1
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024:10.1007/s10815-024-03259-7. [PMID: 39325344 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
3
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
4
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. Nat Struct Mol Biol 2024; 31:1296-1308. [PMID: 38671229 DOI: 10.1038/s41594-024-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Gui L, Zhong Q, Yang J, Sun J, Lu J, Picton HM, Li C. Acquisition of 2C-like totipotency through defined maternal-effect factors. Stem Cells 2024; 42:581-592. [PMID: 38655883 DOI: 10.1093/stmcls/sxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Fully grown oocytes have the natural ability to transform 2 terminally differentiated gametes into a totipotent zygote representing the acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6, and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited a unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodeled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance the understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for the development of oocyte biology-based reprogramming technology.
Collapse
Affiliation(s)
- Liming Gui
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Qin Zhong
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jue Yang
- Centre for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province 550004, People's Republic of China
| | - Jiajia Sun
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
| | - Jianping Lu
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Changzhong Li
- Institute of Obstetrics and Gynaecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518036, People's Republic of China
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province 518036, People's Republic of China
| |
Collapse
|
7
|
Yuan L, Liang X, He L. Unveiling dissociation mechanisms and binding patterns in the UHRF1-DPPA3 complex via multi-replica molecular dynamics simulations. J Mol Model 2024; 30:173. [PMID: 38767734 DOI: 10.1007/s00894-024-05946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
CONTEXT Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. METHODS To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.
Collapse
Affiliation(s)
- Longxiao Yuan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Xiaodan Liang
- School of Computer Sciences and Technology, Tiangong University, Tianjin, 300387, China.
| | - Lei He
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
8
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Gawriyski L, Tan Z, Liu X, Chowdhury I, Malaymar Pinar D, Zhang Q, Weltner J, Jouhilahti EM, Wei GH, Kere J, Varjosalo M. Interaction network of human early embryonic transcription factors. EMBO Rep 2024; 25:1589-1622. [PMID: 38297188 PMCID: PMC10933267 DOI: 10.1038/s44319-024-00074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaonan Liu
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
| | | | - Dicle Malaymar Pinar
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Qin Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Markku Varjosalo
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
11
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. eLife 2023; 12:RP86721. [PMID: 37769127 PMCID: PMC10538959 DOI: 10.7554/elife.86721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Isabel E Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
12
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526367. [PMID: 36778482 PMCID: PMC9915587 DOI: 10.1101/2023.01.30.526367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065
| |
Collapse
|
13
|
Miyazaki S, Yamano H, Motooka D, Tashiro F, Matsuura T, Miyazaki T, Miyazaki JI. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun Biol 2023; 6:771. [PMID: 37488353 PMCID: PMC10366109 DOI: 10.1038/s42003-023-05148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The Zfp296 gene encodes a zinc finger-type protein. Its expression is high in mouse embryonic stem cells (ESCs) but rapidly decreases following differentiation. Zfp296-knockout (KO) ESCs grew as flat colonies, which were reverted to rounded colonies by exogenous expression of Zfp296. KO ESCs could not form teratomas when transplanted into mice but could efficiently contribute to germline-competent chimeric mice following blastocyst injection. Transcriptome analysis revealed that Zfp296 deficiency up- and down-regulates a distinct group of genes, among which Dppa3, Otx2, and Pou3f1 were markedly downregulated. Chromatin immunoprecipitation sequencing demonstrated that ZFP296 binding is predominantly seen in the vicinity of the transcription start sites (TSSs) of a number of genes, and ZFP296 was suggested to negatively regulate transcription. Consistently, chromatin accessibility assay clearly showed that ZFP296 binding reduces the accessibility of the TSS regions of target genes. Zfp296-KO ESCs showed increased histone H3K9 di- and trimethylation. Co-immunoprecipitation analyses revealed interaction of ZFP296 with G9a and GLP. These results show that ZFP296 plays essential roles in maintaining the global epigenetic state of ESCs through multiple mechanisms including activation of Dppa3, attenuation of chromatin accessibility, and repression of H3K9 methylation, but that Zfp296-KO ESCs retain a unique state of pluripotency while lacking the teratoma-forming ability.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Yamano
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumi Tashiro
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takumi Matsuura
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Toray Industries, Inc., Tokyo, Japan
| | - Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
14
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539708. [PMID: 37205524 PMCID: PMC10187321 DOI: 10.1101/2023.05.06.539708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Transmission of 5-methylcytosine (5mC) from one cell generation to the next plays a key role in regulating cellular identity in mammalian development and diseases. While recent work has shown that the activity of DNMT1, the protein responsible for the stable inheritance of 5mC from mother to daughter cells, is imprecise; it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method that combines enzymatic detection of modified cytosines with nucleobase conversion techniques to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides. We find that the fidelity of DNMT1-mediated maintenance methylation is directly related to the local density of DNA methylation, and for genomic regions that are lowly methylated, histone modifications can dramatically alter the maintenance methylation activity. Further, to gain deeper insights into the methylation and demethylation turnover dynamics, we extended Dyad-seq to quantify all combinations of 5mC and 5-hydroxymethylcytosine (5hmC) at individual CpG dyads to show that TET proteins preferentially hydroxymethylate only one of the two 5mC sites in a symmetrically methylated CpG dyad rather than sequentially convert both 5mC to 5hmC. To understand how cell state transitions impact DNMT1-mediated maintenance methylation, we scaled the method down and combined it with the measurement of mRNA to simultaneously quantify genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from the same cell (scDyad&T-seq). Applying scDyad&T-seq to mouse embryonic stem cells transitioning from serum to 2i conditions, we observe dramatic and heterogenous demethylation and the emergence of transcriptionally distinct subpopulations that are closely linked to the cell-to-cell variability in loss of DNMT1-mediated maintenance methylation activity, with regions of the genome that escape 5mC reprogramming retaining high levels of maintenance methylation fidelity. Overall, our results demonstrate that while distinct cell states can substantially impact the genome-wide activity of the DNA methylation maintenance machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elizabeth E. Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
PGC7 Regulates Genome-Wide DNA Methylation by Regulating ERK-Mediated Subcellular Localization of DNMT1. Int J Mol Sci 2023; 24:ijms24043093. [PMID: 36834503 PMCID: PMC9958980 DOI: 10.3390/ijms24043093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a vital role in a variety of biological processes, including the regulation of gene expression, cell differentiation, early embryonic development, genomic imprinting, and X chromosome inactivation. PGC7 is a maternal factor that maintains DNA methylation during early embryonic development. One mechanism of action has been identified by analyzing the interactions between PGC7 and UHRF1, H3K9 me2, or TET2/TET3, which reveals how PGC7 regulates DNA methylation in oocytes or fertilized embryos. However, the mechanism by which PGC7 regulates the post-translational modification of methylation-related enzymes remains to be elucidated. This study focused on F9 cells (embryonic cancer cells), which display high levels of PGC7 expression. We found that both knockdown of Pgc7 and inhibition of ERK activity resulted in increased genome-wide DNA methylation levels. Mechanistic experiments confirmed that inhibition of ERK activity led to the accumulation of DNMT1 in the nucleus, ERK phosphorylated DNMT1 at ser717, and DNMT1 Ser717-Ala mutation promoted the nuclear localization of DNMT1. Moreover, knockdown of Pgc7 also caused downregulation of ERK phosphorylation and promoted the accumulation of DNMT1 in the nucleus. In conclusion, we reveal a new mechanism by which PGC7 regulates genome-wide DNA methylation via phosphorylation of DNMT1 at ser717 by ERK. These findings may provide new insights into treatments for DNA methylation-related diseases.
Collapse
|
16
|
Miyashita R, Nishiyama A, Qin W, Chiba Y, Kori S, Kato N, Konishi C, Kumamoto S, Kozuka-Hata H, Oyama M, Kawasoe Y, Tsurimoto T, Takahashi TS, Leonhardt H, Arita K, Nakanishi M. The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5. eLife 2023; 12:79013. [PMID: 36734974 PMCID: PMC9943068 DOI: 10.7554/elife.79013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.
Collapse
Affiliation(s)
- Ryota Miyashita
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Satomi Kori
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Norie Kato
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yoshitaka Kawasoe
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Toshiki Tsurimoto
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Tatsuro S Takahashi
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | | | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
17
|
Abstract
DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.
Collapse
Affiliation(s)
- Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Hata K, Kobayashi N, Sugimura K, Qin W, Haxholli D, Chiba Y, Yoshimi S, Hayashi G, Onoda H, Ikegami T, Mulholland C, Nishiyama A, Nakanishi M, Leonhardt H, Konuma T, Arita K. Structural basis for the unique multifaceted interaction of DPPA3 with the UHRF1 PHD finger. Nucleic Acids Res 2022; 50:12527-12542. [PMID: 36420895 PMCID: PMC9757060 DOI: 10.1093/nar/gkac1082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.
Collapse
Affiliation(s)
| | | | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Deis Haxholli
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sae Yoshimi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroki Onoda
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takahisa Ikegami
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tsuyoshi Konuma
- Correspondence may also be addressed to Tsuyoshi Konuma. Tel: +81 45 508 7218; Fax: +81 45 508 7362;
| | - Kyohei Arita
- To whom correspondence should be addressed. Tel: +81 45 508 7225; Fax: +81 45 508 7365;
| |
Collapse
|
19
|
Ren Y. Regulatory mechanism and biological function of UHRF1–DNMT1-mediated DNA methylation. Funct Integr Genomics 2022; 22:1113-1126. [DOI: 10.1007/s10142-022-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
20
|
Zou Z, Zhang C, Wang Q, Hou Z, Xiong Z, Kong F, Wang Q, Song J, Liu B, Liu B, Wang L, Lai F, Fan Q, Tao W, Zhao S, Ma X, Li M, Wu K, Zhao H, Chen ZJ, Xie W. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science 2022; 378:abo7923. [PMID: 36074823 DOI: 10.1126/science.abo7923] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translational regulation plays a critical role during the oocyte-to-embryo transition (OET) and zygotic genome activation (ZGA). Here, we integrated ultra-low-input Ribo-seq with mRNA-seq to co-profile the translatome and transcriptome in human oocytes and early embryos. Comparison with mouse counterparts identified widespread differentially translated genes functioning in epigenetic reprogramming, transposon defense, and small RNA biogenesis, in part driven by species-specific regulatory elements in 3' untranslated regions. Moreover, PRD-like homeobox transcription factors, including TPRXL, TPRX1, and TPRX2, are highly translated around ZGA. TPRX1/2/L knockdown leads to defective ZGA and preimplantation development. Ectopically expressed TPRXs bind and activate key ZGA genes in human embryonic stem cells. These data reveal the conservation and divergence of translation landscapes during OET and identify critical regulators of human ZGA.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Zhuqing Xiong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinzhu Song
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Boyang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenrong Tao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Xiaonan Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Stolz P, Mantero AS, Tvardovskiy A, Ugur E, Wange LE, Mulholland CB, Cheng Y, Wierer M, Enard W, Schneider R, Bartke T, Leonhardt H, Elsässer SJ, Bultmann S. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Nucleic Acids Res 2022; 50:8491-8511. [PMID: 35904814 PMCID: PMC9410877 DOI: 10.1093/nar/gkac642] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
Collapse
Affiliation(s)
- Paul Stolz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Angelo Salazar Mantero
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.,Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Lucas E Wange
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Yuying Cheng
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Wolfgang Enard
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Sebastian Bultmann
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
22
|
Zhang C, Wen H, Liu S, Fu E, Yu L, Chen S, Han Q, Li Z, Liu N. Maternal Factor Dppa3 Activates 2C-Like Genes and Depresses DNA Methylation in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:882671. [PMID: 35721479 PMCID: PMC9203971 DOI: 10.3389/fcell.2022.882671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) contain a rare cell population of “two-cell embryonic like” cells (2CLCs) that display similar features to those found in the two-cell (2C) embryo and thus represent an in vitro model for studying the progress of zygotic genome activation (ZGA). However, the positive regulator determinants of the 2CLCs’ conversion and ZGA have not been completely elucidated. Here, we identify a new regulator promoting 2CLCs and ZGA transcripts. Through a combination of overexpression (OE), knockdown (KD), together with transcriptional analysis and methylome analysis, we find that Dppa3 regulates the 2CLC-associated transcripts, DNA methylation, and 2CLC population in ESCs. The differentially methylated regions (DMRs) analysis identified 6,920 (98.2%) hypomethylated, whilst only 129 (1.8%) hypermethylated, regions in Dppa3 OE ESCs, suggesting that Dppa3 facilitates 2CLCs reprogramming. The conversion to 2CLCs by overexpression of Dppa3 is also associated with DNA damage response. Dppa3 knockdown manifest impairs transition into the 2C-like state. Global DNA methylome and chromatin state analysis of Dppa3 OE ESCs reveal that Dppa3 facilitates the chromatin configuration to 2CLCs reversion. Our finding for the first time elucidates a novel role of Dppa3 in mediating the 2CLC conversion, and suggests that Dppa3 is a new regulator for ZGA progress.
Collapse
Affiliation(s)
- Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Enze Fu
- School of Medicine, Nankai University, Tianjin, China
| | - Lu Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| |
Collapse
|
23
|
Mazid MA, Ward C, Luo Z, Liu C, Li Y, Lai Y, Wu L, Li J, Jia W, Jiang Y, Liu H, Fu L, Yang Y, Ibañez DP, Lai J, Wei X, An J, Guo P, Yuan Y, Deng Q, Wang Y, Liu Y, Gao F, Wang J, Zaman S, Qin B, Wu G, Maxwell PH, Xu X, Liu L, Li W, Esteban MA. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022; 605:315-324. [PMID: 35314832 DOI: 10.1038/s41586-022-04625-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.
Collapse
Affiliation(s)
- Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Liang Wu
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Jiang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lixin Fu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - David P Ibañez
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pengcheng Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Yuan
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Shahriar Zaman
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Baoming Qin
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- BGI-Shenzhen, Shenzhen, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, Vieth B, Vick B, Jeremias I, Ziegenhain C, Hellmann I, Enard W. Prime-seq, efficient and powerful bulk RNA sequencing. Genome Biol 2022; 23:88. [PMID: 35361256 PMCID: PMC8969310 DOI: 10.1186/s13059-022-02660-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Cost-efficient library generation by early barcoding has been central in propelling single-cell RNA sequencing. Here, we optimize and validate prime-seq, an early barcoding bulk RNA-seq method. We show that it performs equivalently to TruSeq, a standard bulk RNA-seq method, but is fourfold more cost-efficient due to almost 50-fold cheaper library costs. We also validate a direct RNA isolation step, show that intronic reads are derived from RNA, and compare cost-efficiencies of available protocols. We conclude that prime-seq is currently one of the best options to set up an early barcoding bulk RNA-seq protocol from which many labs would profit.
Collapse
Affiliation(s)
- Aleksandar Janjic
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Faculty of Biology, Ludwig-Maximilians University, Martinsried, Germany
| | - Lucas E Wange
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Johanna Geuder
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Phong Nguyen
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Daniel Richter
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Beate Vieth
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ines Hellmann
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Großhaderner Str. 2, 82152, Martinsried, Germany.
| |
Collapse
|
25
|
Lejart A, Zentout S, Chapuis C, D'Augustin O, Smith R, Salbert G, Huet S. The N-terminal domain of TET1 promotes the formation of dense chromatin regions refractory to transcription. Chromosoma 2022; 131:47-58. [PMID: 35235010 DOI: 10.1007/s00412-022-00769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
TET (ten-eleven translocation) enzymes initiate active cytosine demethylation via the oxidation of 5-methylcytosine. TET1 is composed of a C-terminal domain, which bears the catalytic activity of the enzyme, and a N-terminal region that is less well characterized except for the CXXC domain responsible for the targeting to CpG islands. While cytosine demethylation induced by TET1 promotes transcription, this protein also interacts with chromatin-regulating factors that rather silence this process, the coordination between these two opposite functions of TET1 being unclear. In the present work, we uncover a new function of the N-terminal part of the TET1 protein in the regulation of the chromatin architecture. This domain of the protein promotes the establishment of a compact chromatin architecture displaying reduced exchange rate of core histones and partial dissociation of the histone linker. This chromatin reorganization process, which does not rely on the CXXC domain, is associated with a global shutdown of transcription and an increase in heterochromatin-associated histone epigenetic marks. Based on these findings, we propose that the dense chromatin organization generated by the N-terminal domain of TET1 could contribute to restraining the transcription enhancement induced by the DNA demethylation activity of this enzyme.
Collapse
Affiliation(s)
- Audrey Lejart
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Ostiane D'Augustin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 92265, Fontenay-aux-Roses, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France.
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, 35000, Rennes, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
26
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
27
|
Wu X, Zhang H, Zhang B, Zhang Y, Wang Q, Shen W, Wu X, Li L, Xia W, Nakamura R, Liu B, Liu F, Takeda H, Meng A, Xie W. Methylome inheritance and enhancer dememorization reset an epigenetic gate safeguarding embryonic programs. SCIENCE ADVANCES 2021; 7:eabl3858. [PMID: 34936444 PMCID: PMC8694617 DOI: 10.1126/sciadv.abl3858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Marked epigenetic reprogramming is essential to convert terminally differentiated gametes to totipotent embryos. It remains puzzling why postfertilization global DNA reprogramming occurs in mammals but not in nonmammalian vertebrates. In zebrafish, global methylome inheritance is however accompanied by extensive enhancer “dememorization” as they become fully methylated. By depleting maternal dnmt1 using oocyte microinjection, we eliminated DNA methylation in early embryos, which died around gastrulation with severe differentiation defects. Notably, methylation deficiency leads to derepression of adult tissue–specific genes and CG-rich enhancers, which acquire ectopic transcription factor binding and, unexpectedly, histone H3 lysine 4 trimethylation (H3K4me3). By contrast, embryonic enhancers are generally CG-poor and evade DNA methylation repression. Hence, global DNA hypermethylation inheritance coupled with enhancer dememorization installs an epigenetic gate that safeguards embryonic programs and ensures temporally ordered gene expression. We propose that “enhancer dememorization” underlies and unifies distinct epigenetic reprogramming modes in early development between mammals and nonmammals.
Collapse
Affiliation(s)
- Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiuyan Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weikun Xia
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Bofeng Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Science, Beijing, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2021; 13:721-741. [PMID: 34731408 PMCID: PMC9233729 DOI: 10.1007/s13238-021-00884-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Collapse
|
29
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
30
|
Qin W, Ugur E, Mulholland CB, Bultmann S, Solovei I, Modic M, Smets M, Wierer M, Forné I, Imhof A, Cardoso MC, Leonhardt H. Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naïve pluripotency. Nucleic Acids Res 2021; 49:7406-7423. [PMID: 34214177 PMCID: PMC8287961 DOI: 10.1093/nar/gkab548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin binding protein HP1β plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1β−/− embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1β is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1β−/− and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1−/− cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.
Collapse
Affiliation(s)
- Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Enes Ugur
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Sebastian Bultmann
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Irina Solovei
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London NW1 1AT, United Kingdom
| | - Martha Smets
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstraße 1, D-81377 Munich, Germany
| |
Collapse
|
31
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
32
|
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37:1012-1027. [PMID: 34120771 DOI: 10.1016/j.tig.2021.05.002] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
33
|
Brodie ED, Gregory B, Lisch D, Riddle NC. The epigenome and beyond: How does non-genetic inheritance change our view of evolution? Integr Comp Biol 2021; 61:2199-2207. [PMID: 34028538 DOI: 10.1093/icb/icab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes.
Collapse
Affiliation(s)
- Edmund D Brodie
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Brian Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
34
|
Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res 2021; 49:3020-3032. [PMID: 33300031 PMCID: PMC8034647 DOI: 10.1093/nar/gkaa1154] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing. Each round of DNA replication generates two hemi-methylated copies of the genome. These must be converted back to symmetrically methylated DNA before the next S-phase, or the mark will fade away; therefore the maintenance of DNA methylation is essential. Mechanistically, the maintenance of this epigenetic modification takes place during and after DNA replication, and occurs within the very dynamic context of chromatin re-assembly. Here, we review recent discoveries and unresolved questions regarding the mechanisms, dynamics and fidelity of DNA methylation maintenance in mammals. We also discuss how it could be regulated in normal development and misregulated in disease.
Collapse
Affiliation(s)
- Nataliya Petryk
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, F-75013 Paris, France
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
35
|
Ming X, Zhu B, Li Y. Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 2021; 48:1-13. [PMID: 33771455 DOI: 10.1016/j.jgg.2021.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
Collapse
Affiliation(s)
- Xuan Ming
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Greenberg MVC. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 2021; 8:629068. [PMID: 33490089 PMCID: PMC7817772 DOI: 10.3389/fcell.2020.629068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|