mutated to serve as a DNA binding platform to recruit functional modulators to the target loci, performing local transcriptional regulation, epigenetic remolding, base editing or prime editing. These Cas9 derived editing tools, especially base editors and prime editors, can introduce precise changes into the target loci at a single-base resolution and in an efficient and irreversible manner. Such features make these editing tools very promising for therapeutic applications. This review focuses on the evolution and mechanisms of CRISPR-Cas9 derived editing tools and their applications in the field of gene therapy.
Collapse
Affiliation(s)
- Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Bhatia S, Pooja, Yadav SK. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int J Biol Macromol 2023; 238:124054. [PMID: 36933595 DOI: 10.1016/j.ijbiomac.2023.124054] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.
Collapse
Affiliation(s)
- Simran Bhatia
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India
| | - Pooja
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India
| | - Sudesh Kumar Yadav
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India.
| |
Collapse
|
32
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
33
|
Ugalde L, Fañanas S, Torres R, Quintana-Bustamante O, Río P. CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy 2023; 25:277-285. [PMID: 36610813 DOI: 10.1016/j.jcyt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.
Collapse
Affiliation(s)
- Laura Ugalde
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sara Fañanas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Raúl Torres
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
34
|
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther 2023:10.1038/s41417-023-00597-z. [PMID: 36854897 PMCID: PMC9971689 DOI: 10.1038/s41417-023-00597-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fahimeh Shahriyary
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Ofoghi
- Division of Clinical Laboratory, Tehran Hospital of Petroleum Industry, Tehran, Iran ,grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Davood Fattahi
- grid.411600.2Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
36
|
Neumayer C, Ng D, Jiang CS, Qureshi A, Lalazar G, Vaughan R, Simon SM. Oncogenic Addiction of Fibrolamellar Hepatocellular Carcinoma to the Fusion Kinase DNAJB1-PRKACA. Clin Cancer Res 2023; 29:271-278. [PMID: 36302174 PMCID: PMC9811160 DOI: 10.1158/1078-0432.ccr-22-1851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gene fusions are drivers of many pediatric tumors. In fibrolamellar hepatocellular carcinoma (FLC), a fusion of DNAJB1 and PRKACA is the dominant recurrent mutation. Expression of the DNAJB1-PRKACA fusion gene in mice results in a tumor that recapitulates FLC. However, it is not known whether transient expression of DNAJB1-PRKACA is sufficient only to trigger tumor formation or whether ongoing expression is necessary for maintenance and progression. EXPERIMENTAL DESIGN We screened short hairpin RNAs (shRNA) tiled over the fusion junction and identified several potent and specific candidates in vitro and two independent FLC patient-derived xenografts (PDX). RESULTS We show that continued DNAJB1-PRKACA expression is not only required for continued tumor growth, but additionally its inhibition results in cell death. Inhibition of DNAJB1-PRKACA by an inducible shRNA in cells of PDX of FLC resulted in cell death in vitro. Induction of the shRNA inhibits FLC tumors growing in mice with no effect on xenografts from a hepatocellular carcinoma cell line engineered to express DNAJB1-PRKACA. CONCLUSIONS Our results validate DNAJB1-PRKACA as the oncogene in FLC and demonstrate both a continued requirement for the oncogene for tumor growth as well as an oncogenic addiction that can be exploited for targeted therapies. We anticipate our approach will be useful for investigations of other fusion genes in pediatric cancers and spur development of precision therapies.
Collapse
Affiliation(s)
- Christoph Neumayer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Caroline S. Jiang
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Adam Qureshi
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Roger Vaughan
- Hospital Biostatistics, The Rockefeller University, New York, New York
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| |
Collapse
|
37
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
38
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
39
|
Shademan B, Masjedi S, Karamad V, Isazadeh A, Sogutlu F, Rad MHS, Nourazarian A. CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochem Genet 2022; 60:1446-1470. [PMID: 35092559 DOI: 10.1007/s10528-022-10193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
A novel gene editing tool, the Cas system, associated with the CRISPR system, is emerging as a potential method for genome modification. This simple method, based on the adaptive immune defense system of prokaryotes, has been developed and used in human cancer research. These technologies have tremendous therapeutic potential, especially in gene therapy, where a patient-specific mutation is genetically corrected to cure diseases that cannot be cured with conventional treatments. However, translating CRISPR/Cas9 into the clinic will be challenging, as we still need to improve the efficiency, specificity, and application of the technology. In this review, we will explain how CRISPR-Cas9 technology can treat cancer at the molecular level, focusing on ordination and the epigenome. We will also focus on the promise and shortcomings of this system to ensure its application in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
40
|
Liu Z, Li Z, Li B. Nonviral Delivery of CRISPR/Cas Systems in mRNA Format. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Zhen Liu
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
| | - Zhenghua Li
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
| | - Bin Li
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
- School of Medicine Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
41
|
Chira S, Nutu A, Isacescu E, Bica C, Pop L, Ciocan C, Berindan-Neagoe I. Genome Editing Approaches with CRISPR/Cas9 for Cancer Treatment: Critical Appraisal of Preclinical and Clinical Utility, Challenges, and Future Research. Cells 2022; 11:cells11182781. [PMID: 36139356 PMCID: PMC9496708 DOI: 10.3390/cells11182781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing burden on human malignant diseases became a major concern for healthcare practitioners, that must deal with tumor relapse and the inability to efficiently treat metastasis, in addition to side effects. Throughout the decades, many therapeutic strategies have been employed to improve the clinical outcomes of cancer patients and great efforts have been made to develop more efficient and targeted medicines. The malignant cell is characterized by genetic and epigenetic modifications, therefore targeting those specific drivers of carcinogenesis is highly desirable. Among the genome editing technologies, CRISPR/Cas9 stood as a promising candidate for cancer treatment alternatives, due to its low complexity design. First described as a defense mechanism of bacteria against invading foreign DNA, later it was shown that CRISPR components can be engineered to target specific DNA sequences in a test tube, a discovery that was awarded later with the Nobel Prize in chemistry for its rapid expansion as a reliable genome editing tool in many fields of research, including medicine. The present paper aims of describing CRISPR/Cas9 potential targets for malignant disorders, and the approaches used for achieving this goal. Aside from preclinical studies, we also present the clinical trials that use CRISPR-based technology for therapeutic purposes of cancer. Finally, a summary of the presented studies adds a more focused view of the therapeutic value CRISPR/Cas9 holds and the associated shortcomings.
Collapse
|
42
|
Wu L, Wang X, Wu C, Cao X, Tang T, Huang H, Huang X. Ultrasensitive SARS-CoV-2 diagnosis by CRISPR-based screen-printed carbon electrode. Anal Chim Acta 2022; 1221:340120. [PMID: 35934402 PMCID: PMC9249825 DOI: 10.1016/j.aca.2022.340120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
Early and accurate diagnosis of SARS-CoV-2 was crucial for COVID-19 control and urgently required ultra-sensitive and rapid detection methods. CRISPR-based detection systems have great potential for rapid SARS-CoV-2 detection, but detecting ultra-low viral loads remains technically challenging. Here, we report an ultrasensitive CRISPR/Cas12a-based electrochemical detection system with an electrochemical biosensor, dubbed CRISPR-SPCE, in which the CRISPR ssDNA reporter was immobilized onto a screen-printed carbon electrode. Electrochemical signals are detected due to CRISPR cleavage, giving enhanced detection sensitivity. CRISPR-SPCE enables ultrasensitive SARS-CoV-2 detection, reaching as few as 0.27 copies μL-1. Moreover, CRISPR-SPCE is also highly specific and inexpensive, providing a fast and simple SARS-CoV-2 assay.
Collapse
Affiliation(s)
- Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Zhejiang Laboratory, Hangzhou, 311100, PR China.
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xizhong Cao
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, 210023, PR China
| | - Taishan Tang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, 210023, PR China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Xingxu Huang
- Zhejiang Laboratory, Hangzhou, 311100, PR China.
| |
Collapse
|
43
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
44
|
Davis A, Morris KV, Shevchenko G. Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles. Mol Ther Methods Clin Dev 2022; 25:158-169. [PMID: 35402634 PMCID: PMC8971340 DOI: 10.1016/j.omtm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is a characteristic feature of solid tumors that contributes to tumor aggressiveness and is associated with resistance to cancer therapy. The hypoxia inducible factor-1 (HIF-1) transcription factor complex mediates hypoxia-specific gene expression by binding to hypoxia-responsive element (HRE) sequences within the promoter of target genes. HRE-driven expression of therapeutic cargo has been widely explored as a strategy to achieve cancer-specific gene expression. By utilizing this system, we achieve hypoxia-specific expression of two therapeutically relevant cargo elements: the herpes simplex virus thymidine kinase (HSV-tk) suicide gene and the CRISPR-Cas9 nuclease. Using an expression vector containing five copies of the HRE derived from the vascular endothelial growth factor gene, we are able to show high transgene expression in cells in a hypoxic environment, similar to levels achieved using the cytomegalovirus (CMV) and CBh promoters. Furthermore, we are able to deliver our therapeutic cargo to tumor cells with high efficiency using plasmid-packaged lipid nanoparticles (LNPs) to achieve specific killing of tumor cells in hypoxic conditions while maintaining tight regulation with no significant changes to cell viability in normoxia.
Collapse
Affiliation(s)
- Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
45
|
Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol 2022; 13:45. [PMID: 35674844 PMCID: PMC9174617 DOI: 10.1007/s12672-022-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
The research focus on CRISPR/Cas9 has gained substantial concentration since the discovery of 'an unusual repeat sequence' reported by Ishino et al. (J Bacteriol 169:5429-5433, 1987) and the journey comprises the recent Nobel Prize award (2020), conferred to Emmanuelle Charpentier and Jennifer Doudna. Cumulatively, the CRISPR has a short, compact, and most discussed success of its application in becoming one of the most versatile and paradigm shifting technologies of Biological Research. Today, the CRISPR/Cas9 genome editing system is almost ubiquitously utilized in many facets of biological research where its tremendous gene manipulation capability has been harnessed to create miracles. From 2012, the CRISPR/Cas 9 system has been showcased in almost 15,000 research articles in the PubMed database, till date. Backed by some strong molecular evidence, the CRISPR system has been utilized in a few clinical trials targeted towards various pathologies. While the area covered by CRISPR is cosmic, this review will focus mostly on the utilization of CRISPR/Cas9 technology in the field of cancer therapy.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | | | | |
Collapse
|
46
|
Vuelta E, Ordoñez JL, Sanz DJ, Ballesteros S, Hernández-Rivas JM, Méndez-Sánchez L, Sánchez-Martín M, García-Tuñón I. CRISPR/Cas9-Directed Gene Trap Constitutes a Selection System for Corrected BCR/ABL Leukemic Cells in CML. Int J Mol Sci 2022; 23:ijms23126386. [PMID: 35742831 PMCID: PMC9224210 DOI: 10.3390/ijms23126386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a haematological neoplasm driven by the BCR/ABL fusion oncogene. The monogenic aspect of the disease and the feasibility of ex vivo therapies in haematological disorders make CML an excellent candidate for gene therapy strategies. The ability to abolish any coding sequence by CRISPR-Cas9 nucleases offers a powerful therapeutic opportunity to CML patients. However, a definitive cure can only be achieved when only CRISPR-edited cells are selected. A gene-trapping approach combined with CRISPR technology would be an ideal approach to ensure this. Here, we developed a CRISPR-Trap strategy that efficiently inserts a donor gene trap (SA-CMV-Venus) cassette into the BCR/ABL-specific fusion point in the CML K562 human cell line. The trapping cassette interrupts the oncogene coding sequence and expresses a reporter gene that enables the selection of edited cells. Quantitative mRNA expression analyses showed significantly higher level of expression of the BCR/Venus allele coupled with a drastically lower level of BCR/ABL expression in Venus+ cell fractions. Functional in vitro experiments showed cell proliferation arrest and apoptosis in selected Venus+ cells. Finally, xenograft experiments with the selected Venus+ cells showed a large reduction in tumour growth, thereby demonstrating a therapeutic benefit in vivo. This study represents proof of concept for the therapeutic potential of a CRISPR-Trap system as a novel strategy for gene elimination in haematological neoplasms.
Collapse
Affiliation(s)
- Elena Vuelta
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José L. Ordoñez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - David J. Sanz
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Sandra Ballesteros
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Jesús M. Hernández-Rivas
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Lucía Méndez-Sánchez
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| | - Ignacio García-Tuñón
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| |
Collapse
|
47
|
Mir TUG, Wani AK, Akhtar N, Shukla S. CRISPR/Cas9: Regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 2022; 334:111274. [DOI: 10.1016/j.forsciint.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
48
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Valasarajan C, Karger A, Savai R, Pullamsetti SS. LncRNAs: Emerging Regulators of PDGF Signaling. Am J Respir Cell Mol Biol 2022; 66:473-475. [PMID: 35286816 PMCID: PMC9116363 DOI: 10.1165/rcmb.2022-0029ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, 28258, Bad Nauheim, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, 28258, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, 28258, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig Universitat Giessen, 9175, Department of Internal Medicine, Giessen, Germany
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research, 28258, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig Universitat Giessen, 9175, Department of Internal Medicine, Giessen, Germany;
| |
Collapse
|
50
|
Cecala JM, Wilson Rankin EE. Diversity and turnover of wild bee and ornamental plant assemblages in commercial plant nurseries. Oecologia 2022; 198:773-783. [PMID: 35201380 DOI: 10.1007/s00442-022-05135-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/30/2023]
Abstract
In human-modified landscapes, understanding how habitat characteristics influence the diversity and composition of beneficial organisms is critical to conservation efforts and modeling ecosystem services. Assessing turnover, or the magnitude of change in species composition across sites or through time, is crucial to said efforts, yet is often overlooked. For pollinators such as wild bees, variables influencing temporal turnover, particularly across seasons within a year, remain poorly understood. To investigate how local and landscape characteristics correlate with bee diversity and turnover across seasons, we recorded wild bee and flowering ornamental plant assemblages at 13 plant nurseries in California between spring and autumn over 2 years. Nurseries cultivate a broad diversity of flowering plant species that differ widely across sites and seasons, providing an opportunity to test for correlations between turnover and diversity of plants and bees. As expected, we documented strong seasonal trends in wild bee diversity and composition. We found that local habitat factors, such as increased cultivation of native plants, were positively associated with bee diversity in sweep netting collections, whereas we detected moderate influences of landscape level factors such as proportion of surrounding natural area in passive trap collections. We also detected a moderate positive correlation between the magnitude of turnover in plant species and that of bee species (as number of taxa gained) across consecutive seasons. Our results have implications for the conservation of wild bees in ornamental plant landscapes, and highlight the utility of plant nurseries for investigating hypotheses related to diversity and turnover in plant-pollinator systems.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | | |
Collapse
|