1
|
Zhang Y, Cai C, Guo Z, Li X, Zhao G, Dong S. Supramolecular transparent plastic engineering via covalent-and-supramolecular polymerization. MATERIALS HORIZONS 2025; 12:2287-2297. [PMID: 39775739 DOI: 10.1039/d4mh01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance via the solvent-free one-pot amidation of thioctic acid and (poly)amines. Covalent amide linkers, dynamic disulfide bonds, and hydrogen bonds significantly enhance the mechanical toughness and hardness of supramolecular plastic. Greatly benefitting from covalent-and-supramolecular polymerization, not only does the supramolecular plastic exhibit a high mechanical strength of 45.51 MPa and a rigidity of 74.0 HD, but it is also highly resistant to mechanical impact (34.47 kJ m-2). Experimental and theoretical investigations demonstrated that polymeric structures connected via amide units are responsible for the tough mechanical properties, whereas the dynamic and reversible bonding/debonding of disulfide and hydrogen bonds favor energy dissipation, which together convert supramolecular transparent plastic into a rigid and tough material.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.
| | - Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, P. R. China.
| | - Zhiyuan Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Xing Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.
| |
Collapse
|
2
|
Castillo-Blas C, García MJ, Chester AM, Mazaj M, Guan S, Robertson GP, Kono A, Steele JMA, León-Alcaide L, Poletto-Rodrigues B, Chater PA, Cabrera S, Krajnc A, Wondraczek L, Keen DA, Alemán J, Bennett TD. Structural and Interfacial Characterization of a Photocatalytic Titanium MOF-Phosphate Glass Composite. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15793-15803. [PMID: 40033699 PMCID: PMC11912187 DOI: 10.1021/acsami.4c18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metal-organic framework (MOF) composites are proposed as solutions to the mechanical instability of pure MOF materials. Here, we present a new compositional series of recently discovered MOF-crystalline inorganic glass composites. In this case, formed by the combination of a photocatalytic titanium MOF (MIL-125-NH2) and a phosphate-based glass (20%Na2O-10%Na2SO4-70%P2O5). This new family of composites has been synthesized and characterized using powder X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X-ray total scattering. Through analysis of the pair distribution function extracted from X-ray total scattering data, the atom-atom interactions at the MOF-glass interface are described. Nitrogen and carbon dioxide isotherms demonstrate good surface area values despite the pelletization and mixing of the MOF with a dense inorganic glass. The catalytic activity of these materials was investigated in the photooxidation of amines to imines, showing the retention of the photocatalytic effectiveness of the parent pristine MOF.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Montaña J García
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Matjaž Mazaj
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Shaoliang Guan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ayano Kono
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - James M A Steele
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bruno Poletto-Rodrigues
- Otto-Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Philip A Chater
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Silvia Cabrera
- Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Andraž Krajnc
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Lothar Wondraczek
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jose Alemán
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
3
|
Damian-Buda AI, Alipanah N, Bider F, Sisman O, Neščáková Z, Boccaccini AR. Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review. Mater Today Bio 2025; 30:101413. [PMID: 39834480 PMCID: PMC11742841 DOI: 10.1016/j.mtbio.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities. Besides comparing MOFs and BGs, this review aims to present the latest achievements of different MOFs/BGs materials, with a particular focus on their complementary and synergistic properties. Key findings show that combining MOFs and BGs enables the development of composite materials with superior physicochemical and biological properties. Moreover, by choosing appropriate processing techniques, BGs and MOFs can be fabricated as scaffolds or coatings with fast mineralization ability and high corrosion resistance. In addition, incorporation of MOFs/BGs in hydrogels improves mechanical stability, bioactivity and antibacterial properties, while maintaining biocompatibility. The mechanisms behind the antibacterial properties, likely coming from the release of metal ions and organic ligands, are also discussed. Overall, this review highlights the current research directions and emerging trends in the synergistic use of MOFs and BGs for biomedical applications, which represents a novel strategy for developing a new family of advanced therapeutic materials.
Collapse
Affiliation(s)
- Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Nariman Alipanah
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Faina Bider
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Orhan Sisman
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Zuzana Neščáková
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Zhang Y, Cai C, Li F, Tan X, Li Q, Ni X, Dong S. Supramolecular control over the variability of color and fluorescence in low-molecular-weight glass. MATERIALS HORIZONS 2024; 11:5641-5649. [PMID: 39192671 DOI: 10.1039/d4mh00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Colorful and fluorescent transparent materials have been extensively used in industrial and scientific activities, with inorganic and polymeric glasses being the most typical representatives. Recently, artificial glass originating from low-molecular-weight monomers has attracted considerable attention. Compared with the deep understanding of the building blocks and driving forces of supramolecular glass, related studies on its optical properties are insufficient in terms of systematicness and pertinence. In this study, a supramolecular strategy was applied to introduce versatile colors and fluorescence emissions into a low-molecular-weight glass. Pillar[5]arene and cucurbit[8]uril were selected to recognize the functional components and yield the desired optical performances. Macrocycle-based host-guest chemistry endows artificial glass with controllable and programmable colors and fluorescence emissions.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin Tan
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412000, China
| | - Qing Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 50025, China.
| | - Xinlong Ni
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Cai C, Yao G, Zhang Y, Zhang S, Li F, Tan Z, Dong S. Optically transparent and mechanically tough glass with impact resistance and flame retardancy enabled by covalent/supramolecular interactions. MATERIALS HORIZONS 2024; 11:5732-5739. [PMID: 39252527 DOI: 10.1039/d4mh00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Exploring glass materials beyond inorganic components represents a new direction in the development of artificial transparent materials. Inspired by the successes of polymeric and supramolecular glasses, we shifted our attention to the preparation of a transparent glass through the polymerization of low-molecular-weight monomers that are naturally tailored with noncovalent recognition motifs. In this work, an imidazolium unit bearing a vinyl group and a tetrafluoroborate counter anion was selected to construct an artificial glass. Experimental and theoretical investigations revealed that the cross-linking behavior of anions effectively transformed linear polymeric chains into three-dimensional networks. The polymeric-supramolecular glass exhibits a tough tensile strength (61.31 MPa), high Young's modulus (1.17 GPa), and good optical transparency (>90%), which are comparable to those of polymethyl methacrylate. Moreover, the obtained glass maintains excellent mechanical toughness and optical transparency over a wide temperature range (from -150 to 150 °C). The material shows a superior impact resistance (18.34 kJ m-2) and flame retardancy (V0 rating), which are barely achieved by supramolecular materials.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
6
|
Yao G, Pan Y, Li F, Dong S. Macrocyclic Supramolecular Glass: New Type of Supramolecular Transparent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405337. [PMID: 39073234 DOI: 10.1002/smll.202405337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Transparent materials are widely used in industries, everyday life, and scientific activities. The development of new, lightweight, and durable artificial transparent materials is a challenge in synthetic chemistry. In this study, a supramolecular approach is conceived to construct transparent glass. Cyclodextrins are selected as the building blocks for the fabrication of supramolecular glass via noncovalent polymerization. The newly formed glass displays several attractive advantages, including good thermal processability, high mechanical strength and dielectric constant, excellent visible light transparency, and good adhesion performance. Importantly, the structural characteristics of long-range disorder and short-range order are observed in cyclodextrin glass. Here a new strategy is presented for the preparation and functionalization of low-molecular-weight transparent materials.
Collapse
Affiliation(s)
- Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
7
|
Bennett TD, Horike S, Mauro JC, Smedskjaer MM, Wondraczek L. Looking into the future of hybrid glasses. Nat Chem 2024; 16:1755-1766. [PMID: 39394264 DOI: 10.1038/s41557-024-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 10/13/2024]
Abstract
Glasses are typically formed by melt-quenching, that is, cooling of a liquid on a timescale fast enough to avoid ordering to a crystalline state, and formerly thought to comprise three categories: inorganic (non-metallic), organic and metallic. Their impact is huge, providing safe containers, allowing comfortable and bright living spaces and even underlying the foundations of modern telecommunication. This impact is tempered by the inability to chemically design glasses with precise, well-defined and tunable structures: the literal quest for order in disorder. However, metal-organic or hybrid glasses are now considered to belong to a fourth category of glass chemistry. They have recently been demonstrated upon melt-quenching of coordination polymer, metal-organic framework and hybrid perovskite framework solids. In this Review, we discuss hybrid glasses through the lens of both crystalline metal-organic framework and glass chemistry, physics and engineering, to provide a vision for the future of this class of materials.
Collapse
Affiliation(s)
- Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Jena, Germany
| |
Collapse
|
8
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
9
|
Tang W, Xing G, Xu X, Chen B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. SENSORS (BASEL, SWITZERLAND) 2024; 24:5258. [PMID: 39204954 PMCID: PMC11360173 DOI: 10.3390/s24165258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glassy hybrid metal halides have emerged as promising materials in recent years due to their high structural adjustability and low melting points, offering unique merits that overcome the limitations of their crystalline and polycrystalline counterparts as well as other conventional amorphous semiconductors. This review article comprehensively explores the structural characteristics, electronic properties, and chemical coordination of hybrid metal halides, emphasizing their role in the glass transition from the crystalline phase to the amorphous phase. We examine the intrinsic disorder within the amorphous phase that facilitates light transmission and discuss recent advances in device architecture and interface engineering by optimizing the charge transport of glassy hybrid metal halides for high-quality applications. With full theoretical understanding and rational structural design, potential applications in displays, information storage, X-ray imaging, and sensing are highlighted, underscoring the transformative impact of glassy hybrid metal halides in the fields of materials science and information science.
Collapse
Affiliation(s)
- Wei Tang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guansheng Xing
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
10
|
Ding J, Du T, Jensen LR, Sørensen SS, Wang D, Wang S, Zhang L, Yue Y, Smedskjaer MM. High-Performance Dendrite-Free Lithium Metal Anode Based on Metal-Organic Framework Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400652. [PMID: 38700906 DOI: 10.1002/adma.202400652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/03/2024] [Indexed: 05/12/2024]
Abstract
The performance of lithium metal batteries is severely hampered by uncontrollable dendrite growth and volume change within the anode. This work addresses these obstacles by introducing a novel strategy: applying an isotropic and internal grain-boundary-free layer, specifically, a metal-organic framework (MOF) glass layer with nano-porosity onto the electrochemically plated lithium metal anode. Both ab initio and classical molecular dynamics simulations indicate that the MOF glass layer makes the lithium transport smooth and uniform via its internal monolithic and interfacial advantages. This MOF glass layer with the fast and more uniform lithium diffusion in the monolithic interior and its interface enables dendrite-free lithium plating and stripping through surface confinement effect and interfacial effect. When employed in symmetric batteries, the achieved Li metal anode can operate over 300 h at 1 mA cm-2. The full batteries matched with LiFePO4 exhibit high capacity (148 mAh g-1), excellent rate performance (61 mAh g-1 at 5 C), and outstanding cycling stability (with capacity retention of ≈90% after 1000 cycles). The full batteries matched with high-voltage LiCoO2 also show superior performances. Therefore, the strategy of utilizing a MOF glass layer enables the development of high-performance lithium metal anodes.
Collapse
Affiliation(s)
- Junwei Ding
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Tao Du
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Lars R Jensen
- Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark
| | - Søren S Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Deyong Wang
- Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark
| | - Shiwen Wang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Ceramic Energy Materials, Zhengzhou, Henan, 450001, China
| | - Linsen Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Ceramic Energy Materials, Zhengzhou, Henan, 450001, China
| | - Yuanzheng Yue
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| |
Collapse
|
11
|
Chester AM, Castillo-Blas C, Sajzew R, Rodrigues BP, Lampronti GI, Sapnik AF, Robertson GP, Mazaj M, Irving DJM, Wondraczek L, Keen DA, Bennett TD. Loading and thermal behaviour of ZIF-8 metal-organic framework-inorganic glass composites. Dalton Trans 2024; 53:10655-10665. [PMID: 38860528 DOI: 10.1039/d4dt00894d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Here we describe the synthesis of a compositional series of metal-organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20Na2O-10NaCl-70P2O5, to expand the library of host matrices for metal-organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O-P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data. Additionally, CO2 and N2 sorption and variable-temperature PXRD experiments were performed to assess the composites' properties.
Collapse
Affiliation(s)
- Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Roman Sajzew
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Bruno P Rodrigues
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Giulio I Lampronti
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Cambridgeshire, CB2 3EQ, UK
| | - Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Matjaž Mazaj
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Daniel J M Irving
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
12
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Bulk transparent supramolecular glass enabled by host-guest molecular recognition. Nat Commun 2024; 15:3929. [PMID: 38724556 PMCID: PMC11082146 DOI: 10.1038/s41467-024-48089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Supramolecular glass is a non-covalently cross-linked amorphous material that exhibits excellent optical properties and unique intrinsic structural features. Compared with artificial inorganic/organic glass, which has been extensively developed, supramolecular glass is still in the infancy stage, and itself is rarely recognized and studied thus far. Herein, we present the development of the host-guest molecular recognition motifs between methyl-β-cyclodextrin and para-hydroxybenzoic acid as the building blocks of supramolecular glass. Non-covalent polymerization resulting from the host-guest complexation and hydrogen bonding formation enables high transparency and bulk state to supramolecular glass. Various advantages, including recyclability, compatibility, and thermal processability, are associated with dynamic assembly pattern. Short-range order (host-guest complexation) and long-range disorder (three dimensional polymeric network) structures are identified simultaneously, thus demonstrating the typical structural characteristics of glass. This work provides a supramolecular strategy for constructing transparent materials from organic components.
Collapse
Affiliation(s)
- Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shuanggen Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| |
Collapse
|
13
|
Li Z, Wang Y, Zhang J, Cheng S, Sun Y. A Short Review of Advances in MOF Glass Membranes for Gas Adsorption and Separation. MEMBRANES 2024; 14:99. [PMID: 38786934 PMCID: PMC11123022 DOI: 10.3390/membranes14050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The phenomenon of melting in metal-organic frameworks (MOFs) has recently garnered attention. Crystalline MOF materials can be transformed into an amorphous glassy state through melt-quenching treatment. The resulting MOF glass structure eliminates grain boundaries and retains short-range order while exhibiting long-range disorder. Based on these properties, it emerges as a promising candidate for high-performance separation membranes. MOF glass membranes exhibit permanent and accessible porosity, allowing for selective adsorption of different gas species. This review summarizes the melting mechanism of MOFs and explores the impact of ligands and metal ions on glassy MOFs. Additionally, it presents an analysis of the diverse classes of MOF glass composites, outlining their structures and properties, which are conducive to gas adsorption and separation. The absence of inter-crystalline defects in the structures, coupled with their distinctive mechanical properties, renders them highly promising for industrial gas separation applications. Furthermore, this review provides a summary of recent research on MOF glass composite membranes for gas adsorption and separation. It also addresses the challenges associated with membrane production and suggests future research directions.
Collapse
Affiliation(s)
- Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Jianxin Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| | - Shiqi Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China; (Z.L.); (Y.W.); (Y.S.)
| |
Collapse
|
14
|
Ding J, Du T, Thomsen EH, Andresen D, Fischer MR, Møller AK, Petersen AR, Pedersen AK, Jensen LR, Wang S, Smedskjaer MM. Metal-Organic Framework Glass as a Functional Filler Enables Enhanced Performance of Solid-State Polymer Electrolytes for Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306698. [PMID: 38145970 PMCID: PMC10933666 DOI: 10.1002/advs.202306698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Polymers are promising candidates as solid-state electrolytes due to their performance and processability, but fillers play a critical role in adjusting the polymer network structure and electrochemical, thermal, and mechanical properties. Most fillers studied so far are anisotropic, limiting the possibility of homogeneous ion transport. Here, applying metal-organic framework (MOF) glass as an isotropic functional filler, solid-state polyethylene oxide (PEO) electrolytes are prepared. Calorimetric and diffusion kinetics tests show that the MOF glass addition reduces the glass transition temperature of the polymer phase, improving the mobility of the polymer chains, and thereby facilitating lithium (Li) ion transport. By also incorporating the lithium salt and ionic liquid (IL), Li-Li symmetric cell tests of the PEO-lithium salt-MOF glass-IL electrolyte reveal low overpotential, indicating low interfacial impedance. Simulations show that the isotropic structure of the MOF glass facilitates the wettability of the IL by enhancing interfacial interactions, leading to a less confined IL structure that promotes Li-ion mobility. Finally, the obtained electrolyte is used to construct Li-lithium iron phosphate full batteries that feature high cycle stability and rate capability. This work therefore demonstrates how an isotropic functional filler can be used to enhance the electrochemical performance of solid-state polymer electrolytes.
Collapse
Affiliation(s)
- Junwei Ding
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | - Tao Du
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | - Emil H. Thomsen
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | - David Andresen
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | - Mathias R. Fischer
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | - Anders K. Møller
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220Denmark
| | | | | | - Lars R. Jensen
- Department of Materials and ProductionAalborg UniversityAalborg9220Denmark
| | - Shiwen Wang
- College of New EnergyZhengzhou University of Light IndustryZhengzhou450002China
| | | |
Collapse
|
15
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
16
|
Chester AM, Castillo-Blas C, Sajzew R, Rodrigues BP, Mas-Balleste R, Moya A, Snelson JE, Collins SM, Sapnik AF, Robertson GP, Irving DJM, Wondraczek L, Keen DA, Bennett TD. Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses. Chem Sci 2023; 14:11737-11748. [PMID: 37920351 PMCID: PMC10619634 DOI: 10.1039/d3sc02305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.
Collapse
Affiliation(s)
- Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Roman Sajzew
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Bruno P Rodrigues
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Ruben Mas-Balleste
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alicia Moya
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Jessica E Snelson
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Sean M Collins
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Daniel J M Irving
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Lothar Wondraczek
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory Harwell Campus, Didcot, Oxfordshire OX11 0QX UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| |
Collapse
|
17
|
Castillo-Blas C, Chester AM, Cosquer RP, Sapnik AF, Corti L, Sajzew R, Poletto-Rodrigues B, Robertson GP, Irving DJ, McHugh LN, Wondraczek L, Blanc F, Keen DA, Bennett TD. Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass. J Am Chem Soc 2023; 145:22913-22924. [PMID: 37819708 PMCID: PMC10603780 DOI: 10.1021/jacs.3c04248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/13/2023]
Abstract
The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ashleigh M. Chester
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ronan P. Cosquer
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Lucia Corti
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Roman Sajzew
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Bruno Poletto-Rodrigues
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Georgina P. Robertson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Daniel J.M. Irving
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Lauren N. McHugh
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Lothar Wondraczek
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Stephenson
Institute for Renewable Energy, University of Liverpool, Crown Street, Liverpool L69 7ZF, U.K.
| | - David A. Keen
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
18
|
Tournier RF, Ojovan MI. NiTi 2, a New Liquid Glass. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6681. [PMID: 37895662 PMCID: PMC10608734 DOI: 10.3390/ma16206681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Many endothermic liquid-liquid transitions, occurring at a temperature Tn+ above the melting temperature Tm, are related to previous exothermic transitions, occurring at a temperature Tx after glass formation below Tg, with or without attached crystallization and predicted by the nonclassical homogenous nucleation equation. A new thermodynamic phase composed of broken bonds (configurons), driven by percolation thresholds, varying from ~0.145 to Δε, is formed at Tx, with a constant enthalpy up to Tn+. The liquid fraction Δε is a liquid glass up to Tn+. The solid phase contains glass and crystals. Molecular dynamics simulations are used to induce, in NiTi2, a reversible first-order transition by varying the temperature between 300 and 1000 K under a pressure of 1000 GPa. Cooling to 300 K, without applied pressure, shows the liquid glass presence with Δε = 0.22335 as memory effect and Tn+ = 2120 K for Tm = 1257 K.
Collapse
Affiliation(s)
- Robert F. Tournier
- UPR 3228 Centre National de la Recherche Scientifique, Laboratoire National des Champs Magnétiques Intenses, European Magnetic Field Laboratory, Institut National des Sciences Appliquées de Toulouse, Université Grenoble Alpes, F-31400 Toulouse, France;
| | - Michael I. Ojovan
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Lin R, Chai M, Zhou Y, Chen V, Bennett TD, Hou J. Metal-organic framework glass composites. Chem Soc Rev 2023. [PMID: 37335141 DOI: 10.1039/d2cs00315e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Wang M, Zhao H, Du B, Lu X, Ding S, Hu X. Functions and applications of emerging metal-organic-framework liquids and glasses. Chem Commun (Camb) 2023. [PMID: 37191098 DOI: 10.1039/d3cc00834g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Traditional metal-organic-frameworks (MOFs) have been extensively studied and applied in various fields across chemistry, biology and engineering in the past decades. Recently, a family of emerging MOF liquids and glasses have gained ever-growing research interests owing to their fascinating phase transitions and unique functions. To date, a growing number of MOF crystals have been found to be capable of transforming into liquid and glassy states under external stimuli, which overcomes the limitations of MOF crystals by introducing functional disorder in a controlled manner and offering some desirable properties. This review is dedicated to compiling recent advances in the fundamental understanding of the phase and structure evolution during crystal melting and glass formation in order to give insights into the underlying conversion mechanism. Benefiting from the disordered metal-ligand arrangement and free grain boundaries, various functional properties of liquid and glassy MOFs including porosity, ionic conductivity, and optical/mechanical properties are summarized and evaluated in detail, accompanied by the structure-property correlation. At the same time, their potential applications are further assessed from a developmental perspective according to their unique functions. Finally, we summarize the current progress in the development of liquid/glassy MOFs and point out the serious challenges as well as the potential solutions. This work provides perspectives on the functional applications of liquid/glassy MOFs and highlights the future research directions for the advancement of MOF liquids and glasses.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Hongyang Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Bowei Du
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xuan Lu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xiaofei Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Yang Z, Belmabkhout Y, McHugh LN, Ao D, Sun Y, Li S, Qiao Z, Bennett TD, Guiver MD, Zhong C. ZIF-62 glass foam self-supported membranes to address CH 4/N 2 separations. NATURE MATERIALS 2023:10.1038/s41563-023-01545-w. [PMID: 37169976 DOI: 10.1038/s41563-023-01545-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).
Collapse
Affiliation(s)
- Zibo Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Youssef Belmabkhout
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) and Technology Development Cell (TechCell), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| |
Collapse
|
22
|
Yan S, Bennett TD, Feng W, Zhu Z, Yang D, Zhong Z, Qin QH. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass. NANOSCALE 2023; 15:8235-8244. [PMID: 37071115 DOI: 10.1039/d3nr01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic framework (MOF) glasses, a new type of melt-quenched glass, show great promise to deal with the alleviation of greenhouse effects, energy storage and conversion. However, the mechanical behavior of MOF glasses, which is of critical importance given the need for long-term stability, is not well understood. Using both micro- and nanoscale loadings, we find that pillars of a zeolitic imidazolate framework (ZIF) glass have a compressive strength falling within the theoretical strength limit of ≥E/10, a value which is thought to be unreachable in amorphous materials. Pillars with a diameter larger than 500 nm exhibited brittle failure with deformation mechanisms including shear bands and nearly vertical cracks, while pillars with a diameter below 500 nm could carry large plastic strains of ≥20% in a ductile manner with enhanced strength. We report this room-temperature brittle-to-ductile transition in ZIF-62 glass for the first time and demonstrate that theoretical strength and large ductility can be simultaneously achieved in ZIF-62 glass at the nanoscale. Large-scale molecular dynamics simulations have identified that microstructural densification and atomistic rearrangement, i.e., breaking and reconnection of inter-atomistic bonds, were responsible for the exceptional ductility. The insights gained from this study provide a way to manufacture ultra-strong and ductile MOF glasses and may facilitate their processing toward real-world applications.
Collapse
Affiliation(s)
- Shaohua Yan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- School of Science, Harbin Institute of Technology, Shenzhen, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Weipeng Feng
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Zhongyin Zhu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dingcheng Yang
- Research School of Electrical, Energy and Materials Engineering, Science, The Australian National University, ACT, Australia
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen, China.
| | - Qing H Qin
- Department of Engineering, Shenzhen MSU-BIT University, Shenzhen, China.
| |
Collapse
|
23
|
Yin Z, Zhao Y, Zeng M. Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Laulainen JEM, Johnstone DN, Bogachev I, Longley L, Calahoo C, Wondraczek L, Keen DA, Bennett TD, Collins SM, Midgley PA. Mapping short-range order at the nanoscale in metal-organic framework and inorganic glass composites. NANOSCALE 2022; 14:16524-16535. [PMID: 36285652 DOI: 10.1039/d2nr03791b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures. This beam sensitivity requires 'low-dose' data acquisition to probe inorganic glasses, amorphous and glassy MOFs, and MOF composites. Here, we use STEM-ePDF applied at low electron fluences (10 e- Å-2) combined with unsupervised machine learning methods to map changes in the short-range order with ca. 5 nm spatial resolution in a composite material consisting of a zeolitic imidazolate framework glass agZIF-62 and a 0.67([Na2O]0.9[P2O5])-0.33([AlO3/2][AlF3]1.5) inorganic glass. STEM-ePDF enables separation of MOF and inorganic glass domains from atomic structure differences alone, showing abrupt changes in atomic structure at interfaces with interatomic correlation distances seen in X-ray PDF preserved at the nanoscale. These findings underline that the average bulk amorphous structure is retained at the nanoscale in the growing family of MOF glasses and composites, a previously untested assumption in PDF analyses crucial for future non-crystalline nanostructure engineering.
Collapse
Affiliation(s)
- Joonatan E M Laulainen
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Ivan Bogachev
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Louis Longley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Courtney Calahoo
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| |
Collapse
|
25
|
Ma N, Horike N, Lombardo L, Kosasang S, Kageyama K, Thanaphatkosol C, Kongpatpanich K, Otake KI, Horike S. Eutectic CsHSO 4-Coordination Polymer Glasses with Superprotonic Conductivity. J Am Chem Soc 2022; 144:18619-18628. [PMID: 36190375 DOI: 10.1021/jacs.2c08624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superprotonic phase transition in CsHSO4 allows fast protonic conduction, but only at temperatures above the transition temperature of 141 °C (Tc). Here, we preserve the superprotonic conductivity of CsHSO4 by forming a binary CsHSO4-coordination polymer glass system, showing eutectic melting. Their anhydrous proton conductivities below Tc are at least 3 orders of magnitude higher than CsHSO4 without compromising conductivity at higher temperatures or the need for humidification, reaching 6.3 mS cm-1 at 180 °C. The glass also introduces processability to the conductor, as its viscosity below 103 Pa·s can be achieved at 65 °C. Solid-state NMR and X-ray pair distribution functions reveal the oxyanion exchanges and the origin of the preserved conductivity. Finally, we demonstrate the preparation of a micrometer-scale thin-film proton conductor showing low resistivity with high transparency (transmittance >85% between 380-800 nm).
Collapse
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Nao Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Loris Lombardo
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soracha Kosasang
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Chonwarin Thanaphatkosol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
26
|
Yu Z, Tang L, Ma N, Horike S, Chen W. Recent progress of amorphous and glassy coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Chester AM, Castillo‐Blas C, Wondraczek L, Keen DA, Bennett TD. Materials Formed by Combining Inorganic Glasses and Metal‐Organic Frameworks. Chemistry 2022; 28:e202200345. [PMID: 35416352 PMCID: PMC9400909 DOI: 10.1002/chem.202200345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Here, we propose the combination of glassy or crystalline metal‐organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF‐glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.
Collapse
Affiliation(s)
- Ashleigh M. Chester
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| | - Celia Castillo‐Blas
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| | - Lothar Wondraczek
- Otto Schott Institute Materials Research University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - David A. Keen
- ISIS Facility Rutherford Appleton Laboratory Harwell Campus OX11, 0DE, Didcot Oxfordshire UK
| | - Thomas D. Bennett
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| |
Collapse
|
28
|
Wondraczek L, Bouchbinder E, Ehrlicher A, Mauro JC, Sajzew R, Smedskjaer MM. Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109029. [PMID: 34870862 DOI: 10.1002/adma.202109029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Glasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance. A first step in this direction involves glass-like materials that retain optical transparency and the haptics of classical glass products, while overcoming the limitations of brittleness. Among these, novel types of oxide glasses, hybrid glasses, phase-separated glasses, and bioinspired glass-polymer composites hold significant promise. Such materials are designed from the bottom-up, building on structure-property relations, modeling of stresses and strains at relevant length scales, and machine learning predictions. Their fabrication requires a more scientifically driven approach to materials design and processing, building on the physics of structural disorder and its consequences for structural rearrangements, defect initiation, and dynamic fracture in response to mechanical load. In this article, a perspective is provided on this highly interdisciplinary field of research in terms of its most recent challenges and opportunities.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, H3A 2A7, Canada
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Roman Sajzew
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| |
Collapse
|
29
|
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
30
|
Lin R, Li X, Krajnc A, Li Z, Li M, Wang W, Zhuang L, Smart S, Zhu Z, Appadoo D, Harmer JR, Wang Z, Buzanich AG, Beyer S, Wang L, Mali G, Bennett TD, Chen V, Hou J. Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Xuemei Li
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology National Institute of Chemistry 1001 Ljubljana Slovenia
| | - Zhiheng Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266555 China
| | - Mengran Li
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Wupeng Wang
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Linzhou Zhuang
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Simon Smart
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
- Dow Centre for Sustainable Engineering Innovation The University of Queensland St Lucia QLD 4072 Australia
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | | | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland St Lucia QLD 4 072 Australia
| | - Zhiliang Wang
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | | | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine and Department of Biomedical Engineering Faculty of Engineering The Chinese University of Hong Kong, Hong Kong Special Administrative Region China
| | - Lianzhou Wang
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology National Institute of Chemistry 1001 Ljubljana Slovenia
| | - Thomas D. Bennett
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Vicki Chen
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Jingwei Hou
- School of Chemical Engineering The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
31
|
Lin R, Li X, Krajnc A, Li Z, Li M, Wang W, Zhuang L, Smart S, Zhu Z, Appadoo D, Harmer JR, Wang Z, Buzanich AG, Beyer S, Wang L, Mali G, Bennett TD, Chen V, Hou J. Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal-Organic Framework Glasses for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 61:e202112880. [PMID: 34694675 DOI: 10.1002/anie.202112880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/08/2022]
Abstract
The melting behaviour of metal-organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through melt-quenching of the cobalt-based zeolitic imidazolate framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co-Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device assembly.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Zhiheng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266555, China
| | - Mengran Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wupeng Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Linzhou Zhuang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.,School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.,Dow Centre for Sustainable Engineering Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiliang Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine and Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001, Ljubljana, Slovenia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
32
|
Ionic liquid facilitated melting of the metal-organic framework ZIF-8. Nat Commun 2021; 12:5703. [PMID: 34588462 PMCID: PMC8481281 DOI: 10.1038/s41467-021-25970-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the crystalline MOFs are meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting. For example, the inability of the prototypical zeolitic imidazolate framework (ZIF) ZIF-8 to melt, is ascribed to the instability of the organic linker upon dissociation from the metal center. Here, we demonstrate that the incorporation of an ionic liquid (IL) into the porous interior of ZIF-8 provides a means to reduce its melting temperature to below its thermal decomposition temperature. Our structural studies show that the prevention of decomposition, and successful melting, is due to the IL interactions stabilizing the rapidly dissociating ZIF-8 linkers upon heating. This understanding may act as a general guide for extending the range of meltable MOF materials and, hence, the chemical and structural variety of MOF-derived glasses.
Collapse
|
33
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
34
|
Longley L, Calahoo C, Southern TJF, Evans RC, Wondraczek L, Bennett TD. The reactivity of an inorganic glass melt with ZIF-8. Dalton Trans 2021; 50:3529-3535. [PMID: 33599672 DOI: 10.1039/d1dt00152c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal behaviour of ZIF-8, Zn(meIm)2 in the presence of a sodium fluoroaluminophosphate glass melt was probed through differential scanning calorimetry and thermogravimetric analysis. The structural integrity of ZIF-8 was then determined by a combination of powder X-ray diffraction, Fourier transform infra-red and 1H nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Louis Longley
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Courtney Calahoo
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Thomas J F Southern
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| |
Collapse
|
35
|
Liu M, McGillicuddy RD, Vuong H, Tao S, Slavney AH, Gonzalez MI, Billinge SJL, Mason JA. Network-Forming Liquids from Metal–Bis(acetamide) Frameworks with Low Melting Temperatures. J Am Chem Soc 2021; 143:2801-2811. [DOI: 10.1021/jacs.0c11718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengtan Liu
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan D. McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hung Vuong
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Songsheng Tao
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Adam H. Slavney
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Miguel I. Gonzalez
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Simon J. L. Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jarad A. Mason
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|