1
|
Chen K, Li C, Dong S, Hong K, Huang J, Xu X. Gold-Catalyzed Alkyne Oxidative Cyclization/Mannich-Type Addition Cascade Reaction of Ynamides with 1,3,5-Triazinanes. J Org Chem 2024; 89:13623-13628. [PMID: 39238209 DOI: 10.1021/acs.joc.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, a gold-catalyzed alkyne oxidative cyclization/Mannich-type addition cascade reaction of ynamides with 1,3,5-triazinanes in the presence of a Brønsted acid has been presented. A class of functionalized fluorenes bearing a quaternary carbon center was synthesized directly with moderate to excellent yields via in situ formed α-oxo carbenes using quinoline N-oxide as the oxidant under mild reaction conditions.
Collapse
Affiliation(s)
- Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Shanliang Dong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Daniels A, Wölper C, Haberhauer G. Indium(III)-Catalyzed Haloalkynylation Reaction of Alkynes. Chemistry 2024; 30:e202401070. [PMID: 38742960 DOI: 10.1002/chem.202401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/16/2024]
Abstract
Green chemistry strives for sustainability at the molecular level and is gaining increasing relevance in the development of chemical reactions. The haloalkynylation reaction is a highly atom-economical C-C coupling reaction that was previously only achieved using transition metal catalysts. It enables the introduction of an alkyne unit and a halogen atom into the target molecule. Herein, we present a haloalkynylation reaction catalyzed by indium(III) halides. The use of indium(III) bromide as a catalyst leads exclusively to the cis addition products with yields up to 86 %. In addition, iodoacetylenes can be applied for the first time for the haloalkynylation reaction of internal alkynes which is an important step forward in the development of industrially relevant and sustainable catalysts. In contrast to gold catalysis, which proceeds via a similar mechanism, the use of alkyl-substituted haloacetylenes as reagents is also possible. Based on 13C labeling experiments and quantum chemical calculations, we postulate two possible mechanisms for the indium(III)-catalyzed haloalkynylation reactions.
Collapse
Affiliation(s)
- Alyssa Daniels
- Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D, 45117, Essen, Germany
| | - Christoph Wölper
- Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D, 45117, Essen, Germany
| | - Gebhard Haberhauer
- Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D, 45117, Essen, Germany
| |
Collapse
|
3
|
Liu Z, Fang S, Li H, Xiao C, Xiao K, Su Z, Wang T. Organocatalytic skeletal reorganization for enantioselective synthesis of S-stereogenic sulfinamides. Nat Commun 2024; 15:4348. [PMID: 38777853 PMCID: PMC11111665 DOI: 10.1038/s41467-024-48727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The enantioselective synthesis of S-stereogenic sulfinamides has garnered considerable attention due to their structural and physicochemical properties. However, catalytic asymmetric synthesis of sulfinamides still remains daunting challenges, impeding their broad application in drug discovery and development. Here, we present an approach for the synthesis of S-stereogenic sulfinamides through peptide-mimic phosphonium salt-catalyzed asymmetric skeletal reorganization of simple prochiral and/or racemic sulfoximines. This methodology allows for the facile access to a diverse array of substituted sulfinamides with excellent enantioselectivities, accommodating various substituent patterns through desymmetrization or parallel kinetic resolution process. Mechanistic experiments, coupled with density functional theory calculations, clarify a stepwise pathway involving ring-opening and ring-closing processes, with the ring-opening step identified as crucial for achieving stereoselective control. Given the prevalence of S-stereogenic centers in pharmaceuticals, we anticipate that this protocol will enhance the efficient and precise synthesis of relevant chiral molecules and their analogs, thereby contributing to advancements in drug discovery.
Collapse
Affiliation(s)
- Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China
| | - Chunxiu Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Kai Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China.
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610041, Chengdu, P. R. China.
- Beijing National Laboratory for Molecular Sciences, 100190, Beijing, China.
| |
Collapse
|
4
|
Da Lama A, Pérez Sestelo J, Sarandeses LA, Martínez MM. Synthesis and Photophysical Properties of β-Alkenyl-Substituted BODIPY Dyes by Indium(III)-Catalyzed Intermolecular Alkyne Hydroarylation. J Org Chem 2024; 89:4702-4711. [PMID: 38502009 PMCID: PMC11002825 DOI: 10.1021/acs.joc.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
A new atom-economical synthesis of β-alkenyl-substituted BODIPYs via indium(III)-catalyzed intermolecular alkyne hydroarylation with meso-substituted BODIPYs is described. While catalysis with InI3 allows the double β-functionalization of BODIPY, resulting in regioselectively branched β,β'-disubstituted alkenyl BODIPYs, catalytic InCl3 enables the formation of linear β-substituted alkenyl BODIPYs. Subsequent In(III)-catalyzed intermolecular alkyne hydroarylation allows the synthesis of unsymmetrical push-pull BODIPY derivatives. Therefore, indium catalysis offers complementary regioselectivity in good chemical yields and functional group tolerance. The resulting BODIPY dyes displayed bathochromically shifted absorption and emission according to the electron-nature of the substituents in the alkenyl moiety with high molar extinction coefficients (ε up to 88,200 M-1 cm-1) and quantum yields (0.14-0.96).
Collapse
Affiliation(s)
- Ana Da Lama
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - José Pérez Sestelo
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - Luis A. Sarandeses
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| | - M. Montserrat Martínez
- CICA—Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
5
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
6
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
7
|
Chen Y, Yan YH, Zhu BH, Chen F, Li L, Qian PC. Copper-Catalyzed Tandem Cyclization/Direct C(sp 2)-H Annulation of Azide-Ynamides via α-Imino Copper Carbenes: Access to Azepino[2,3- b:4,5- b']diindoles. Org Lett 2023; 25:2063-2067. [PMID: 36939559 DOI: 10.1021/acs.orglett.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A novel copper-catalyzed tandem cyclization/direct C(sp2)-H annulation of phenyl azide-ynamides via α-imino copper carbenes has been developed, which provides a concise and flexible approach for the construction of a range of valuable azepino[2,3-b:4,5-b']diindoles in mostly good to excellent yields with high chemoselectivities. This tandem reaction also exhibits a broad substrate scope, excellent functional group tolerance, simple operation, and mild reaction conditions.
Collapse
Affiliation(s)
- Yi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yao-Hong Yan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
8
|
Zhu BH, Ye SB, Nie ML, Xie ZY, Wang YB, Qian PC, Sun Q, Ye LW, Li L. I 2 -Catalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angew Chem Int Ed Engl 2023; 62:e202215616. [PMID: 36573021 DOI: 10.1002/anie.202215616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 12/28/2022]
Abstract
Herein, an I2 -catalyzed unprecedented cycloisomerization of ynamides is developed, furnishing various functionalized bis(indole) derivatives in generally good to excellent yields with wide substrate scope and excellent atom-economy. This protocol not only represents the first molecular-iodine-catalyzed tandem complex alkyne cycloisomerizations, but also constitutes the first chemoselective cycloisomerization of tryptamine-ynamides involving distinctively different C(sp3 )-C(sp3 ) bond cleavage and rearrangement. Moreover, chiral tetrahydropyridine frameworks containing two stereocenters are obtained with moderate to excellent diastereoselectivities and excellent enantioselectivities. Meanwhile, cycloisomerization and aromatization of ynamides produce pyrrolyl indoles with high efficiency enabled by I2 . Additionally, control experiments and theoretical calculations reveal that this reaction probably undergoes a tandem 5-exo-dig cyclization/rearrangement process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Sheng-Bing Ye
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Min-Ling Nie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Wu J, Li SJ, Jiang L, Ma XC, Lan Y, Shen L. UV light-driven late-stage skeletal reorganization to diverse limonoid frameworks: A proof of concept for photobiosynthesis. SCIENCE ADVANCES 2023; 9:eade2981. [PMID: 36706176 PMCID: PMC9882982 DOI: 10.1126/sciadv.ade2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Late-stage skeletal reorganization (LSSR) is a type of fascinating organic transformation processes in natural product total synthesis. However, few facile and effective LSSR methodologies have hitherto been developed. Here, LSSR of limonoid natural products via photochemical cascades is first reported. Starting from xyloelves A and B, nine distinct limonoid products with five unprecedented scaffolds are generated. The photocascade pathways of these natural products and mechanistic rationale via intramolecular triplet energy transfer are revealed by quantum mechanical calculations. Most notably, ultraviolet light-driven transannular and stereoselective C → C 1,4-acyl migration is first found as a photochemical approach, particularly for LSSR of natural products. This approach holds promise for designing LSSR strategies to access bioactive cage-like molecules. Besides that, our findings provide a clear proof of concept for natural product photobiosynthesis. Xyloelf A, substantially ameliorating concanavalin A-induced liver injury in mice, could be used as a unique molecular template for hepatoprotective drug discovery.
Collapse
Affiliation(s)
- Jun Wu
- Guangdong Key Laboratory of Natural Medicine Research and Development, College of Pharmacy, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shi-Jun Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Long Jiang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Chi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yu Lan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Li Shen
- Guangdong Key Laboratory of Natural Medicine Research and Development, College of Pharmacy, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
10
|
Ji DW, Hu YC, Min XT, Liu H, Zhang WS, Li Y, Zhou YJ, Chen QA. Skeleton-Reorganizing Coupling Reactions of Cycloheptatriene and Cycloalkenones with Amines. Angew Chem Int Ed Engl 2023; 62:e202213074. [PMID: 36372782 DOI: 10.1002/anie.202213074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin J Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Zhu BH, Shen CH, Nie ML, Zheng F, Huang C, Chen F, Li L, Deng C, Ye LW, Qian PC. Highly Site-Selective Oxidative Cyclization of Ene-ynamides via Non-Noble-Metal Catalysis: Access to Functionalized Lactams. Org Lett 2022; 24:7009-7014. [PMID: 36121648 DOI: 10.1021/acs.orglett.2c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, an unprecedented non-noble-metal-catalyzed oxidation/cyclization of ene-ynamides is developed, allowing the synthesis of diversely functionalized lactams in moderate to good yields with excellent diastereoselectivities without the observation of typical cyclopropanation products. In combination with Ellman's tert-butylsulfinimine chemistry, chiral γ-lactams containing three contiguous stereocenters are obtained with high diastereo- and enantioselectivity. Moreover, density functional theory (DFT) calculations indicate that this protocol probably undergoes a carbon cation or proton transfer process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Cang-Hai Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min-Ling Nie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fumin Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengzhe Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Long Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chao Deng
- Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Goulart TAC, Recchi AMS, Back DF, Zeni G. Selective 5‐Exo‐Dig versus 6‐Endo‐Dig Cyclization of Benzoimidazole Thiols with Propargyl Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tales A. C. Goulart
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Ana M. S. Recchi
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos Departamento de Química, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| | - Gilson Zeni
- Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
13
|
Mutra MR, Wang JJ. Photoinduced ynamide structural reshuffling and functionalization. Nat Commun 2022; 13:2345. [PMID: 35487916 PMCID: PMC9055057 DOI: 10.1038/s41467-022-30001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
The radical chemistry of ynamides has recently drawn the attention of synthetic organic chemists to the construction of various N-heterocyclic compounds. Nevertheless, the ynamide-radical chemistry remains a long-standing challenge for chemists due to its high reactivity, undesirable byproducts, severe inherent regio- and chemoselective problems. Importantly, the ynamide C(sp)-N bond fission remains an unsolved challenge. In this paper, we observe Photoinduced radical trigger regio- and chemoselective ynamide bond fission, structural reshuffling and functionalization of 2-alkynyl-ynamides to prepare synthetically inaccessible/challenging chalcogen-substituted indole derivatives with excellent step/atom economy. The key breakthroughs of this work includes, ynamide bond cleavage, divergent radical precursors, broad scope, easy to handle, larger-scale reactions, generation of multiple bonds (N-C(sp2), C(sp2)-C(sp2), C(sp2)-SO2R/C-SR, and C-I/C-Se/C-H) in a few minutes without photocatalysts, metals, oxidants, additives. Control experiments and 13C-labeling experiments supporting the conclusion that sulfone radicals contribute to ynamide structural reshuffling processes via a radical pathway. Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
14
|
Sun S, Zhang M, Xu J. Direct synthesis of highly strained bifunctionalized 2 H-thiete 1,1-dioxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00556e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various bifunctionalized dialkyl 2H-thiete-2,3-dicarboxylate 1,1-dioxides are directly and convergently synthesized from readily available sulfonyl chlorides and dialkyl acetylenedicarboxylates via the pyridine-mediated [2 + 2] annulation.
Collapse
Affiliation(s)
- Simin Sun
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Mengyao Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
15
|
zeng L, Xu S, Cui S, Zhang F. Three Component Synthesis of β‑Aminoxy Amides. Org Chem Front 2022. [DOI: 10.1039/d2qo00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicomponent reaction for the synthesis of β‑aminoxy amides is described. In this reaction, N-hydroxamic acids, yna-mides and aldehydes could assemble efficiently to deliver structurally diverse β‑aminoxy amides under the...
Collapse
|
16
|
Xu S, Cui S. SuFExable Isocyanides for Ugi Reaction: Synthesis of Sulfonyl Fluoro Peptides. Org Lett 2021; 23:5197-5202. [PMID: 34157840 DOI: 10.1021/acs.orglett.1c01734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, the sulfonyl fluoro isocyanides were first developed as a new type of SuFExable synthon, and they are used as building blocks in the Ugi reaction (U-4CR). The Ugi reaction was established and the substrate scope was investigated, and various sulfonyl fluoro α-amino amides and peptides could be reached in a one-step synthesis. Therefore, this protocol opens a new vision for SuFExable building blocks and click chemistry, and it also provides a distinct approach to sulfonyl fluoro peptides.
Collapse
Affiliation(s)
- Shuheng Xu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Yamasaki K, Yamauchi A, Inokuma T, Miyakawa Y, Wang Y, Oriez R, Yamaoka Y, Takasu K, Tanaka N, Kashiwada Y, Yamada K. Mechanistic Support for Intramolecular Migrative Cyclization of Propargyl Sulfones Provided by Catalytic Asymmetric Induction with a Chiral Counter Cation Strategy. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kohta Yamasaki
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Akiho Yamauchi
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Tsubasa Inokuma
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yasunori Miyakawa
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yinli Wang
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Raphaël Oriez
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501 Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
| | - Ken‐ichi Yamada
- Graduate School of Pharmaceutical Sciences Tokushima University Shomachi, Tokushima 770-8505 Japan
- Research Cluster on “Innovative Chemical Sensing” Tokushima University Shomachi, Tokushima 770-8505 Japan
| |
Collapse
|
18
|
Luo WF, Ye LW, Li L, Qian PC. Regio- and diastereoselective synthesis of trans-3,4-diaryldihydrocoumarins via metal-free [4+2] annulation of ynamides with o-hydroxybenzyl alcohols. Chem Commun (Camb) 2021; 57:5032-5035. [PMID: 33881063 DOI: 10.1039/d1cc00687h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient regio- and diastereoselective method for the construction of valuable trans-3,4-diaryldihydrocoumarins via metal-free [4+2] annulation of ynamides with o-hydroxybenzyl alcohols has been developed. Ynamides are first treated as 2-π partners to react with o-hydroxybenzyl alcohols via traceless sulfonamide directing groups, affording trans-3,4-diaryldihydrocoumarins in good yields with high regio- and diastereoselectivities. This metal-free methodology is also characterized by a wide substrate scope, good functional group tolerance, and efficiency on a gram scale.
Collapse
Affiliation(s)
- Wen-Feng Luo
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | | | | | | |
Collapse
|
19
|
Li X, Zeng H, Lin L, Feng X. Catalytic Asymmetric Hydroacyloxylation/Ring-Opening Reaction of Ynamides, Acids, and Aziridines. Org Lett 2021; 23:2954-2958. [PMID: 33769054 DOI: 10.1021/acs.orglett.1c00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A highly enantioselective three-component reaction of ynamides with carboxylic acids and 2,2'-diester aziridines has been realized by using a chiral N,N'-dioxide/Ho(OTf)3 complex as a Lewis acid catalyst. The process includes the formation of an α-acyloxyenamide intermediate through the addition of carboxylic acids to ynamides and the following enantioselective nucleophilic addition to in-situ-generated azomethine ylides induced by the chiral catalyst. A range of amino acyloxyenamides are delivered in moderate to good yields with good ee values. In addition, a possible catalytic cycle with a transition model is proposed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Xiangqiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β‐Amino Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Hujun Xie
- School of Food Science and Biotechnology Zhejiang Gongshang University 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou 310018 Zhejiang Province China
| | - Sunliang Cui
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences China
| |
Collapse
|
21
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β-Amino Amides. Angew Chem Int Ed Engl 2021; 60:5147-5151. [PMID: 33289272 DOI: 10.1002/anie.202014686] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent reactions (MCRs) are powerful tool for the construction of polyfunctional molecules in an operationally simple and atom-economic manner, and the discovery of novel MCRs requests various building blocks. Herein, triazenyl alkynes were disclosed as versatile building blocks in a multicomponent reaction with carboxylic acids, aldehydes and anilines to furnish β-amino amides with the achievement of high diastereoselectivity and structural diversity. In this process, triazenyl alkynes were bifunctional so that the alkyne moiety acts as C2 fragment and triazene serves as directing group to modulate the transition state thus achieving high diastereoselectivity, in consistence with DFT calculations. Furthermore, the triazenyl group also enables diverse late-stage transformation. This protocol opens a new vision for the discovery of building block and rational design of MCRs.
Collapse
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou, 310018, Zhejiang Province, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|