1
|
Kuang S, Pi Z, Li X, Wang J, Lin H, Nie M, Sun J, Zhang H, Li Q. Defects trigger redox reactivities between metal and lattice oxygen in high-entropy layered double hydroxide for boosting oxygen evolution in alkaline. J Colloid Interface Sci 2025; 679:296-306. [PMID: 39366259 DOI: 10.1016/j.jcis.2024.09.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
The oxygen evolution reaction (OER) at the anode undergoes a sluggish multi-step process, thereby impeding overall water splitting. As the classical adsorbate evolution mechanism (AEM) involves multiple oxygen-containing intermediates, such as *OH, *O and *OOH, breaking the linear relationship of the adsorption energies between *OH and *OOH is the key to efficient oxygen evolution. Herein, we report a high-entropy FeCoNiAlZn layered double hydroxide decorated with defects (E-FeCoNiAlZn LDH) for boosting oxygen evolution in alkaline. The product exhibits high OER activity with a low overpotential of 220 at 10 mA cm-2 and outstanding stability with negligible decline after 100 h operation. The defects in E-FeCoNiAlZn LDH not only enhance the adsorption of *OH by metal sites but also foster the release of oxygen from lattice, which triggers the coupled oxygen evolution mechanism (COM). This mechanism has only *OH and *OO intermediates, perfectly avoiding the obstacles of linear relationship between *OH and *OOH. Theoretical calculations demonstrate that the introduction of defects enhances the adsorption of *OH due to the presence of unsaturated bonds. Additionally, it is evidence that the O 2p band is elevated, leading to a weakening of the metal-O bond and a reduction of the energy barrier for OO coupling.
Collapse
Affiliation(s)
- Shaofu Kuang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zugao Pi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xinwei Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxing Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Hua Lin
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ming Nie
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Junhui Sun
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Honglin Zhang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qing Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Xu W, Liu Z, Yu Y, Shi Y, Li H, Chi J, Bagliuk GA, Lai J, Wang L. Oxidative reconstructed Ru-based nanoclusters forming heterostructures with lanthanide oxides for acidic water oxidation. J Colloid Interface Sci 2025; 679:958-965. [PMID: 39418898 DOI: 10.1016/j.jcis.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Achieving rapid anodic oxygen evolution reaction (OER) kinetics and improving the stability of the corresponding ruthenium (Ru)-based catalysts is a current priority for the realisation of industrial water splitting. However, the activity and stability of O2 evolution in electrocatalysis are largely inhibited by the insufficient adsorption of the reactant H2O and too strong adsorption of the intermediate OOH*, as well as by the dissolution of the active site due to excessive oxidation. To solve this challenge, herein, we developed a regulatory strategy combining lanthanide oxides and metal oxidative reconfiguration. The introduction of Eu2O3 effectively promotes the adsorption of H2O, optimizes the adsorption energy of OOH*, and reduces the reaction energy barrier of acidic OER process. And the metal oxidation remodeling process exposed more active sites and prevented the peroxidation process. The optimized Ru/Eu2O3@CNT catalyst showed the highest catalytic activity and stability in acidic OER. Its mass activity was 1219.1 A gRu-1 and the TOF value reached 4.4 s-1 at 1.48 V. Additionally, Ru/Eu2O3@CNT after oxidative reconstruction demonstrates the industrially needed current density of 1.0 A cm-2 at 1.71 V in PEM electrolyser, achieving stability in excess of 200 h.
Collapse
Affiliation(s)
- Wenxia Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ziyi Liu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaodong Yu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yue Shi
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingqi Chi
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - G A Bagliuk
- Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv 02000, Ukraine
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
3
|
Liu M, Chen X, Li S, Ni C, Chen Y, Su H. Dynamic-Cycling Zinc Sites Promote Ruthenium Oxide for Sub-Ampere Electrochemical Water Oxidation. NANO LETTERS 2024; 24:16055-16063. [PMID: 39641405 DOI: 10.1021/acs.nanolett.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Although iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE) devices, their exorbitant cost and scarcity severely restrict their widespread application. Herein, we introduce a promising alternative to iridium: zinc-doped ruthenium dioxide (TE-Zn/RuO2), which exhibits remarkable and enduring activity for acidic OER. In situ characterizations elucidate that the dynamic cycling of zinc dopants serves as both electron acceptors and donors, facilitating the activation of Ru sites at low overpotentials while thwarting peroxidation at high overpotentials, thus concurrently achieving heightened activity and robust stability. Additionally, the incorporation of zinc induces weakened Ru-O covalency, thereby stabling *OOH intermediates and instigating a sustained adsorbate evolution mechanism, dramatically stabilizing the RuO2 lattice. Importantly, the TE-Zn/RuO2 catalyst as an anode exhibits good stability over 300 h at a water-splitting current of 500 mA cm-2 in the PEMWE device, underscoring its considerable promise for practical applications.
Collapse
Affiliation(s)
- Meihuan Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Xiaoxia Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Shiyu Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chudi Ni
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yiwen Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
4
|
Ma H, Yang Y, Yu X, Zhao Y, Ma J, Cheng H. Ruthenium clusters decorated on lattice expanded hematite Fe 2O 3 for efficient electrocatalytic alkaline water splitting. Chem Sci 2024; 15:20457-20466. [PMID: 39583567 PMCID: PMC11582870 DOI: 10.1039/d4sc06732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Electrocatalytic water splitting in alkaline media plays an important role in hydrogen production technology. Normally, the catalytic activity of commonly used transition metal oxides usually suffers from unsatisfactory electron conductivity and unfavorable binding strength for transition intermediates. To boost the intrinsic catalytic activity, we propose a rational strategy to construct lattice distorted transition metal oxides decorated with noble-metal nanoclusters. This strategy is verified by loading ruthenium clusters onto lithium ion intercalated hematite Fe2O3, which leads to significant distortion of the FeO6 unit cells. A remarkable overpotential of 21 mV with a Tafel slope of 39.8 mV dec-1 is achieved at 10 mA cm-2 for the hydrogen evolution reaction in 1.0 M KOH aqueous electrolyte. The assembled alkaline electrolyzer can catalyse overall water splitting for as long as 165 h at a current density of 250 mA cm-2 with negligible performance degradation, indicating great potential in the field of sustainable hydrogen production.
Collapse
Affiliation(s)
- Haibin Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences Shenyang 110016 China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian 116023 China
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
5
|
Ma H, Zhou J, Zhao Y, Wang S, Hu Z, Ma J, Cheng H. Atomically Dispersed Mn-Doped Ru@RuO 2 Core/Shell Nanostructure with High Acidic Water Oxidation Performance Arising from Multiple Synergies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406353. [PMID: 39639155 DOI: 10.1002/smll.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The high overpotential and unsatisfactory stability of RuO2-based catalysts seriously hinder their application in acidic oxygen evolution reaction (OER). Herein, a Ru@RuO2 core/shell catalyst doped with atomically dispersed Mn species, denoted as Ru@Mn-RuO2, is reported, which is prepared by a facile one-pot method. Detailed structural characterizations confirm that Mn is homogeneously and atomically distributed in RuO2 shell, which causes lattice contraction of RuO2. The as-prepared Ru@Mn-RuO2 exhibits a very low overpotential of 190 mV at the current density of 10 mA cm-2 and an excellent stability of 360 h, far surpassing the control samples Ru@RuO2 without atomically dispersed Mn dopants and home-made RuO2 nanoparticles without metallic Ru core. With the further assistance of density functional theory calculations, the enhanced OER activity of Ru@Mn-RuO2 is attributed to multiple synergistic effects, including the MnOx-Ru (oxide shell) synergy, MnOx-Ru (metal core) synergy, and the Ru (core)-RuO2 (shell) synergy. Besides, the atomically dispersed Mn doping can increase the formation energy of soluble Ru cations, thus leading to the excellent stability of the Ru@Mn-RuO2 catalyst. This work shines light on the design of electrocatalysts with multiple synergistic effects towards efficient acid water splitting.
Collapse
Affiliation(s)
- Haibin Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
6
|
Zi Y, Zhang C, Zhao J, Cheng Y, Yuan J, Hu J. Research Progress in Structure Evolution and Durability Modulation of Ir- and Ru-Based OER Catalysts under Acidic Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406657. [PMID: 39370563 DOI: 10.1002/smll.202406657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Yunhai Zi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Jianqiang Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Ying Cheng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Jianliang Yuan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- LuXi KuoBo Precious Metals Co. Ltd., Honghe, 661400, P. R. China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| |
Collapse
|
7
|
Hu W, Huang B, Sun M, Du J, Hai Y, Yin W, Wang X, Gao W, Zhao C, Yue Y, Li Z, Li C. Doping Ti into RuO 2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411709. [PMID: 39614718 DOI: 10.1002/adma.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/12/2024] [Indexed: 12/01/2024]
Abstract
The development of efficient and durable electrocatalysts for the acidic oxygen evolution reaction (OER) is essential for advancing renewable hydrogen energy technology. However, the slow deprotonation kinetics of oxo-intermediates, involving the four proton-coupled electron steps, hinder the acidic OER progress. Herein, a RuTiOx solid solution electrocatalyst is investigated, which features bridged oxygen (Obri) sites that act as proton acceptors, accelerating the deprotonation of oxo-intermediates. Electrochemical tests, infrared spectroscopy, and density functional theory results reveal that the moderate proton adsorption energy on Obri sites facilitates fast deprotonation kinetics through the adsorbate evolution mechanism. This process effectively prevents the over-oxidation and deactivation of Ru sites caused by the lattice oxygen mechanism. Consequently, RuTiOx shows a low overpotential of 198 mV at 10 mA cm-2 geo and performance exceeding 1400 h at 50 mA cm-2 geo with negligible deactivation. These insights into the OER mechanism and the structure-function relationship are crucial for the advancement of catalytic systems.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Jing Du
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yang Hai
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523000, China
| | - Wen Yin
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaomei Wang
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chunyang Zhao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ya Yue
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
8
|
Wu H, Chang J, Yu J, Wang S, Hu Z, Waterhouse GIN, Yong X, Tang Z, Chang J, Lu S. Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions. Nat Commun 2024; 15:10315. [PMID: 39609455 PMCID: PMC11605066 DOI: 10.1038/s41467-024-54798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The development of efficient and stable electrocatalysts for water oxidation in acidic media is vital for the commercialization of the proton exchange membrane electrolyzers. In this work, we successfully construct Ru-O-Ir atomic interfaces for acidic oxygen evolution reaction (OER). The catalysts achieve overpotentials as low as 167, 300, and 390 mV at 10, 500, and 1500 mA cm-2 in 0.5 M H2SO4, respectively, with the electrocatalyst showing robust stability for >1000 h of operation at 10 mA cm-2 and negligible degradation after 200,000 cyclic voltammetry cycles. Operando spectroelectrochemical measurements together with theoretical investigations reveal that the OER pathway over the Ru-O-Ir active site is near-optimal, where the bridging oxygen site of Ir-OBRI serves as the proton acceptor to accelerate proton transfer on an adjacent Ru centre, breaking the typical adsorption-dissociation linear scaling relationship on a single Ru site and thus enhancing OER activity. Here, we show that rational design of multiple active sites can break the activity/stability trade-off commonly encountered for OER catalysts, offering good approaches towards high-performance acidic OER catalysts.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Zhiang Hu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | | | - Xue Yong
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Junbiao Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
9
|
Zeng L, Yuan B, Zhou Q. Enabling Efficient Oxygen Evolution via Anchoring Carbon-Layer-Confined RuO x on a Well-Matched Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24696-24705. [PMID: 39504472 DOI: 10.1021/acs.langmuir.4c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Oxygen evolution reaction (OER) is a multistep proton-coupled four-electron process with sluggish kinetics, which seriously limits the hydrogen production efficiency, thus it is of great importance to develop an efficient and stable OER catalyst. In this study, a two-step differential pyrolysis strategy is employed to design a three-dimensional porous microstructured material consisting of RuOx nanoparticles coated by a thin-layer carbon, where the active particles were isolated in separate chambers and the RuOx nanoparticles mainly existed in the form of a heterogeneous interface between RuO2 and partial metallic Ru. The preparation parameters of the catalysts are optimized via combining transient and steady-state polarization properties, and the target catalyst Cat-500-1.5t shows the best OER catalytic performance after ca. 60 h of a chronopotentiometry test in an acidic medium with a much smaller performance change than other samples. The unique design of adopting a carbon layer to form separate reaction chambers largely mitigates the excessive oxidation loss of the active components under strong oxidation potential. The suitability of the catalyst with the loaded substrate and test media is explored, and in an acidic medium, the carbon paper is much better than the titanium fiber, while in an alkaline medium, the titanium fiber is obviously superior to the carbon paper. On both carbon paper and titanium fiber, the performance in an alkaline medium outperforms that in an acidic medium, and the possible reasons for the performance difference are analyzed. Herein, to obtain the actual electrocatalytic performance, the optimal design of the catalyst structure and matching suitable conductive substrate in a specific medium are quite necessary, which provides a feasible strategy for the acquisition of efficient and stable electrocatalysts and the desirable presentation of performance.
Collapse
Affiliation(s)
- Liming Zeng
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bang Yuan
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Zhou
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
10
|
Duan Y, Wang LL, Zheng WX, Zhang XL, Wang XR, Feng GJ, Yu ZY, Lu TB. Oxyanion Engineering on RuO 2 for Efficient Proton Exchange Membrane Water Electrolysis. Angew Chem Int Ed Engl 2024; 63:e202413653. [PMID: 39133139 DOI: 10.1002/anie.202413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
In acidic proton exchange membrane water electrolysis (PEMWE), the anode oxygen evolution reaction (OER) catalysts rely heavily on the expensive and scarce iridium-based materials. Ruthenium dioxide (RuO2) with lower price and higher OER activity, has been explored for the similar task, but has been restricted by the poor stability. Herein, we developed an anion modification strategy to improve the OER performance of RuO2 in acidic media. The designed multicomponent catalyst based on sulfate anchored on RuO2/MoO3 displays a low overpotential of 190 mV at 10 mA cm-2 and stably operates for 500 hours with a very low degradation rate of 20 μV h-1 in acidic electrolyte. When assembled in a PEMWE cell, this catalyst as an anode shows an excellent stability at 500 mA cm-2 for 150 h. Experimental and theoretical results revealed that MoO3 could stabilize sulfate anion on RuO2 surface to suppress its leaching during OER. Such MoO3-anchored sulfate not only reduces the formation energy of *OOH intermediate on RuO2, but also impedes both the surface Ru and lattice oxygen loss, thereby achieving the high OER activity and exceptional durability.
Collapse
Affiliation(s)
- Ying Duan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Wen-Xing Zheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
11
|
Zhou C, Li L, Dong Z, Lv F, Guo H, Wang K, Li M, Qian Z, Ye N, Lin Z, Luo M, Guo S. Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO 2 enables stable industrial-level electrolysis. Nat Commun 2024; 15:9774. [PMID: 39532833 PMCID: PMC11558000 DOI: 10.1038/s41467-024-53905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Ruthenium (Ru) is widely recognized as a low-cost alternative to iridium as anode electrocatalyst in proton-exchange membrane water electrolyzers (PEMWE). However, the reported Ru-based catalysts usually only operate within tens of hours in PEMWE because of their intrinsically high reactivity of lattice oxygen that leads to irrepressible Ru leaching and structural collapse. Herein, we report a design concept by employing large-sized and acid-resistant lattice lead (Pb) as a second element to induce a pinning effect for effectively narrowing the moving channels of oxygen atoms, thereby lowering the reactivity of lattice oxygen in Ru oxides. The Pb-RuO2 catalyst presents a low overpotential of 188 ± 2 mV at 10 mA cm-2 and can sustain for over 1100 h in an acid medium with a negligible degradation rate of 19 μV h-1. Particularly, the Pb-RuO2-based PEMWE can operate for more than 250 h at 500 mA cm-2 with a low degradation rate of only 17 μV h-1. Experimental and theoretical calculation results reveal that Ru-O covalency is reduced due to the unique 6s-2p-4d orbital hybridization, which increases the loss energy of lattice oxygen and suppresses the over-oxidation of Ru for improved long-term stability in PEMWE.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaoqi Dong
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Hongyu Guo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhengyi Qian
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Na Ye
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zheng Lin
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
12
|
Lv JQ, Chang Y, Chen X, Guo J, Sun J, Su ZM, Zang HY. Tuning Iron Active Sites of FeOOH via Al 3+ and Heteroatom Doping-Induced Asymmetric Oxygen Vacancy Electronic Structure for Efficient Alkaline Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404552. [PMID: 39106240 DOI: 10.1002/smll.202404552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Oxygen evolution reaction is the essential anodic reaction for water splitting. Designing tunable electronic structures to overcome its slow kinetics is an effective strategy. Herein, the molecular ammonium iron sulfate dodecahydrate is employed as the precursor to synthesize the C, N, S triatomic co-doped Fe(Al)OOH on Ni foam (C,N,S-Fe(Al)OOH-NF) with asymmetric electronic structure. Both in situ oxygen vacancies and their special electronic configuration enable the electron transfer between the d-p orbitals and get the increase of OER activity. Density functional theory calculation further indicates the effect of electronic structure on catalytic activity and stability at the oxygen vacancies. In alkaline solution, the catalyst C,N,S-Fe(Al)OOH-NF shows good catalytic activity and stability for water splitting. For OER, the overpotential of 10 mA cm-2 is 264 mV, the tafel slope is 46.4 mV dec-1, the HER overpotential of 10 mA cm-2 is 188 mV, the tafel slope is 59.3 mV dec-1. The stability of the catalyst can maintain ≈100 h. This work has extraordinary implications for understanding the mechanistic relationship between electronic structure and catalytic activity for designing friendly metal (oxy)hydroxide catalysts.
Collapse
Affiliation(s)
- Jia-Qi Lv
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yingfei Chang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Chen
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jinyu Guo
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
13
|
Bai J, Zhang H, Zhang C, Qin H, Zhou P, Xiang M, Lian Y, Deng Y. Regulating Ru-O Bond and Oxygen Vacancies of RuO 2 by Ta Doping for Electrocatalytic Oxygen Evolution in Acid Media. Inorg Chem 2024; 63:20584-20591. [PMID: 39397578 DOI: 10.1021/acs.inorgchem.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is considered an ideal green hydrogen production technology with promising application prospects. However, the development of efficient and stable acid electroanalytic oxygen electrocatalysts is still a challenging bottleneck. This progress is achieved by adopting a strategic approach with the introduction of the high valence metal Ta to regulate the electronic configuration of RuO2 by manipulating its local microenvironment to optimize the stability and activity of the electrocatalysts. The Ta-RuO2 catalysts are notable for their excellent electrocatalytic activity, as evidenced by an overpotential of only 202 mV at 10 mA cm-2, which significantly exceeds that of homemade RuO2 and commercial RuO2. Furthermore, the Ta-RuO2 catalyst exhibits exceptional stability with negligible potential reduction observed after 50 h of electrolysis. Theoretical calculations show that the asymmetric configuration of Ru-O-Ta breaks the thermodynamic activity limitations usually associated with adsorption evolution, weakening the energy barrier for the formation of the OOH* formation. The strategic approach presented in this study provides an important reference for the development of a stable active center for acid water splitting.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Hanyu Zhang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yuebin Lian
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| |
Collapse
|
14
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
15
|
Varela-Domínguez N, Claro MS, Carbó-Argibay E, Magén C, Rivadulla F. Exploring Topochemical Oxidation Reactions for Reversible Tuning of Thermal Conductivity in Perovskite Fe Oxides. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10249-10258. [PMID: 39464294 PMCID: PMC11500631 DOI: 10.1021/acs.chemmater.4c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
We present a study on the reversibility of thermal conductivity in iron oxides through topochemical oxygen exchange between brownmillerite (BM) (Ca,Sr)FeO2.5 and perovskite (PV) (Ca,Sr)FeO3.0. By using different oxidation methods, including gas phase (O2/O3), liquid phase (NaOCl in H2O), and solid electrolyte (Y2O3:ZrO2), we demonstrate that the oxidation pathway has a critical influence on the reversibility of the ionic-exchange process. Cyclic oxidation and reduction using O2/O3 or NaOCl lead to an important accumulation of structural defects, undermining the reversibility of thermal conductivity. In the case of wet oxidation, we demonstrate an inherent tendency of negative charge-transfer oxides toward amorphization and elucidate the origin of this effect. Conversely, the electrochemical injection of the O2- ions via a Y2O3:ZrO2 solid electrolyte reduces structural damage significantly, enhancing both reversibility and durability. This study underscores the importance of selecting appropriate topochemical oxygen exchange methods to maintain structural integrity and optimize functional performance in oxide-based tunable devices.
Collapse
Affiliation(s)
- Noa Varela-Domínguez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Marcel S. Claro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Enrique Carbó-Argibay
- International
Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - César Magén
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Francisco Rivadulla
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
16
|
Lei W, Zhao X, Liang C, Wang H, Li X, Jiang M, Li X, He F, Sun Y, Lu G, Cai H. Interface-Strengthened Ru-Based Electrocatalyst for High-Efficiency Proton Exchange Membrane Water Electrolysis at Industrial-Level Current Density. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4991. [PMID: 39459695 PMCID: PMC11509503 DOI: 10.3390/ma17204991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Developing an OER electrocatalyst that balances high performance with low cost is crucial for widely adopting PEM water electrolyzers. Ru-based catalysts are gaining attention for their cost-effectiveness and high activity, positioning them as promising alternatives to Ir-based catalysts. However, Ru-based catalysts can be prone to oxidation at high potentials, compromising their durability. In this study, we utilize a simple synthesis method to synthesize a SnO2, Nb2O5, and RuO2 composite catalyst (SnO2/Nb2O5@RuO2) with multiple interfaces and abundant oxygen vacancies. The large surface area and numerous active sites of the SnO2/Nb2O5@RuO2 catalyst lead to outstanding acidic oxygen evolution reaction (OER) performance, achieving current densities of 10, 50, and 200 mA cm-2 at ultralow overpotentials of 287, 359, and 534 mV, respectively, significantly surpassing commercial IrO2. Moreover, incorporating Nb2O5 into the SnO2/Nb2O5@RuO2 alters the electronic structure at the interfaces and generates a high density of oxygen vacancies, markedly enhancing durability. Consequently, the membrane electrode composed of SnO2/Nb2O5@RuO2 and commercial Pt/C demonstrated stable operation in the PEM cell for 25 days at an industrial current density of 1 A cm-2. This research presents a convenient approach for developing a highly efficient and durable Ru-based electrocatalyst, underscoring its potential for proton exchange membrane water electrolysis.
Collapse
Affiliation(s)
- Wenjun Lei
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Xinxin Zhao
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Chao Liang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (C.L.); (H.W.)
| | - Huai Wang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (C.L.); (H.W.)
| | - Xuehong Li
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Mingkun Jiang
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Xiaofeng Li
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Fengqin He
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Yonghui Sun
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Gang Lu
- Qinghai Upstream of the Yellow River Hydropower Development Co., Ltd., Photovoltaic Industry Technology Branch Company, State Power Investment Corporation, Photovoltaic (Energy Storage) Industry Innovation Center, Photovoltaic Technology Research and Development Department, No. 399 South Yanta Road, Xi’an 710000, China; (W.L.); (X.Z.); (X.L.); (M.J.); (X.L.); (F.H.); (Y.S.)
| | - Hairui Cai
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China; (C.L.); (H.W.)
| |
Collapse
|
17
|
Chen H, Deng L, Liu S, Hu F, Li L, Ren J, Peng S. A strongly coupled oxide-support heterostructure for efficient acidic water oxidation. Chem Commun (Camb) 2024; 60:11738-11741. [PMID: 39319388 DOI: 10.1039/d4cc04262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The synthesized RuO2/MnCo2O4.5 nano-heterostructure possesses dense interfaces and abundant defect structures, synergistically balancing oxygen evolution reaction (OER) activity and stability. RuO2/MnCo2O4.5 exhibits a low overpotential of 190 mV at 10 mA cm-2. The proton exchange membrane (PEM) electrolyzer assembled can operate at 200 mA cm-2 stably for 50 h.
Collapse
Affiliation(s)
- Hongjun Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Jianwei Ren
- Department of Chemical Engineering, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield 0028, South Africa.
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai 200050, China
| |
Collapse
|
18
|
Wu L, Huang W, Li D, Jia H, Zhao B, Zhu J, Zhou H, Luo W. Unveiling the Structure and Dissociation of Interfacial Water on RuO 2 for Efficient Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024:e202413334. [PMID: 39377206 DOI: 10.1002/anie.202413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Understanding the structure and dynamic process of interfacial water molecules at the catalyst-electrolyte interface on acidic oxygen evolution reaction (OER) kinetics is highly desirable for the development of proton exchange membrane water electrolyzers. Herein, we construct a series of p-block metal elements (Ga, In, Sn) doped RuO2 catalysts with manipulated electronic structure and Ru-O covalency to investigate the effect of electrochemical interfacial engineering on the improvement of acidic OER activity. Associated with operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements and theoretical analysis, we uncover the free-H2O enriched local environment and dynamic evolution from 4-coordinated hydrogen-bonded water and 2-coordinated hydrogen-bonded water to free-H2O on the surface of Ga-RuO2, are responsible for the optimized connectivity of hydrogen bonding network in the electrical double layer by promoting solvent reorganization. In addition, the structurally ordered interfacial water molecules facilitate high-efficiency proton-coupled electron transfer across the interface, leading to reduced energy barrier of the follow-up dissociation process and enhanced acidic OER performance. This work highlights the key role of structure and dynamic process of interfacial water for acidic OER, and demonstrates the electrochemical interfacial engineering as an efficient strategy to design high-performance electrocatalysts.
Collapse
Affiliation(s)
- Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenxia Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bingbing Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
19
|
Liu Y, Huang Y, Wu D, Jang H, Wu J, Li H, Li W, Zhu F, Kim MG, Zhou D, Xi X, Lei Z, Zhang Y, Deng Y, Yan W, Gu MD, Jiang J, Jiao S, Cao R. Ultrathin and Conformal Depletion Layer of Core/Shell Heterojunction Enables Efficient and Stable Acidic Water Oxidation. J Am Chem Soc 2024; 146:26897-26908. [PMID: 39312479 DOI: 10.1021/jacs.4c07995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ru-based electrocatalysts hold great promise for developing affordable proton exchange membrane (PEM) electrolyzers. However, the harsh acidic oxidative environment of the acidic oxygen evolution reaction (OER) often causes undesirable overoxidation of Ru active sites and subsequent serious activity loss. Here, we present an ultrathin and conformal depletion layer attached to the Schottky heterojunction of core/shell RuCo/RuCoOx that not only maximizes the availability of active sites but also improves its durability and intrinsic activity for acidic OER. Operando synchrotron characterizations combined with theoretical calculations elucidate that the lattice strain and charge transfer induced by Schottky heterojunction substantially regulate the electronic structures of active sites, which modulates the OER pathway and suppresses the overoxidation of Ru species. Significantly, the closed core/shell architecture of the RuCo/RuCoOx ensures the structure integrity of the Schottky heterojunction under acidic OER conditions. As a result, the core/shell RuCo/RuCoOx Schottky heterojunction exhibits an unprecedented durability up to 250 0 h at 10 mA cm-2 with an ultralow overpotential of ∼170 mV at 10 mA cm-2 in 0.5 M H2SO4. The RuCo/RuCoOx catalyst also demonstrates superior durability in a proton exchange membrane (PEM) electrolyzer, showcasing the potential for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Duojie Wu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jianghua Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huirong Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Wanxia Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Feng Zhu
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784, Republic of Korea
| | - Donglai Zhou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Xiaoke Xi
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Zhanwu Lei
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Yuchen Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 2300 29, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Shuhong Jiao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| |
Collapse
|
20
|
Liu C, Sheng B, Zhou Q, Xia Y, Zou Y, Chimtali PJ, Cao D, Chu Y, Zhao S, Long R, Chen S, Song L. Manipulating d-Band Center of Nickel by Single-Iodine-Atom Strategy for Boosted Alkaline Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:26844-26854. [PMID: 39299703 DOI: 10.1021/jacs.4c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (Ed). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the Ed manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap. The complex catalytic mechanism has been elucidated via synchrotron radiation-based multitechniques (SRMS) including X-ray absorption fine structure (XAFS), in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy, and near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). In particular, RIXS is innovatively applied to reveal the precise regulation of Ni Ed of I-Ni@C. Consequently, the role of such single-iodine-atom strategy is confirmed to not only facilitate the moderate Ed of the Ni site for balancing the adsorption/desorption capacities of key intermediates but also act as a bridge to enhance the electronic interaction between Ni and the carbon shell for forming a localized polarized electric field conducive to H2O dissociation. As a result, I-Ni@C exhibits an enhanced alkaline hydrogen evolution performance with an overpotential of 78 mV at 10 mA/cm2 and superior stability, surpassing the majority of the reported Ni-based catalysts. Overall, this study has managed to successfully tailor the d-band center of materials from the SRMS perspective, which has crucial implications for nanotechnology, chemistry, catalysis, and other fields.
Collapse
Affiliation(s)
- Chongjing Liu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yujian Xia
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ying Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peter Joseph Chimtali
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Dengfeng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yongheng Chu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Sirui Zhao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ran Long
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
21
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
22
|
Li R, Liu J, Yin G, Sun Y, Liu F, Gan J, Gao S. Nest-Scheme RuIrLa Nanocrystals by NP-to-NP Oriented Assembly: Coherent Strain Fields-Driven Band Structure Splitting for Efficient Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403492. [PMID: 38923702 DOI: 10.1002/smll.202403492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Atomic substructure engineering provides new opportunities for the designing newly and efficient catalysts with diverse atom ensembles, trimmed electron bands, and way-out coordination environments, creating unique contributing to concertedly catalyze water oxidation, which is of great significance for proton exchange membrane water electrolysis (PEMWE). Herein, nest-scheme RuIrLa nanocrystals with dense coherent interfaces as built-in substructures are firstly fabricated by using commercial ZnO particles as acid-removable templates, through a La-stabilized coherent epitaxial growth of nanoparticles (NPs). The obtained nests exhibit a low overpotential of 198 mV at 10 mA cm-2, and the RuIrLa||Pt/C module equipped in PEMWE operates stably at a cell voltage potential of 1.69 V at 100 mA cm-2 in 0.5 M H2SO4 for 55 h, which is far beyond the current IrO2||Pt/C. Within the nests, the position at the interface shows high tensile/compressive strain, significantly reducing the OER activation energy. More importantly, the La termination-stabilized coherent interfaces within the nests creates a unique self-healing process for the outstanding long-term stability. This work provides a promising substructure engineering to develop efficient catalysts with abundant substructures, such as coherent interfaces, dislocations, or grain boundaries, thereby realizing concerted improvement of activity and durability toward water oxidation.
Collapse
Affiliation(s)
- Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guanwang Yin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| |
Collapse
|
23
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
24
|
Wang Y, Qin Y, Wen R, Wang L, Dou M, Wang F. High-Performance Low-Iridium Catalyst for Water Oxidation: Breaking Long-Ranged Order of IrO 2 by Neodymium Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401964. [PMID: 39162112 DOI: 10.1002/smll.202401964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Indexed: 08/21/2024]
Abstract
Exploring efficacious low-Ir electrocatalysts for oxygen evolution reaction (OER) is crucial for large-scale application of proton exchange membrane water electrolysis (PEMWE). Herein, an efficient non-precious lanthanide-metal-doped IrO2 electrocatalyst is presented for OER catalysis by doping large-ionic-radius Nd into IrO2 crystal. The doped Nd breaks the long-ranged order structure by triggering the strain effect and thus inducing an atomic rearrangement of Nd─IrO2 involving the forming of Nd─O─Ir bonds along with an increased amount of oxygen vacancies (Ov), giving rise of a long-ranged disorder but a short-ranged order structure. The formed Nd─O─Ir bonds tailor the electronic structure of Ir, leading to a lowered d-band center that weakens intermediates absorption on Ir sites. Moreover, doping Nd triggers Nd─IrO2 to catalyze OER mainly through lattice oxygen mechanism (LOM) by activating lattice oxygen owing to abundant Ov. The optimal catalyst only requires a relatively low overpotential of 263 mV@10 mA cm-2 with a high mass activity of 216.98 A gIr -1 (at 1.53 V) (eightfold of commercial IrO2), and also shows a superior durability at 50 mA cm-2 (20 h) than commercial IrO2 (3 h) due to the oxidation-suppressing effect induced by Nd doping. This work offers insights into designing high-performance low-Ir electrocatalysts for PEMWE application.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - YuFeng Qin
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rou Wen
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longxiang Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
25
|
Li W, Wang C, Lu X. Breaking the Bottleneck of Activity and Stability of RuO 2-Based Electrocatalysts for Acidic Oxygen Evolution. NANO LETTERS 2024; 24:11779-11792. [PMID: 39268754 DOI: 10.1021/acs.nanolett.4c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrochemical acidic oxygen evolution reaction (OER) is an important part for water electrolysis utilizing a proton exchange membrane (PEM) apparatus for industrial H2 production. RuO2 has garnered considerable attention as a potential acidic OER electrocatalyst. However, the overoxidation of Ru active sites under high potential conditions is usually harmful for activity and stability, thereby posing a challenge for large-scale commercialization, which needs effective strategies to circumvent the leaching of Ru and further activate Ru sites. Herein, a Mini-Review is presented to summarize the recent developments regarding the activation and stabilization of the Ru active sites and lattice oxygen through the modulation of the d-band center, coordination environment, bridged heteroatoms, and vacancy engineering, as well as structural protection strategies and reaction pathway optimization to promote the acidic OER activity and stability of RuO2-based electrocatalysts. This Mini-Review offers a profound understanding of the design of RuO2-based electrocatalysts with greatly enhanced acidic OER performances.
Collapse
Affiliation(s)
- Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Ji Q, Tang B, Zhang X, Wang C, Tan H, Zhao J, Liu R, Sun M, Liu H, Jiang C, Zeng J, Cai X, Yan W. Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation. Nat Commun 2024; 15:8089. [PMID: 39284800 PMCID: PMC11405856 DOI: 10.1038/s41467-024-52471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO2 catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn4-δ-O-Ru4+δ active sites by introducing Mn atoms into RuO2 host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced operando synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn4-δ-O-Ru4+δ microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.
Collapse
Affiliation(s)
- Qianqian Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jie Zhao
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Chang Jiang
- College of Energy, Xiamen University, Xiamen, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xingke Cai
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Han W, Cai X, Liao J, He Y, Yu C, Zhang X. Regulating Strain and Electronic Structure of Indium Tin Oxide Supported IrO x Electrocatalysts for Highly Efficient Oxygen Evolution Reaction in Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47610-47619. [PMID: 39213613 DOI: 10.1021/acsami.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of proton exchange membrane water electrolysis is a promising technology for hydrogen production, which has always been restricted by the slow kinetics of the oxygen evolution reaction (OER). Although IrOx is one of the benchmark acidic OER electrocatalysts, there are still challenges in designing highly active and stable Ir-based electrocatalysts for commercial application. Herein, a Ru-doped IrOx electrocatalyst with abundant twin boundaries (TB-Ru0.3Ir0.7Ox@ITO) is reported, employing indium tin oxide with high conductivity as the support material. Combing the TB-Ru0.3Ir0.7Ox nanoparticles with ITO support could expose more active sites and accelerate the electron transfer. The TB-Ru0.3Ir0.7Ox@ITO exhibits a low overpotential of 203 mV to achieve 10 mA cm-2 and a high mass activity of 854.45 A g-1noble metal at 1.53 V vs RHE toward acidic OER, which exceeds most reported Ir-based OER catalysts. Moreover, improved long-term stability could be obtained, maintaining the reaction for over 110 h at 10 mA cm-2 with negligible deactivation. DFT calculations further reveal the activity enhancement mechanism, demonstrating the synergistic effects of Ru doping and strains on the optimization of the d-band center (εd) position and the adsorption free energy of oxygen intermediates. This work provides ideas to realize the trade-off between high catalytic activity and good stability for acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinuo Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiahong Liao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| |
Collapse
|
28
|
Shen Y, Zhang XL, Qu MR, Ma J, Zhu S, Min YL, Gao MR, Yu SH. Cr dopant mediates hydroxyl spillover on RuO 2 for high-efficiency proton exchange membrane electrolysis. Nat Commun 2024; 15:7861. [PMID: 39251585 PMCID: PMC11385839 DOI: 10.1038/s41467-024-51871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Simultaneously improving the activity and stability of catalysts for anodic oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE) remains a notable challenge. Here, we report a chromium-doped ruthenium dioxide with oxygen vacancies, termed Cr0.2Ru0.8O2-x, that drives OER with an overpotential of 170 mV at 10 mA cm-2 and operates stably over 2000 h in acidic media. Experimental and theoretical studies show that the synergy of Cr dopant and oxygen vacancy induces an unconventional dopant-mediated hydroxyl spillover mechanism. Such dynamic hydroxyl spillover from Cr dopant to Ru active site changes the rate-determining step from OOH* formation to O2 formation and thus greatly improves the OER performance. Moreover, the Cr dopant and oxygen vacancy also play a crucial role in stabilizing surface Ru and lattice oxygen in the Ru-O-Cr structural motif. When assembled into the anode of a practical PEMWE device, Cr0.2Ru0.8O2-x enables long-term durability of over 200 h at an ampere-level current density and 60 degrees centigrade.
Collapse
Affiliation(s)
- Yu Shen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ming-Rong Qu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jie Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Yu-Lin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
29
|
Chen G, Lu R, Ma C, Zhang X, Wang Z, Xiong Y, Han Y. A Long-Range Disordering RuO 2 Catalyst for Highly Efficient Acidic Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2024:e202411603. [PMID: 39231800 DOI: 10.1002/anie.202411603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Non-iridium acid-stabilized electrocatalysts for oxygen evolution reaction (OER) are crucial to reducing the cost of proton exchange membrane water electrolyzers (PEMWEs). Here, we report a strategy to modulate the stability of RuO2 by doping boron (B) atoms, leading to the preparation of a RuO2 catalyst with long-range disorder (LD-B/RuO2). The structure of long-range disorder endowed LD-B/RuO2 with a low overpotential of 175 mV and an ultra-long stability, which can maintain OER for about 1.6 months at 10 mA cm-2 current density in 0.5 M H2SO4 with almost invariable performance. More importantly, a PEM electrolyzer using LD-B/RuO2 as the anode demonstrated excellent performance, reaching 1000 mA cm-2 at 1.63 V with durability exceeding 300 h at 250 mA cm-2 current density. The introduction of B atoms induced the formation of a long-range disordered structure and symmetry-breaking B-Ru-O motifs, which enabled the catalyst structure to a certain toughness while simultaneously inducing the redistribution of electrons on the active center Ru, which jointly promoted and guaranteed the activity and long-term stability of LD-B/RuO2. This study provides a strategy to prepare long-range disordered RuO2 acidic OER catalysts with high stability using B-doping to perturb crystallinity, which opens potential possibilities for non-iridium-based PEMWE applications.
Collapse
Affiliation(s)
- Guanzhen Chen
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, 1010, Auckland, New Zealand
| | - Chao Ma
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xuewen Zhang
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, 1010, Auckland, New Zealand
| | - Yu Xiong
- Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 710129, Xi'an, China
| |
Collapse
|
30
|
Shang M, Zhou B, Qiu H, Gong Y, Xin L, Xiao W, Xu G, Dai C, Zhang H, Wu Z, Wang L. Self-supported Ru-Fe-O x nanospheres as efficient electrocatalyst to boost overall water-splitting in acid and alkaline media. J Colloid Interface Sci 2024; 669:856-863. [PMID: 38749224 DOI: 10.1016/j.jcis.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Developing electrocatalysts with high activity and durability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes remains challenging. In this study, we synthesize a self-supported ruthenium-iron oxide on carbon cloth (Ru-Fe-Ox/CC) using solvothermal methods followed by air calcination. The morphology of the nanoparticle exposes numerous active sites vital for electrocatalysis. Additionally, the strong electronic interaction between Ru and Fe enhances electrocatalytic kinetics optimization. The porous structure of the carbon cloth matrix facilitates mass transport, improving electrolyte penetration and bubble release. Consequently, Ru-Fe-Ox/CC demonstrates excellent catalytic performance, achieving low overpotentials of 32 mV and 28 mV for HER and 216 mV and 228 mV for OER in acidic and alkaline electrolytes, respectively. Notably, only 1.48 V and 1.46 V are required to reach 10 mA cm-2 for efficient water-splitting in both mediums, exhibiting remarkable stability. This research offers insights into designing versatile, highly efficient catalysts suitable for varied pH conditions.
Collapse
Affiliation(s)
- Mengfang Shang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Huiqian Qiu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Yuecheng Gong
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Liantao Xin
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guangrui Xu
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Chunlong Dai
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No. 9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang, PR China
| | - Huadong Zhang
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No. 9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
31
|
Zhang J, Xu L, Yang X, Guo S, Zhang Y, Zhao Y, Wu G, Li G. Amorphous MnRuO x Containing Microcrystalline for Enhanced Acidic Oxygen-Evolution Activity and Stability. Angew Chem Int Ed Engl 2024; 63:e202405641. [PMID: 38818616 DOI: 10.1002/anie.202405641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Compared to Ir, Ru-based catalysts often exhibited higher activity but suffered significant and rapid activity loss during the challenging oxygen evolution reaction (OER) in a corrosive acidic environment. Herein, we developed a hybrid MnRuOx catalyst in which the RuO2 microcrystalline regions serve as a supporting framework, and the amorphous MnRuOx phase fills the microcrystalline interstices. In particular, the MnRuOx-300 catalyst from an annealing temperature of 300 °C contains an optimal amorphous/crystalline heterostructure, providing substantial defects and active sites, facilitating efficient adsorption and conversion of OH-. In addition, the heterostructure leads to a relative increase of the d-band center close to the Fermin level, thus accelerating electron transfer with reduced charge transfer resistance at the active interface between crystalline and amorphous phases during the OER. The catalyst was further thoroughly evaluated under various operating conditions and demonstrated exceptional activity and stability for the OER, representing a promising solution to replace Ir in water electrolyzers.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Song Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, Liaoning, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University, Shenyang, 110034, China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, Liaoning, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, Liaoning, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University, Shenyang, 110034, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Han C, Wang T. Understanding the catalytic performances of metal-doped Ta 2O 5 catalysts for acidic oxygen evolution reaction with computations. Chem Sci 2024:d4sc03554b. [PMID: 39165725 PMCID: PMC11331345 DOI: 10.1039/d4sc03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The design of stable and active alternative catalysts to iridium oxide for the anodic oxygen evolution reaction (OER) has been a long pursuit in acidic water splitting. Tantalum pentoxide (Ta2O5) has the merit of great acidic stability but poor OER performance, yet strategies to improve its intrinsic OER activity are highly desirable. Herein, by using density functional theory (DFT) calculations combined with aqueous stability assessment from surface Pourbaix diagrams, we systematically evaluated the OER activity and acidic stability of 14 different metal-doped Ta2O5 catalysts. Apart from the experimentally reported Ir-doped Ta2O5, we computationally identified Ru- and Nb-doped Ta2O5 catalysts as another two candidates with reasonably high stability and activity in acidic OER. Our study also underscores the essence of considering stable surface states of catalysts under working conditions before a reasonable activity trend can be computationally achieved.
Collapse
Affiliation(s)
- Congcong Han
- Department of Chemistry, Zhejiang University Hangzhou 310058 Zhejiang Province China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou 310000 Zhejiang China
| |
Collapse
|
33
|
Zhu S, Li Y, Yang M, Xu H, Cheng L, Fang F, Huang Q, Ying B. Extraordinary Structural Reconstruction of Nanolaminated Ta 2FeC MAX Phase for Enhanced Oxygen Evolution Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401022. [PMID: 38809081 DOI: 10.1002/smll.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Indexed: 05/30/2024]
Abstract
Renewable energy technologies, such as water splitting, heavily depend on the oxygen evolution reaction (OER). Nanolaminated ternary compounds, referred to as MAX phases, show great promise for creating efficient electrocatalysts for OER. However, their limited intrinsic oxidative resistance hinders the utilization of conductivity in Mn+1Xn layers, leading to reduced activity. In this study, a method is proposed to improve the poor inoxidizability of MAX phases by carefully adjusting the elemental composition between Mn+1Xn layers and single-atom-thick A layers. The resulting Ta2FeC catalyst demonstrates superior performance compared to conventional Fe/C-based catalysts with a remarkable record-low overpotential of 247 mV (@10 mA cm-2) and sustained activity for over 240 h. Notably, during OER processing, the single-atom-thick Fe layer undergoes self-reconstruction and enrichment from the interior of the Ta2FeC MAX phase toward its surface, forming a Ta2FeC@Ta2C@FeOOH heterostructure. Through density functional theory (DFT) calculations, this study has found that the incorporation of Ta2FeC@Ta2C not only enhances the conductivity of FeOOH but also reduces the covalency of Fe─O bonds, thus alleviating the oxidation of Fe3+ and O2-. This implies that the Ta2FeC@Ta2C@FeOOH heterostructure experiences less lattice oxygen loss during the OER process compared to pure FeOOH, leading to significantly improved stability. These results highlight promising avenues for further exploration of MAX phases by strategically engineering M- and A-site engineering through multi-metal substitution, to develop M2AX@M2X@AOOH-based catalysts for oxygen evolution.
Collapse
Affiliation(s)
- Shuairu Zhu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Youbing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mei Yang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
| | - Hongwei Xu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
| | - Lijuan Cheng
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Fei Fang
- College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo, Zhejiang, 315201, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, 610041, China
| |
Collapse
|
34
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
35
|
He W, Tan X, Guo Y, Xiao Y, Cui H, Wang C. Grain-Boundary-Rich RuO 2 Porous Nanosheet for Efficient and Stable Acidic Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202405798. [PMID: 38659324 DOI: 10.1002/anie.202405798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
RuO2 has been considered as the most likely acidic oxygen evolution reaction (OER) catalyst to replace IrO2, but its performance, especially long-term stability under harsh acidic conditions, is still unacceptable. Here, we propose a grain boundary (GB) engineering strategy by fabricating the ultrathin porous RuO2 nanosheet with abundant of grain boundaries (GB-RuO2) as an efficient acid OER catalyst. The involvement of GB induces significant tensile stress and creates an unsaturated coordination environment, effectively optimizing the adsorption of intermediates and stabilizing active site structure during OER process. Notably, the GB-RuO2 not only exhibits a low overpotential (η10=187 mV) with an ultra-low Tafel slope (34.5 mV dec-1), but also steadily operates for over 550 h in 0.1 M HClO4. Quasi in situ/operando methods confirm that the improved stability is attributed to GB preventing Ru dissolution and greatly inhibiting the lattice oxygen oxidation mechanism (LOM). A proton exchange membrane water electrolysis (PEMWE) using the GB-RuO2 catalyst operates a low voltage of 1.669 V at 2 A cm-2 and operates stably for 100 h at 100 mA cm-2.
Collapse
Affiliation(s)
- Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
36
|
Xiao M, Liu J, Li R, Sun Y, Liu F, Gan J, Gao S. Rapid Conversion from Alloy Nanoparticles to Oxide Nanowires: Strain Wave-Driven Ru-O-Mn Collaborative Catalysis for Durable Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400754. [PMID: 38385815 DOI: 10.1002/smll.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Metal-doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so-called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave-featured Mn-RuO2 nanowires (NWs) with asymmetric Ru-O-Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2SO4, the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm-2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm-2 in PEMWE, far exceeding IrO2||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru-O-Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru-O-Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long-term stability. This work opens a door to designing non-precious metal-assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.
Collapse
Affiliation(s)
- Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Laboratory, Kunming, 650100, China
| |
Collapse
|
37
|
Zhao G, Guo W, Shan M, Fang Y, Wang G, Gao M, Liu Y, Pan H, Sun W. Metallic Ru─Ru Interaction in Ruthenium Oxide Enabling Durable Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404213. [PMID: 38695334 DOI: 10.1002/adma.202404213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Indexed: 07/26/2024]
Abstract
Developing efficient and robust electrocatalysts toward the oxygen evolution reaction (OER) is critical for proton exchange membrane water electrolysis (PEMWE). RuO2 possesses intrinsically high OER activity, but the concurrent electrochemical dissolution leads to rapid deactivation. Here a unique RuO2 catalyst containing metallic Ru─Ru interactions (m-RuO2) is reported, which maintains stability in practical PEMWE for 100 h at 60 °C and 1 A cm-2. Experimental and theoretical investigations suggest that the presence of Ru─Ru interactions significantly increases the energy barrier for the formation of RuO2(OH)2, which is a key intermediate for Ru dissolution, and hence substantially mitigates the electrochemical corrosion of m-RuO2. Meanwhile, the Ru4d band center downshifts, accordingly, ensuring the high OER activity, and the participation of lattice oxygen in the OER is also suppressed at the Ru─Ru sites, further contributing to the enhanced durability. Interestingly, such enhanced stability is also dependent on the size of metallic Ru─Ru cluster, where the energy barrier is further increased for Ru3, but is decreased for Ru5. These results highlight the significance of local coordination structure modulation on the electrochemical stability of RuO2 and open a feasible avenue toward the development of robust OER electrocatalysts for high-performance PEMWE.
Collapse
Affiliation(s)
- Guoqiang Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Minmin Shan
- Hefei National Research Center for Physical Sciences at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanyan Fang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gongming Wang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
38
|
Zhao X, Li Z, Jang H, Wei X, Wang L, Kim MG, Cho J, Liu X, Qin Q. 2D Ruthenium-Chromium Oxide with Rich Grain Boundaries Boosts Acidic Oxygen Evolution Reaction Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311172. [PMID: 38351480 DOI: 10.1002/smll.202311172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/28/2024] [Indexed: 07/19/2024]
Abstract
Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53Ru0.47O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53Ru0.47O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2, respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53Ru0.47O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.
Collapse
Affiliation(s)
- Xuhao Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, South Korea
| | - Xiaoqian Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
39
|
Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W. Stabilizing atomic Ru species in conjugated sp 2 carbon-linked covalent organic framework for acidic water oxidation. Nat Commun 2024; 15:5419. [PMID: 38926414 PMCID: PMC11208516 DOI: 10.1038/s41467-024-49834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Suppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g-1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, PR China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
40
|
Abed J, Heras-Domingo J, Sanspeur RY, Luo M, Alnoush W, Meira DM, Wang H, Wang J, Zhou J, Zhou D, Fatih K, Kitchin JR, Higgins D, Ulissi ZW, Sargent EH. Pourbaix Machine Learning Framework Identifies Acidic Water Oxidation Catalysts Exhibiting Suppressed Ruthenium Dissolution. J Am Chem Soc 2024; 146:15740-15750. [PMID: 38830239 DOI: 10.1021/jacs.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The demand for green hydrogen has raised concerns over the availability of iridium used in oxygen evolution reaction catalysts. We identify catalysts with the aid of a machine learning-aided computational pipeline trained on more than 36,000 mixed metal oxides. The pipeline accurately predicts Pourbaix decomposition energy (Gpbx) from unrelaxed structures with a mean absolute error of 77 meV per atom, enabling us to screen 2070 new metallic oxides with respect to their prospective stability under acidic conditions. The search identifies Ru0.6Cr0.2Ti0.2O2 as a candidate having the promise of increased durability: experimentally, we find that it provides an overpotential of 267 mV at 100 mA cm-2 and that it operates at this current density for over 200 h and exhibits a rate of overpotential increase of 25 μV h-1. Surface density functional theory calculations reveal that Ti increases metal-oxygen covalency, a potential route to increased stability, while Cr lowers the energy barrier of the HOO* formation rate-determining step, increasing activity compared to RuO2 and reducing overpotential by 40 mV at 100 mA cm-2 while maintaining stability. In situ X-ray absorption spectroscopy and ex situ ptychography-scanning transmission X-ray microscopy show the evolution of a metastable structure during the reaction, slowing Ru mass dissolution by 20× and suppressing lattice oxygen participation by >60% compared to RuO2.
Collapse
Affiliation(s)
- Jehad Abed
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Javier Heras-Domingo
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rohan Yuri Sanspeur
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Wajdi Alnoush
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Debora Motta Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Hsiaotsu Wang
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Jian Wang
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Jigang Zhou
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Daojin Zhou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Khalid Fatih
- Clean Energy Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, British Columbia V6T 1W5, Canada
| | - John R Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Zachary W Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
41
|
Sun P, Qiao Z, Dong X, Jiang R, Hu ZT, Yun J, Cao D. Designing 3d Transition Metal Cation-Doped MRuO x As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers. J Am Chem Soc 2024; 146:15515-15524. [PMID: 38785086 DOI: 10.1021/jacs.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaobin Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhong-Ting Hu
- Institute of Environmental-Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao 266000, PR China
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
42
|
Li L, Liu Y, Chen Y, Zhai W, Dai Z. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Trans 2024; 53:8872-8886. [PMID: 38738345 DOI: 10.1039/d4dt00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Hydrogen, highly valued for its pristine cleanliness and remarkable efficiency as an emerging energy source, is anticipated to ascend to a preeminent status within the forthcoming energy landscape. Electrocatalytic water splitting is considered a pivotal, eco-friendly, and sustainable strategy for hydrogen production. The substantial energy consumption stemming from oxygen evolution side reactions significantly impedes the commercial viability of water electrolysis. Consequently, the pursuit of a cost-effective and efficacious oxygen evolution reaction (OER) catalyst stands as an imperative strategy for realizing hydrogen production via water electrolysis. Layered metal oxides, owing to their robust anisotropic properties, versatile adjustability, and extensive surface area, have emerged as suitable candidates for OER catalysts. However, owing to the distinctive attributes of layered metal oxides, ongoing investigations into these materials are slightly fragmented, lacking universal consensus. This article comprehensively surveys the recent advancements in layered metal oxide-based OER catalysts, categorized into single metal oxides, alkali cobalt oxides, perovskites, and miscellaneous metal oxides. Initially, the main OER intermediate reaction steps of layered metal oxides are scrutinized. Subsequently, the design, mechanism, and application of several pivotal layered metal oxides in the OER are systematically delineated. Finally, a summary is provided, alongside the proposal of future research trajectories and challenges encountered by layered metal oxides, with the aspiration that this paper may serve as a valuable reference for scholars in the field.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
43
|
Chang J, Shi Y, Wu H, Yu J, Jing W, Wang S, Waterhouse GIN, Tang Z, Lu S. Oxygen Radical Coupling on Short-Range Ordered Ru Atom Arrays Enables Exceptional Activity and Stability for Acidic Water Oxidation. J Am Chem Soc 2024; 146:12958-12968. [PMID: 38695595 DOI: 10.1021/jacs.3c13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The discovery of efficient and stable electrocatalysts for oxygen evolution reaction (OER) in acid is vital for the commercialization of the proton-exchange membrane water electrolyzer. In this work, we demonstrate that short-range Ru atom arrays with near-ideal Ru-Ru interatomic distances and a unique Ru-O hybridization state can trigger direct O*-O* radical coupling to form an intermediate O*-O*-Ru configuration during acidic OER without generating OOH* species. Further, the Ru atom arrays suppress the participation of lattice oxygen in the OER and the dissolution of active Ru. Benefiting from these advantages, the as-designed Ru array-Co3O4 electrocatalyst breaks the activity/stability trade-off that plagues RuO2-based electrocatalysts, delivering an excellent OER overpotential of only 160 mV at 10 mA cm-2 in 0.5 M H2SO4 and outstanding durability during 1500 h operation, representing one of the best acid-stable OER electrocatalysts reported to date. 18O-labeled operando spectroscopic measurements together with theoretical investigations revealed that the short-range Ru atom arrays switched on an oxide path mechanism (OPM) during the OER. Our work not only guides the design of improved acidic OER catalysts but also encourages the pursuit of short-range metal atom array-based electrocatalysts for other electrocatalytic reactions.
Collapse
Affiliation(s)
- Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Yuanyuan Shi
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Wen Jing
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| | | | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
44
|
Zhang J, Shi L, Miao X, Zhou S, Yang L. Promotion of Acid-Water Oxidation by Lattice Distortion and Orbital Hybridization Induced by Ionic Dopant in Pyrochlore Y 2Ru 2O 7. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21905-21914. [PMID: 38634487 DOI: 10.1021/acsami.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
For acid-water oxidation, pyrochloric ruthenates are thought to be extremely effective electrocatalysts. In this work, through partial B-site replacement with larger M2+ cations, the electronic states of Y2Ru2O7 with strong electron correlations are reasonably managed, by which the inherent performance is tremendously promoted. Based on this, the improved Y2Ru1.9Sr0.1O7 electrocatalyst exhibits an outstanding durability and presents a highly inherent mass activity of 1915.1 A gRu-1 (at 1.53 V vs RHE). The enhanced oxygen-evolving reaction (OER) activity by ionic dopant in YRO pyrochlore can be attributed to two aspects, i.e., the lattice distortion induced inhibition of the grain coarsening, which results in a large surface area for YRO-M and increases the OER active sites, and the weakening of electron correlation via broadening of the Ru 4d bandwidths due to the increase of the average radius of B-site ions, which gives rise to an enhancement of conductivity and a strengthened hybridization between Ru 4d and O 2p orbitals and improves the reaction kinetics. The synergistic effects of lattice distortion and orbital hybridization promote the enhanced OER activity. The results would provide fresh concepts for the design of improved electrocatalysts and underscore the significance of managing the intrinsic performance through the dual modification of microstructure morphology and electronic structure.
Collapse
Affiliation(s)
- Jinhui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Lei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xianbing Miao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Liping Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
45
|
Shang F, Wang B, An B, He H, Shui Y, Cai H, Liang C, Yang S. Na Substitution Steering RuO 6 Unit in Ruthenium Pyrochlores for Enhanced Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310323. [PMID: 38109157 DOI: 10.1002/smll.202310323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Indexed: 12/19/2023]
Abstract
Although Ruthenium-based pyrochlore oxides can function as promising catalysts for acidic water oxidation, their limitations in terms of stability and activity still need to be addressed for further application in practical conditions. In this work, the possibility to enhance both oxygen evolution reaction activity and durability of Gd2Ru2O7- δ through partial replacement with Na+ in Gd3+ sites is first offered, leading to the electronic and geometric regulation of active center RuO6. Na+ triggers the emergence of Ru<4+ and the electron rearrangement of active-centered RuO6. Specifically, Ru ions with a negative d-band center after Na+ doping exhibit weaker adsorption energies of *O and result in the conversion of the rate-limiting step from *O/*OOH to *OH/O*, reducing energy barriers for boosting activities. Therefore, the NaxGd2- xRu2O7- δ requires a low overpotential of 260 mV at 10 mA cm-2 in 0.1 m HClO4 electrolyte. Moreover, the higher formation energy of Ru vacancy and less distorted RuO6 enable the as-prepared NaxGd2- xRu2O7- δ to operate steadily at 10 mA cm-2 for 300 h and multi-current chronopotentiometry with current densities from 20 to 100 mA cm-2 for 60 h in acidic proton exchange membrane electrolyzer, respectively.
Collapse
Affiliation(s)
- Fanfan Shang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Bin Wang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Bei An
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Huijie He
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Yuan Shui
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Chao Liang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| | - Shengchun Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, China
| |
Collapse
|
46
|
Kong X, Xu J, Ju Z, Chen C. Durable Ru Nanocrystal with HfO 2 Modification for Acidic Overall Water Splitting. NANO-MICRO LETTERS 2024; 16:185. [PMID: 38687410 PMCID: PMC11061093 DOI: 10.1007/s40820-024-01384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Durable and efficient bi-functional catalyst, that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition, are highly desired for the commercialization of proton exchange membrane water electrolysis. Herein, we report a robust L-Ru/HfO2 heterostructure constructed via confining crystalline Ru nanodomains by HfO2 matrix. When assembled with a proton exchange membrane, the bi-functional L-Ru/HfO2 catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm-2 current density, prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO2 electrolyzer. It is revealed that the synergistic effect of HfO2 modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru. More importantly, this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates. As a result, the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step (*O→*OOH). Both of water adsorption and dissociation (Volmer step) are strengthened, while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure (Tafel step). Consequently, the activity and stability of acidic overall water splitting are simultaneously enhanced.
Collapse
Affiliation(s)
- Xiangkai Kong
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| | - Jie Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zhicheng Ju
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Changle Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
47
|
Zeng B, Liu X, Wan L, Xia C, Cao L, Hu Y, Dong B. Grafting Ultra-fine Nanoalloys with Amorphous Skin Enables Highly Active and Long-lived Acidic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202400582. [PMID: 38308672 DOI: 10.1002/anie.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/05/2024]
Abstract
Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6 nm thickness amorphous skin achieved an ultra-high mass activity of 26.7 A mg-1 Pt+Ru at -0.07 V as well as a state-of-the-art durability maintained for at least 1000 h at -10 mA cm-2 and 550 h at -100 mA⋅cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.
Collapse
Affiliation(s)
- Biao Zeng
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Li Wan
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Chenghui Xia
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
48
|
Yan Z, Guo S, Tan Z, Wang L, Li G, Tang M, Feng Z, Yuan X, Wang Y, Cao B. Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1637. [PMID: 38612151 PMCID: PMC11012601 DOI: 10.3390/ma17071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Water splitting is an important way to obtain hydrogen applied in clean energy, which mainly consists of two half-reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, the kinetics of the OER of water splitting, which occurs at the anode, is slow and inefficient, especially in acid. Currently, the main OER catalysts are still based on noble metals, such as Ir and Ru, which are the main active components. Hence, the exploration of new OER catalysts with low cost, high activity, and stability has become a key issue in the research of electrolytic water hydrogen production technology. In this paper, the reaction mechanism of OER in acid was discussed and summarized, and the main methods to improve the activity and stability of non-noble metal OER catalysts were summarized and categorized. Finally, the future prospects of OER catalysts in acid were made to provide a little reference idea for the development of advanced OER catalysts in acid in the future.
Collapse
Affiliation(s)
- Zhenwei Yan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Shuaihui Guo
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Zhaojun Tan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Lijun Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Gang Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Mingqi Tang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (M.T.); (Z.F.)
| | - Zaiqiang Feng
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (M.T.); (Z.F.)
| | - Xianjie Yuan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Yingjia Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| | - Bin Cao
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; (S.G.); (Z.T.); (G.L.); (X.Y.); (Y.W.); (B.C.)
| |
Collapse
|
49
|
Li W, Liu R, Yu G, Chen X, Yan S, Ren S, Chen J, Chen W, Wang C, Lu X. Rationally Construction of Mn-Doped RuO 2 Nanofibers for High-Activity and Stable Alkaline Ampere-Level Current Density Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307164. [PMID: 37997555 DOI: 10.1002/smll.202307164] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Nowadays, highly active and stable alkaline bifunctional electrocatalysts toward water electrolysis that can work at high current density (≥1000 mA cm-2) are urgently needed. Herein, Mn-doped RuO2 (MnxRu1-xO2) nanofibers (NFs) are constructed to achieve this object, presenting wonderful hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances with the overpotentials of only 269 and 461 mV at 1 A cm-2 in 1 m KOH solution, and remarkably stability under industrial demand with 1 A cm-2, significantly better than the benchmark Pt/C and commercial RuO2 electrocatalysts, respectively. More importantly, the assembled Mn0.05Ru0.95O2 NFs||Mn0.05Ru0.95O2 NFs electrolyzer toward overall water splitting reaches the current density of 10 mA cm-2 with a cell voltage of 1.52 V and also delivers an outstanding stability over 150 h of continuous operation, far surpassing commercial Pt/C||commercial RuO2, RuO2 NFs||RuO2 NFs and most previously reported exceptional electrolyzers. Theoretical calculations indicate that Mn-doping into RuO2 can significantly optimize the electronic structure and weaken the strength of O─H bond to achieve the near-zero hydrogen adsorption free energy (ΔGH*) value for HER, and can also effectively weaken the adsorption strength of intermediate O* at the relevant sites, achieving the higher OER catalytic activity, since the overlapping center of p-d orbitals is closer to the Fermi level.
Collapse
Affiliation(s)
- Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ran Liu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Su Yan
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Academy of Carbon Neutrality of Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
50
|
Yang Y, Zhou T, Zeng Z, Hu Y, Yang F, Sun W, He L. Novel sulfate solid supported binary Ru-Ir oxides for superior electrocatalytic activity towards OER and CER. J Colloid Interface Sci 2024; 659:191-202. [PMID: 38176229 DOI: 10.1016/j.jcis.2023.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Electrolysis for producing hydrogen powered by renewable electricity can be dramatically expanded by adapting different electrolytes (brine, seawater or pure water), which means the anode materials must stand up to complex electrolyte conditions. Here, a novel catalyst/support hybrid of binary Ru3.5Ir1Ox supported by barium strontium sulfate (BaSrSO4) was synthesized (RuIrOx/BSS) by exchanging the anion ligands of support. The as-synthesized RuIrOx/BSS exhibits compelling oxygen evolution (OER) and chlorine evolution (CER) performances, which affords to 10 mA cm-2 with only overpotential of 244 mV and 38 mV, respectively. The performed X-ray adsorption spectra clearly indicate the presence of an interface charge transfer effect, which results in the assignment of more electrons to the d orbitals of the Ru and Ir sites. The theoretical calculations demonstrated that the electronic structures of the catalytic active sites were modulated to give a lower overpotential, confirming the intrinsically high OER and CER catalytic activity.
Collapse
Affiliation(s)
- Yifei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tingxi Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Zhen Zeng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yuling Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Leilei He
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, PR China.
| |
Collapse
|