1
|
Hasegawa S, Inose R, Igarashi M, Tsurumaki M, Saito M, Yanagisawa T, Kanai A, Morita T. An internal loop region is responsible for inherent target specificity of bacterial cold-shock proteins. RNA (NEW YORK, N.Y.) 2024; 31:67-85. [PMID: 39419544 DOI: 10.1261/rna.080163.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Cold-shock proteins (Csps), of around 70 amino acids, share a protein fold for the cold-shock domain (CSD) that contains RNA-binding motifs, RNP1 and RNP2, and constitute one family of bacterial RNA-binding proteins. Despite similar amino acid composition, Csps have been shown to individually possess inherent specific functions. Here, we identify the molecular differences in Csps that allow selective recognition of RNA targets. Using chimeras and mutants of Escherichia coli CspD and CspA, we demonstrate that Lys43-Ala44 in an internal loop of CspD, and the N-terminal portion with Lys4 of CspA, are important for determining their target specificities. Pull-down assays suggest that these distinct specificities reflect differences in the ability to act on the target RNAs rather than differences in binding to the RNA targets. A phylogenetic tree constructed from 1,573 Csps reveals that the Csps containing Lys-Ala in the loop form a monophyletic clade, and the members in this clade are shown to have target specificities similar to E. coli CspD. The phylogenetic tree also finds a small cluster of Csps containing Lys-Glu in the loop, and these exhibit a different specificity than E. coli CspD. Examination of this difference suggests a role of the loop of CspD-type proteins in recognition of specific targets. Additionally, each identified type of Csp shows a different distribution pattern among bacteria. Our findings provide a basis for subclassification of Csps based on target RNA specificity, which will be useful for understanding the functional specialization of Csps.
Collapse
Affiliation(s)
- Satoshi Hasegawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Rerina Inose
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Mizuki Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Megumi Tsurumaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Tatsuo Yanagisawa
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
2
|
Dong F, Lojko P, Bazzone A, Bernhard F, Borodina I. Transporter function characterization via continuous-exchange cell-free synthesis and solid supported membrane-based electrophysiology. Bioelectrochemistry 2024; 159:108732. [PMID: 38810322 DOI: 10.1016/j.bioelechem.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs. The resulting transporters expressed in nanodiscs were incorporated into proteoliposomes and assayed in the presence of different substrates using the surface electrogenic event reader. As a proof of concept, we validated this workflow to express and characterize five diverse transporters: the drug/H+-coupled antiporters EmrE and SugE, the lactose permease LacY, the Na+/H+ antiporter NhaA from Escherichia coli, and the mitochondrial carrier AAC2 from Saccharomyces cerevisiae. For all transporters kinetic parameters, such as KM, IMAX, and pH dependency, were evaluated. This robust and expedite workflow (e.g., can be executed within only five workdays) offers a convenient direct functional assessment of transporter protein activity and has the ability to facilitate applications of transporters in medical and biotechnological research.
Collapse
Affiliation(s)
- Fang Dong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Pawel Lojko
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | | | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
3
|
Bodosa J, Klauda JB. Metadynamics Study of Lipid-Mediated Antibacterial Toxin Binding to the EmrE Multiefflux Protein. J Phys Chem B 2024; 128:8712-8723. [PMID: 39197021 DOI: 10.1021/acs.jpcb.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
EmrE is a bacterial efflux protein in the small multidrug-resistant (SMR) family present in Escherichia coli. Due to its small size, 110 residues in each dimer subunit, it is an ideal model system to study ligand-protein-membrane interactions. Here in our work, we have calculated the free energy landscape of benzyltrimetylammonium (BTMA) and tetraphenyl phosphonium (TPP) binding to EmrE using the enhanced sampling method-multiple walker metadynamics. We estimate that the free energy of BTMA binding to EmrE is -21.2 ± 3.3 kJ/mol and for TPP is -43.6 ± 3.8 kJ/mol. BTMA passes through two metastable states to reach the binding pocket, while TPP has a more complex binding landscape with four metastable states and one main binding site. Our simulations show that the ligands interact with the membrane lipids at a distance 1 nm away from the binding site which forms a broad local minimum, consistent for both BTMA and TPP. This site can be an alternate entry point for ligands to partition from the membrane into the protein, especially for bulky and/or branched ligands. We also observed the membrane lipid and C-terminal 110HisA form salt-bridge interactions with the helix-1 residue 22LysB. Our free energy estimates and clusters are in close agreement with experimental data and give us an atomistic view of the ligand-protein-lipid interactions. Understanding the binding pathway of these ligands can guide us in future design of ligands that can alter or halt the function of EmrE.
Collapse
Affiliation(s)
- Jessica Bodosa
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Kermani AA. Applications of fluorescent protein tagging in structural studies of membrane proteins. FEBS J 2024; 291:2719-2732. [PMID: 37470714 DOI: 10.1111/febs.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Generating active, pure, and monodisperse protein remains a major bottleneck for structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM). The current methodology heavily relies on overexpressing the recombinant protein fused with a histidine tag in conventional expression systems and evaluating the quality and stability of purified protein using size exclusion chromatography (SEC). This requires a large amount of protein and can be highly laborious and time consuming. Therefore, this approach is not suitable for high-throughput screening and low-expressing macromolecules, particularly eukaryotic membrane proteins. Using fluorescent proteins fused to the target protein (applicable to both soluble and membrane proteins) enables rapid and efficient screening of expression level and monodispersity of tens of unpurified constructs using fluorescence-based size exclusion chromatography (FSEC). Moreover, FSEC proves valuable for screening multiple detergents to identify the most stabilizing agent in the case of membrane proteins. Additionally, FSEC can facilitate nanodisc reconstitution by determining the optimal ratio of membrane scaffold protein (MSP), lipids, and target protein. The distinct advantages offered by FSEC indicate that fluorescent proteins can serve as a viable alternative to commonly used affinity tags for both characterization and purification purposes. In this review, I will summarize the advantages of this technique using examples from my own work. It should be noted that this article is not intended to provide an exhaustive review of all available literature, but rather to offer representative examples of FSEC applications.
Collapse
Affiliation(s)
- Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Burata OE, O’Donnell E, Hyun J, Lucero RM, Thomas JE, Gibbs EM, Reacher I, Carney NA, Stockbridge RB. Peripheral positions encode transport specificity in the small multidrug resistance exporters. Proc Natl Acad Sci U S A 2024; 121:e2403273121. [PMID: 38865266 PMCID: PMC11194549 DOI: 10.1073/pnas.2403273121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.
Collapse
Affiliation(s)
- Olive E. Burata
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ever O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jeonghoon Hyun
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachael M. Lucero
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Junius E. Thomas
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ethan M. Gibbs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Isabella Reacher
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Nolan A. Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Randy B. Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
6
|
Wang W, Xiang Y, Yin G, Hu S, Cheng J, Chen J, Du G, Kang Z, Wang Y. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8006-8017. [PMID: 38554273 DOI: 10.1021/acs.jafc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
5-Aminolevulinic acid (5-ALA) plays a pivotal role in the biosynthesis of heme and chlorophyll and has garnered great attention for its agricultural applications. This study explores the multifaceted construction of 5-ALA microbial cell factories. Evolutionary analysis-guided screening identified a novel 5-ALA synthase from Sphingobium amiense as the best synthase. An sRNA library facilitated global gene screening that demonstrated that trpC and ilvA repression enhanced 5-ALA production by 74.3% and 102%, respectively. Subsequently, efflux of 5-ALA by the transporter Gdx increased 5-ALA biosynthesis by 25.7%. To mitigate oxidative toxicity, DNA-binding proteins from starved cells were employed, enhancing cell density and 5-ALA titer by 21.1 and 4.1%, respectively. Combining these strategies resulted in an Escherichia coli strain that produced 5-ALA to 1.51 g·L-1 in shake flask experiments and 6.19 g·L-1 through fed-batch fermentation. This study broadens the repertoire of available 5-ALA synthases and transporters and provides a new platform for optimizing 5-ALA bioproduction.
Collapse
Affiliation(s)
- Wenqiu Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yulong Xiang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shan Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jian Cheng
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Dey S, Rout M, Pati S, Singh MK, Dehury B, Subudhi E. All-atoms molecular dynamics study to screen potent efflux pump inhibitors against KpnE protein of Klebsiella pneumoniae. J Biomol Struct Dyn 2024; 42:3492-3506. [PMID: 37218086 DOI: 10.1080/07391102.2023.2214232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The Small Multidrug Resistance efflux pump protein KpnE, plays a pivotal role in multi-drug resistance in Klebsiella pneumoniae. Despite well-documented study of its close homolog, EmrE, from Escherichia coli, the mechanism of drug binding to KpnE remains obscure due to the absence of a high-resolution experimental structure. Herein, we exclusively elucidate its structure-function mechanism and report some of the potent inhibitors through drug repurposing. We used molecular dynamics simulation to develop a dimeric structure of KpnE and explore its dynamics in lipid-mimetic bilayers. Our study identified both semi-open and open conformations of KpnE, highlighting its importance in transport process. Electrostatic surface potential map suggests a considerable degree of similarity between KpnE and EmrE at the binding cleft, mostly occupied by negatively charged residues. We identify key amino acids Glu14, Trp63 and Tyr44, indispensable for ligand recognition. Molecular docking and binding free energy calculations recognizes potential inhibitors like acarbose, rutin and labetalol. Further validations are needed to confirm the therapeutic role of these compounds. Altogether, our membrane dynamics study uncovers the crucial charged patches, lipid-binding sites and flexible loop that could potentiate substrate recognition, transport mechanism and pave the way for development of novel inhibitors against K. pneumoniae.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suchanda Dey
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Enketeswara Subudhi
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Schuldiner S. On the link between antibiotic resistance, diabetes, and wastewater. J Gen Physiol 2024; 156:e202313533. [PMID: 38294433 PMCID: PMC10829510 DOI: 10.1085/jgp.202313533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
The study by Lucero et al. (https://doi.org/10.1085/jgp.202313464) sheds light on the remarkable capabilities of bacterial transporters to adapt to new selective pressures. Their findings provide insight into the mechanism of a subtype of SMR transporters.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Lucero RM, Demirer K, Yeh TJ, Stockbridge RB. Transport of metformin metabolites by guanidinium exporters of the small multidrug resistance family. J Gen Physiol 2024; 156:e202313464. [PMID: 38294434 PMCID: PMC10829512 DOI: 10.1085/jgp.202313464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins from the small multidrug resistance (SMR) family are frequently associated with horizontally transferred multidrug resistance gene arrays found in bacteria from wastewater and the human-adjacent biosphere. Recent studies suggest that a subset of SMR transporters might participate in the metabolism of the common pharmaceutical metformin by bacterial consortia. Here, we show that both genomic and plasmid-associated transporters of the SMRGdx functional subtype export byproducts of microbial metformin metabolism, with particularly high export efficiency for guanylurea. We use solid-supported membrane electrophysiology to evaluate the transport kinetics for guanylurea and native substrate guanidinium by four representative SMRGdx homologs. Using an internal reference to normalize independent electrophysiology experiments, we show that transport rates are comparable for genomic and plasmid-associated SMRGdx homologs, and using a proteoliposome-based transport assay, we show that 2 proton:1 substrate transport stoichiometry is maintained. Additional characterization of guanidinium and guanylurea export properties focuses on the structurally characterized homolog, Gdx-Clo, for which we examined the pH dependence and thermodynamics of substrate binding and solved an x-ray crystal structure with guanylurea bound. Together, these experiments contribute in two main ways. By providing the first detailed kinetic examination of the structurally characterized SMRGdx homolog Gdx-Clo, they provide a functional framework that will inform future mechanistic studies of this model transport protein. Second, this study casts light on a potential role for SMRGdx transporters in microbial handling of metformin and its microbial metabolic byproducts, providing insight into how native transport physiologies are co-opted to contend with new selective pressures.
Collapse
Affiliation(s)
- Rachael M. Lucero
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kemal Demirer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy B. Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Juliano BR, Keating JW, Ruotolo BT. Infrared Photoactivation Enables Improved Native Top-Down Mass Spectrometry of Transmembrane Proteins. Anal Chem 2023; 95:13361-13367. [PMID: 37610409 PMCID: PMC11081007 DOI: 10.1021/acs.analchem.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane proteins are often challenging targets for native top-down mass spectrometry experimentation. The requisite use of membrane mimetics to solubilize such proteins necessitates the application of supplementary activation methods to liberate protein ions prior to sequencing, which typically limits the sequence coverage achieved. Recently, infrared photoactivation has emerged as an alternative to collisional activation for the liberation of membrane proteins from surfactant micelles. However, much remains unknown regarding the mechanism by which IR activation liberates membrane protein ions from such micelles, the extent to which such methods can improve membrane protein sequence coverage, and the degree to which such approaches can be extended to support native proteomics. Here, we describe experiments designed to evaluate and probe infrared photoactivation for membrane protein sequencing, proteoform identification, and native proteomics applications. Our data reveal that infrared photoactivation can dissociate micelles composed of a variety of detergent classes, without the need for a strong IR chromophore by leveraging the relatively weak association energies of such detergent clusters in the gas phase. Additionally, our data illustrate how IR photoactivation can be extended to include membrane mimetics beyond micelles and liberate proteins from nanodiscs, liposomes, and bicelles. Finally, our data quantify the improvements in membrane protein sequence coverage produced through the use of IR photoactivation, which typically leads to membrane protein sequence coverage values ranging from 40 to 60%.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Seppälä S, Gierke T, Schauer EE, Brown JL, O'Malley MA. Identification and expression of small multidrug resistance transporters in early-branching anaerobic fungi. Protein Sci 2023; 32:e4730. [PMID: 37470750 PMCID: PMC10443351 DOI: 10.1002/pro.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes). The SMR class of transporters is commonly found in bacteria but has not previously been reported in eukaryotes. In this study, we show that SMR transporters from anaerobic fungi can be produced heterologously in the model yeast Saccharomyces cerevisiae, demonstrating the potential of these proteins as targets for further characterization. The discovery of these novel anaerobic fungal SMR transporters offers a promising path forward to enhance bioproduction from engineered microbial strains.
Collapse
Affiliation(s)
- Susanna Seppälä
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Taylor Gierke
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Elizabeth E. Schauer
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jennifer L. Brown
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Bioengineering ProgramUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Joint BioEnergy Institute (JBEI)EmeryvilleCaliforniaUSA
| |
Collapse
|
14
|
Bazzone A, Barthmes M, George C, Brinkwirth N, Zerlotti R, Prinz V, Cole K, Friis S, Dickson A, Rice S, Lim J, Fern Toh M, Mohammadi M, Pau D, Stone DJ, Renger JJ, Fertig N. A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. Int J Mol Sci 2023; 24:12788. [PMID: 37628970 PMCID: PMC10454728 DOI: 10.3390/ijms241612788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The lysosomal cation channel TMEM175 is a Parkinson's disease-related protein and a promising drug target. Unlike whole-cell automated patch-clamp (APC), lysosomal patch-clamp (LPC) facilitates physiological conditions, but is not yet suitable for high-throughput screening (HTS) applications. Here, we apply solid supported membrane-based electrophysiology (SSME), which enables both direct access to lysosomes and high-throughput electrophysiological recordings. In SSME, ion translocation mediated by TMEM175 is stimulated using a concentration gradient at a resting potential of 0 mV. The concentration-dependent K+ response exhibited an I/c curve with two distinct slopes, indicating the existence of two conducting states. We measured H+ fluxes with a permeability ratio of PH/PK = 48,500, which matches literature findings from patch-clamp studies, validating the SSME approach. Additionally, TMEM175 displayed a high pH dependence. Decreasing cytosolic pH inhibited both K+ and H+ conductivity of TMEM175. Conversely, lysosomal pH and pH gradients did not have major effects on TMEM175. Finally, we developed HTS assays for drug screening and evaluated tool compounds (4-AP, Zn as inhibitors; DCPIB, arachidonic acid, SC-79 as enhancers) using SSME and APC. Additionally, we recorded EC50 data for eight blinded TMEM175 enhancers and compared the results across all three assay technologies, including LPC, discussing their advantages and disadvantages.
Collapse
Affiliation(s)
- Andre Bazzone
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Maria Barthmes
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Cecilia George
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Nina Brinkwirth
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Rocco Zerlotti
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
- RIGeL-Regensburg International Graduate School of Life Sciences, University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Prinz
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Kim Cole
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Søren Friis
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Alexander Dickson
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - Simon Rice
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - Jongwon Lim
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - May Fern Toh
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | | | - Davide Pau
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - David J. Stone
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - John J. Renger
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - Niels Fertig
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| |
Collapse
|
15
|
Lucero RM, Demirer K, Yeh TJ, Stockbridge RB. Transport of metformin metabolites by guanidinium exporters of the Small Multidrug Resistance family. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552832. [PMID: 37645731 PMCID: PMC10461911 DOI: 10.1101/2023.08.10.552832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteins from the Small Multidrug Resistance (SMR) family are frequently associated with horizontally transferred multidrug resistance gene arrays found in bacteria from wastewater and the human-adjacent biosphere. Recent studies suggest that a subset of SMR transporters might participate in metabolism of the common pharmaceutical metformin by bacterial consortia. Here, we show that both genomic and plasmid-associated transporters of the SMRGdx functional subtype export byproducts of microbial metformin metabolism, with particularly high export efficiency for guanylurea. We use solid supported membrane electrophysiology to evaluate the transport kinetics for guanylurea and native substrate guanidinium by four representative SMRGdx homologues. Using an internal reference to normalize independent electrophysiology experiments, we show that transport rates are comparable for genomic and plasmid-associated SMRGdx homologues, and using a proteoliposome-based transport assay, we show that 2 proton:1 substrate transport stoichiometry is maintained. Additional characterization of guanidinium and guanylurea export properties focuses on the structurally characterized homologue, Gdx-Clo, for which we examined the pH dependence and thermodynamics of substrate binding and solved an x-ray crystal structure with guanylurea bound. Together, these experiments contribute in two main ways. By providing the first detailed kinetic examination of the structurally characterized SMRGdx homologue Gdx-Clo, they provide a functional framework that will inform future mechanistic studies of this model transport protein. Second, this study casts light on a potential role for SMRGdx transporters in microbial handling of metformin and its microbial metabolic byproducts, providing insight into how native transport physiologies are co-opted to contend with new selective pressures.
Collapse
Affiliation(s)
| | - Kemal Demirer
- Department of Molecular, Cellular, and Developmental Biology
| | - Trevor Justin Yeh
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy B Stockbridge
- Program in Chemical Biology
- Department of Molecular, Cellular, and Developmental Biology
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Hu Z, Yang L, Liu Z, Han J, Zhao Y, Jin Y, Sheng Y, Zhu L, Hu B. Excessive disinfection aggravated the environmental prevalence of antimicrobial resistance during COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163598. [PMID: 37094669 PMCID: PMC10122561 DOI: 10.1016/j.scitotenv.2023.163598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
During COVID-19 pandemic, chemicals from excessive consumption of pharmaceuticals and disinfectants i.e., antibiotics, quaternary ammonium compounds (QACs), and trihalomethanes (THMs), flowed into the urban environment, imposing unprecedented selective pressure to antimicrobial resistance (AMR). To decipher the obscure character pandemic-related chemicals portrayed in altering environmental AMR, 40 environmental samples covering water and soil matrix from surroundings of Wuhan designated hospitals were collected on March 2020 and June 2020. Chemical concentrations and antibiotic resistance gene (ARG) profiles were revealed by ultra-high-performance liquid chromatography-tandem mass spectrometry and metagenomics. Selective pressure from pandemic-related chemicals ascended by 1.4-5.8 times in March 2020 and then declined to normal level of pre-pandemic period in June 2020. Correspondingly, the relative abundance of ARGs under increasing selective pressure was 20.1 times that under normal selective pressure. Moreover, effect from QACs and THMs in aggravating the prevalence of AMR was elaborated by null model, variation partition and co-occurrence network analyses. Pandemic-related chemicals, of which QACs and THMs respectively displayed close interaction with efflux pump genes and mobile genetic elements, contributed >50 % in shaping ARG profile. QACs bolstered the cross resistance effectuated by qacEΔ1 and cmeB to 3.0 times higher while THMs boosted horizon ARG transfer by 7.9 times for initiating microbial response to oxidative stress. Under ascending selective pressure, qepA encoding quinolone efflux pump and oxa-20 encoding β-lactamases were identified as priority ARGs with potential human health risk. Collectively, this research validated the synergistic effect of QACs and THMs in exacerbating environmental AMR, appealing for the rational usage of disinfectants and the attention for environmental microbes in one-health perspective.
Collapse
Affiliation(s)
- Zhichao Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Jin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaqi Sheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
17
|
Moyne O, Al-Bassam M, Lieng C, Thiruppathy D, Norton GJ, Kumar M, Haddad E, Zaramela LS, Zengler K. Guild and Niche Determination Enable Targeted Alteration of the Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540389. [PMID: 37214910 PMCID: PMC10197622 DOI: 10.1101/2023.05.11.540389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microbiome science has greatly contributed to our understanding of microbial life and its essential roles for the environment and human health1-5. However, the nature of microbial interactions and how microbial communities respond to perturbations remains poorly understood, resulting in an often descriptive and correlation-based approach to microbiome research6-8. Achieving causal and predictive microbiome science would require direct functional measurements in complex communities to better understand the metabolic role of each member and its interactions with others. In this study we present a new approach that integrates transcription and translation measurements to predict competition and substrate preferences within microbial communities, consequently enabling the selective manipulation of the microbiome. By performing metatranscriptomic (metaRNA-Seq) and metatranslatomic (metaRibo-Seq) analysis in complex samples, we classified microbes into functional groups (i.e. guilds) and demonstrated that members of the same guild are competitors. Furthermore, we predicted preferred substrates based on importer proteins, which specifically benefited selected microbes in the community (i.e. their niche) and simultaneously impaired their competitors. We demonstrated the scalability of microbial guild and niche determination to natural samples and its ability to successfully manipulate microorganisms in complex microbiomes. Thus, the approach enhances the design of pre- and probiotic interventions to selectively alter members within microbial communities, advances our understanding of microbial interactions, and paves the way for establishing causality in microbiome science.
Collapse
Affiliation(s)
- Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Mahmoud Al-Bassam
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Deepan Thiruppathy
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Grant J Norton
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Manish Kumar
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Eli Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Livia S Zaramela
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Shcherbakov AA, Brousseau M, Henzler-Wildman KA, Hong M. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers. J Am Chem Soc 2023; 145:10104-10115. [PMID: 37097985 PMCID: PMC10905379 DOI: 10.1021/jacs.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
Collapse
Affiliation(s)
- Alexander A. Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, United States
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
19
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
20
|
Martinez-Vaz BM, Dodge AG, Lucero RM, Stockbridge RB, Robinson AA, Tassoulas LJ, Wackett LP. Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products. Front Bioeng Biotechnol 2022; 10:1086261. [PMID: 36588930 PMCID: PMC9800807 DOI: 10.3389/fbioe.2022.1086261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.
Collapse
Affiliation(s)
- Betsy M. Martinez-Vaz
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Rachael M. Lucero
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B. Stockbridge
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ashley A. Robinson
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Lambros J. Tassoulas
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
21
|
Spreacker PJ, Brousseau M, Hisao GS, Soltani M, Davis JH, Henzler-Wildman KA. Charge neutralization of the active site glutamates does not limit substrate binding and transport by small multidrug resistance transporter EmrE. J Biol Chem 2022; 299:102805. [PMID: 36529287 PMCID: PMC9860125 DOI: 10.1016/j.jbc.2022.102805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.
Collapse
Affiliation(s)
- Peyton J. Spreacker
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Grant S. Hisao
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Mohammad Soltani
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - James H. Davis
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - Katherine A. Henzler-Wildman
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA,For correspondence: Katherine A. Henzler-Wildman
| |
Collapse
|
22
|
Burata OE, Yeh TJ, Macdonald CB, Stockbridge RB. Still rocking in the structural era: A molecular overview of the small multidrug resistance (SMR) transporter family. J Biol Chem 2022; 298:102482. [PMID: 36100040 PMCID: PMC9574504 DOI: 10.1016/j.jbc.2022.102482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The small multidrug resistance (SMR) family is composed of widespread microbial membrane proteins that fulfill different transport functions. Four functional SMR subtypes have been identified, which variously transport the small, charged metabolite guanidinium, bulky hydrophobic drugs and antiseptics, polyamines, and glycolipids across the membrane bilayer. The transporters possess a minimalist architecture, with ∼100-residue subunits that require assembly into homodimers or heterodimers for transport. In part because of their simple construction, the SMRs are a tractable system for biochemical and biophysical analysis. Studies of SMR transporters over the last 25 years have yielded deep insights for diverse fields, including membrane protein topology and evolution, mechanisms of membrane transport, and bacterial multidrug resistance. Here, we review recent advances in understanding the structures and functions of SMR transporters. New molecular structures of SMRs representing two of the four functional subtypes reveal the conserved structural features that have permitted the emergence of disparate substrate transport functions in the SMR family and illuminate structural similarities with a distantly related membrane transporter family, SLC35/DMT.
Collapse
Affiliation(s)
- Olive E Burata
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Trevor Justin Yeh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
23
|
Functional Role of YnfA, an Efflux Transporter in Resistance to Antimicrobial Agents in Shigella flexneri. Antimicrob Agents Chemother 2022; 66:e0029322. [PMID: 35727058 PMCID: PMC9295541 DOI: 10.1128/aac.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri has become a significant public health concern accounting for the majority of shigellosis cases worldwide. Even though a multitude of efforts is being made into the development of a vaccine to prevent infections, the absence of a licensed global vaccine compels us to enormously depend on antibiotics as the major treatment option. The extensive-unregulated use of antibiotics for treatment along with natural selection in bacteria has led to the rising of multidrug-resistance Shigella strains. Out of the various mechanisms employed by bacteria to gain resistance, efflux transporters are considered to be one of the principal contributors to antimicrobial resistance. The small multidrug-resistance family consists of unique small proteins that act as efflux pumps and are involved in extruding various antimicrobial compounds. The present study aims to demonstrate the role of an efflux transporter YnfA belonging to the SMR family and its functional involvement in promoting antimicrobial resistance in S. flexneri. Employing various genetic, computational, and biochemical techniques, we show how disrupting the YnfA transporter, renders the mutant Shigella strain more susceptible to some antimicrobial compounds tested in this study, and significantly affects the overall transport activity of the bacteria against ethidium bromide and acriflavine when compared with the wild-type Shigella strain. We also assessed how mutating some of the conserved amino acid residues of YnfA alters the resistance profile and efflux activity of the mutant YnfA transporter. This study provides a functional understanding of an uncharacterized SMR transporter YnfA of Shigella.
Collapse
|
24
|
Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 2022; 14:2055944. [PMID: 35332832 PMCID: PMC8959533 DOI: 10.1080/19490976.2022.2055944] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Haley Anne Hallowell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kalia Koutouvalis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA,CONTACT Jotham Suez Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, Maryland, USA, 21205
| |
Collapse
|
25
|
Kermani AA, Burata OE, Koff BB, Koide A, Koide S, Stockbridge RB. Crystal structures of bacterial small multidrug resistance transporter EmrE in complex with structurally diverse substrates. eLife 2022; 11:76766. [PMID: 35254261 PMCID: PMC9000954 DOI: 10.7554/elife.76766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the Escherichia coli transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here, we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.9 Å structure at low pH without substrate. We report five additional structures in complex with structurally diverse transported substrates, including quaternary phosphonium, quaternary ammonium, and planar polyaromatic compounds. These structures show that binding site tryptophan and glutamate residues adopt different rotamers to conform to disparate structures without requiring major rearrangements of the backbone structure. Structural and functional comparison to Gdx-Clo, an SMR protein that transports a much narrower spectrum of substrates, suggests that in EmrE, a relatively sparse hydrogen bond network among binding site residues permits increased sidechain flexibility.
Collapse
Affiliation(s)
- Ali A Kermani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Olive E Burata
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - B Ben Koff
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, United States
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
26
|
Exploring cryo-electron microscopy with molecular dynamics. Biochem Soc Trans 2022; 50:569-581. [PMID: 35212361 DOI: 10.1042/bst20210485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.
Collapse
|
27
|
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport. Nat Commun 2022; 13:991. [PMID: 35181664 PMCID: PMC8857205 DOI: 10.1038/s41467-022-28556-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN–F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate. EmrE transporter effluxes cationic substrates across lipid membranes in a pH-coupled manner. Here, the authors solve the structure of ligand-bound EmrE at high pH by NMR, with insights into the transport mechanism.
Collapse
|
28
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
29
|
Jurasz J, Bagiński M, Czub J, Wieczór M. Molecular mechanism of proton-coupled ligand translocation by the bacterial efflux pump EmrE. PLoS Comput Biol 2021; 17:e1009454. [PMID: 34613958 PMCID: PMC8523053 DOI: 10.1371/journal.pcbi.1009454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes. EmrE is a prototypical bacterial multidrug transporter (MDR) that confers resistance to drugs and antiseptics. Due to its structural simplicity, its mechanism of ligand recognition and translocation are relevant for a wide class of transporters. This proton-coupled antiport expels aromatic cations from the cytoplasm using the alternating access mechanism, achieving impressive levels of efficiency and robustness. Our protonation-specific free energy profiles, Grotthuss wire analyses and equilibrium simulations show how a deceivingly simple system can exchange ions with robustness and precision, hopefully inspiring rational efforts to design new MDR inhibitors.
Collapse
Affiliation(s)
- Jakub Jurasz
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
- Molecular Modeling and Bioinformatics Group, IRB Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Thomas NE, Feng W, Henzler-Wildman KA. A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport. J Biol Chem 2021; 297:101220. [PMID: 34562455 PMCID: PMC8517846 DOI: 10.1016/j.jbc.2021.101220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Collapse
Affiliation(s)
- Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
31
|
Ernst M, Robertson JL. The Role of the Membrane in Transporter Folding and Activity. J Mol Biol 2021; 433:167103. [PMID: 34139219 PMCID: PMC8756397 DOI: 10.1016/j.jmb.2021.167103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
The synthesis, folding, and function of membrane transport proteins are critical factors for defining cellular physiology. Since the stability of these proteins evolved amidst the lipid bilayer, it is no surprise that we are finding that many of these membrane proteins demonstrate coupling of their structure or activity in some way to the membrane. More and more transporter structures are being determined with some information about the surrounding membrane, and computational modeling is providing further molecular details about these solvation structures. Thus, the field is moving towards identifying which molecular mechanisms - lipid interactions, membrane perturbations, differential solvation, and bulk membrane effects - are involved in linking membrane energetics to transporter stability and function. In this review, we present an overview of these mechanisms and the growing evidence that the lipid bilayer is a major determinant of the fold, form, and function of membrane transport proteins in membranes.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
33
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
34
|
Kermani AA. A guide to membrane protein X‐ray crystallography. FEBS J 2020; 288:5788-5804. [DOI: 10.1111/febs.15676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ali A. Kermani
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|