1
|
Li J, Wei M, Ji B, Hu S, Xue J, Zhao D, Wang H, Liu C, Ye Y, Xu J, Zeng J, Ye R, Zheng Y, Zheng T, Xia C. Copper-Catalysed Electrochemical CO 2 Methanation via the Alloying of Single Cobalt Atoms. Angew Chem Int Ed Engl 2025:e202417008. [PMID: 39805742 DOI: 10.1002/anie.202417008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60 % with a partial current density of -482.7 mA cm-2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH4 over the C-C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO2-to-CH4 conversion technologies.
Collapse
Affiliation(s)
- Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Miaojin Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bifa Ji
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haoyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yifan Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jilong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
2
|
Yan T, Jin Y, Fan Q, Liu H, Li X, Zhang T, Wang H, Lin J, Chi H, Zhang S, Ma X. Large-Current CO 2 Electromethanation Through Active Hydrogen Regulation Over Carbon Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408600. [PMID: 39538978 DOI: 10.1002/smll.202408600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Electromethanation of CO2 has received intensive attention due to its high calorific value and convenient storage along with transportation to accommodate industrial demands. However, it is limited by sluggish multi-step proton-coupled electron transfer kinetics and undesired *H coupling under high current density, posing great challenges to its commercialization. Herein, carbon nitride (CN) with superior hydrogen adsorption ability is used as an active-hydrogen adsorption and supply material. Through a facile liquid-assisted exfoliation and electrostatic self-assembly strategy to strengthen its interfacial contacts with Cu2O catalysts, yielding a strengthened CH4 production 52 times higher than that of pristine Cu2O. Flow-cell test ultimately achieved FECH4 and remarkably CH4 partial current density of 61% and 561 mA cm-2, respectively. With in situ ATR-FTIR spectra and DFT calculations, it is established that strengthened interfaces enabled abundant *H tethered by ─C─N═C─ sites in CN nanosheets and oriented to the *CO hydrogenation to *CHO and *CHx on Cu species. This work reveals the profound influence of fine-expanded interfaces with dimensional materials on the product distribution and yield through the active-hydrogen management, which is of reference value for other small-molecule electro-polarization dominated by the proton-coupled electron transfer (PCET) process (e.g., N2, O2, etc.).
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaxin Jin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hai Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xindi Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tianying Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Hu S, Chen Y, Zhang Z, Liu H, Kang X, Liu J, Li S, Luo Y, Liu B. Simultaneous High Current Density and Selective Electrocatalytic CO 2-to-CH 4 through Intermediate Balancing. Angew Chem Int Ed Engl 2024:e202423915. [PMID: 39724515 DOI: 10.1002/anie.202423915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C-C coupling and H-H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu-N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H. A fast CO2-to-CH4 conversion rate of 3.14 mmol cm-2 h-1 is achieved at 1,300 mA cm-2 with a Faradaic efficiency of 51.7 %. In situ spectroscopy and theoretical calculations show that the increased Cu-Cu distance in the Cu-N coordination polymer component favors multistep *CO hydrogenation over the dimerization, and the CuO component ensures an adequate supply of *H, together contributing to the selective CO2-to-CH4 conversion at high current densities. This work develops a cooperative strategy for the electrosynthesis of CH4 with simultaneous high current density and high selectivity by rational catalyst design, paving the way for its applications.
Collapse
Affiliation(s)
- Shuqi Hu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yumo Chen
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhiyuan Zhang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Heming Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Xin Kang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Jiarong Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shanlin Li
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yuting Luo
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
4
|
Yu F, Shu M, Zhang G, Yu Q, Wang H. Enhancing CO 2 Electroreduction Precision to Ethylene and Ethanol: The Role of Additional Boron Catalytic Sites in Cu-Based Tandem Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410118. [PMID: 39429207 PMCID: PMC11633483 DOI: 10.1002/advs.202410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/22/2024]
Abstract
The electrocatalytic conversion of carbon dioxide (CO2) into valuable multicarbon (C2+) compounds offers a promising approach to mitigate CO2 emissions and harness renewable energy. However, achieving precise selectivity for specific C2+ products, such as ethylene and ethanol, remains a formidable challenge. This study shows that incorporating elemental boron (B) into copper (Cu) catalysts provides additional adsorption sites for *CO intermediates, enhancing the selectivity of desirable C2+ products. Additionally, using a nickel single-atom catalyst (Ni-SAC) as a *CO source increases local *CO concentration and reduces the hydrogen evolution reaction. In situ experiments and density functional theory (DFT) calculations reveal that surface-bound boron units adsorb and convert *CO more efficiently, promoting ethylene production, while boron within the bulk phase of copper influences charge transfer, facilitating ethanol generation. In a neutral electrolyte, the bias current density for ethylene production using the B-O-Cu2@Ni-SAC0.05 hybrid catalyst exceeded 300 mA cm-2, and that for ethanol production with B-O-Cu5@Ni-SAC0.2 surpassed 250 mA cm-2. This study underscores that elemental doping in Cu-based catalysts not only alters charge and crystalline phase arrangements at Cu sites but also provides additional reduction sites for coupling reactions, enabling the efficient synthesis of distinct C2+ products.
Collapse
Affiliation(s)
- Fuqing Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Minxing Shu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Guangyao Zhang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Qiming Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Hongming Wang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials ChemistryNanchang UniversityNanchang330031China
| |
Collapse
|
5
|
McKee M, Kutter M, Wu Y, Williams H, Vaudreuil MA, Carta M, Yadav AK, Singh H, Masson JF, Lentz D, Kühnel MF, Kornienko N. Hydrophobic assembly of molecular catalysts at the gas-liquid-solid interface drives highly selective CO 2 electromethanation. Nat Chem 2024:10.1038/s41557-024-01650-6. [PMID: 39367063 DOI: 10.1038/s41557-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Molecular catalysts offer tunable active and peripheral sites, rendering them ideal model systems to explore fundamental concepts in catalysis. However, hydrophobic designs are often regarded as detrimental for dissolution in aqueous electrolytes. Here we show that established cobalt terpyridine catalysts modified with hydrophobic perfluorinated alkyl side chains can assemble at the gas-liquid-solid interfaces on a gas diffusion electrode. We find that the self-assembly of these perfluorinated units on the electrode surface results in a catalytic system selective for electrochemical CO2 reduction to CH4, whereas every other cobalt terpyridine catalyst reported previously was only selective for CO or formate. Mechanistic investigations suggest that the pyridine units function as proton shuttles that deliver protons to the dynamic hydrophobic pocket in which CO2 reduction takes place. Finally, integration with fluorinated carbon nanotubes as a hydrophobic conductive scaffold leads to a Faradaic efficiency for CH4 production above 80% at rates above 10 mA cm-2-impressive activities for a molecular electrocatalytic system.
Collapse
Affiliation(s)
- Morgan McKee
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Maximilian Kutter
- Department of Chemistry, Swansea University, Swansea, UK
- Electrochemical Process Engineering, Universität Bayreuth, Bayreuth, Germany
| | - Yue Wu
- Department of Chemistry, Swansea University, Swansea, UK
| | - Hannah Williams
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
- 2-Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, India
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada
| | - Dieter Lentz
- Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Berlin, Germany
| | - Moritz F Kühnel
- Department of Chemistry, Swansea University, Swansea, UK.
- Institute of Chemistry, University of Hohenheim, Stuttgart, Germany.
| | - Nikolay Kornienko
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany.
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Wang M, Zhang S, Gong Y, Zhang W, Wang Y, Chen Y, Zheng Q, Liu Z, Tang C. Highly Stable Carboranyl Ligated Gold Nano-Catalysts for Regioselective Aromatic Bromination. Angew Chem Int Ed Engl 2024; 63:e202409283. [PMID: 38962888 DOI: 10.1002/anie.202409283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111)=-2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋅⋅⋅Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110 °C, pH=1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p : o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to >30 : 1), bromobenzene (15 : 1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengye Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, Shanghai, 201204, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Ye L, Qi S, Cheng T, Jiang Y, Feng Z, Wang M, Liu Y, Dai L, Wang L, He Z. Vanadium Redox Flow Battery: Review and Perspective of 3D Electrodes. ACS NANO 2024; 18:18852-18869. [PMID: 38993077 DOI: 10.1021/acsnano.4c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Vanadium redox flow battery (VRFB) has garnered significant attention due to its potential for facilitating the cost-effective utilization of renewable energy and large-scale power storage. However, the limited electrochemical activity of the electrode in vanadium redox reactions poses a challenge in achieving a high-performance VRFB. Consequently, there is a pressing need to assess advancements in electrodes to inspire innovative approaches for enhancing electrode structure and composition. This work categorizes three-dimensional (3D) electrodes derived from materials such as foam, biomass, and electrospun fibers. By employing a flexible electrode design and compositional functionalization, high-speed mass transfer channels and abundant active sites for vanadium redox reactions can be created. Furthermore, the incorporation of 3D electrocatalysts into the electrodes is discussed, including metal-based, carbon-based, and composite materials. The strong interaction and ordered arrangement of these nanocomposites have an influence on the uniformity and stability of the surface charge distribution, thereby enhancing the electrochemical performance of the composite electrodes. Finally, the challenges and perspectives of VRFB are explored through advancements in 3D electrodes, 3D electrocatalysts, and mechanisms. It is hoped that this review will inspire the development of methodology and concept of 3D electrodes in VRFB, so as to promote the future development of scientific energy storage and conversion technology.
Collapse
Affiliation(s)
- Lingzhi Ye
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Shaotian Qi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Tukang Cheng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Yingqiao Jiang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zemin Feng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongguang Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| |
Collapse
|
8
|
Zhou D, Chen C, Zhang Y, Wang M, Han S, Dong X, Yao T, Jia S, He M, Wu H, Han B. Cooperation of Different Active Sites to Promote CO 2 Electroreduction to Multi-carbon Products at Ampere-Level. Angew Chem Int Ed Engl 2024; 63:e202400439. [PMID: 38345401 DOI: 10.1002/anie.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 03/01/2024]
Abstract
Electroreduction of CO2 to C2+ products provides a promising strategy for reaching the goal of carbon neutrality. However, achieving high selectivity of C2+ products at high current density remains a challenge. In this work, we designed and prepared a multi-sites catalyst, in which Pd was atomically dispersed in Cu (Pd-Cu). It was found that the Pd-Cu catalyst had excellent performance for producing C2+ products from CO2 electroreduction. The Faradaic efficiency (FE) of C2+ products could be maintained at approximately 80.8 %, even at a high current density of 0.8 A cm-2 for at least 20 hours. In addition, the FE of C2+ products was above 70 % at 1.4 A cm-2. Experiments and density functional theory (DFT) calculations revealed that the catalyst had three distinct catalytic sites. These three active sites allowed for efficient conversion of CO2, water dissociation, and CO conversion, ultimately leading to high yields of C2+ products.
Collapse
Affiliation(s)
- Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Yichi Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Song Y, Guo P, Ma T, Su J, Huang L, Guo W, Liu Y, Li G, Xin Y, Zhang Q, Zhang S, Shen H, Feng X, Yang D, Tian J, Ravi SK, Tang BZ, Ye R. Ultrathin, Cationic Covalent Organic Nanosheets for Enhanced CO 2 Electroreduction to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310037. [PMID: 37931925 DOI: 10.1002/adma.202310037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Metalloporphyrins and metallophthalocyanines emerge as popular building blocks to develop covalent organic nanosheets (CONs) for CO2 reduction reaction (CO2RR). However, existing CONs predominantly yield CO, posing a challenge in achieving efficient methanol production through multielectron reduction. Here, ultrathin, cationic, and cobalt-phthalocyanine-based CONs (iminium-CONs) are reported for electrochemical CO2-to-CH3OH conversion. The integration of quaternary iminium groups enables the formation of ultrathin morphology with uniformly anchored cobalt active sites, which are pivotal for facilitating rapid multielectron transfer. Moreover, the cationic iminium-CONs exhibit a lower activity for hydrogen evolution side reaction. Consequently, iminium-CONs manifest significantly enhanced selectivity for methanol production, as evidenced by a remarkable 711% and 270% improvement in methanol partial current density (jCH3OH) compared to pristine CoTAPc and neutral imine-CONs, respectively. Under optimized conditions, iminium-CONs deliver a high jCH3OH of 91.7 mA cm-2 at -0.78 V in a flow cell. Further, iminium-CONs achieve a global methanol Faradaic efficiency (FECH3OH) of 54% in a tandem device. Thanks to the single-site feature, the methanol is produced without the concurrent generation of other liquid byproducts. This work underscores the potential of cationic covalent organic nanosheets as a compelling platform for electrochemical six-electron reduction of CO2 to methanol.
Collapse
Affiliation(s)
- Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Peng Guo
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Geng Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yinger Xin
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Qiang Zhang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Siwei Zhang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Hanchen Shen
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dengtao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
10
|
Chen R, Lou H, Pang Y, Yang D, Qiu X. Enhancing Pollutant Mineralization through Organic-Inorganic Defect-Transit Dual S-scheme with a Robust Internal Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306354. [PMID: 37775306 DOI: 10.1002/smll.202306354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Indexed: 10/01/2023]
Abstract
Achieving superior photomineralization of pollutants relies on a rational design of a dual S-scheme with a robust internal electric field (IEF). In this study, to tackle the low mineralization rate in type-II In2 O3 /In2 S3 (IO/IS) systems, an organic-inorganic dual S-scheme In2 O3 /PDI/In2 S3 (IO/PDI/IS) nanostructured photocatalyst is synthesized via a method combining solvent-induced self-assembly and electrostatic forces. Due to the unique energy band position and strong IEF, the photoinduced defect-transit dual S-scheme IO/PDI/IS facilitates the degradation of lignin and antibiotics. Notably, a promising mineralization rate of 80.9% for sodium lignosulfonate (SL) is achieved. The charge transport pathway of IO/PDI/IS are further validated through the analysis of in situ X-ray photoelectron spectroscopy (in situ XPS), density functional theory calculations, and radical trapping experiments. In-depth, two possible pathways for the photocatalytic degradation of lignin are proposed based on the intermediates monitored by liquid chromatography-mass spectrometry (LC-MS). This study presents a new strategy for the design of organic-inorganic dual S-scheme photocatalysts with a robust IEF for pollutant degradation.
Collapse
Affiliation(s)
- Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Xu K, Li J, Liu F, Chen X, Zhao T, Cheng F. Favoring CO Intermediate Stabilization and Protonation by Crown Ether for CO 2 Electromethanation in Acidic Media. Angew Chem Int Ed Engl 2023; 62:e202311968. [PMID: 37885357 DOI: 10.1002/anie.202311968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The large-scale deployment of CO2 electroreduction is hampered by deficient carbon utilization in neutral and alkaline electrolytes due to CO2 loss into (bi)carbonates. Switching to acidic media mitigates carbonation, but suffers from low product selectivity because of hydrogen evolution. Here we report a crown ether decoration strategy on a Cu catalyst to enhance carbon utilization and selectivity of CO2 methanation under acidic conditions. Macrocyclic 18-Crown-6 is found to enrich potassium cations near the Cu electrode surface, simultaneously enhancing the interfacial electric field to stabilize the *CO intermediate and accelerate water dissociation to boost *CO protonation. Remarkably, the mixture of 18-Crown-6 and Cu nanoparticles affords a CH4 Faradaic efficiency of 51.2 % and a single pass carbon efficiency of 43.0 % toward CO2 electroreduction in electrolyte with pH=2. This study provides a facile strategy to promote CH4 selectivity and carbon utilization by modifying Cu catalysts with supramolecules.
Collapse
Affiliation(s)
- Keqiang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinhan Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangming Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xijie Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tete Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center on High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
12
|
Wan M, Yang Z, Morgan H, Shi J, Shi F, Liu M, Wong HW, Gu Z, Che F. Enhanced CO 2 Reactive Capture and Conversion Using Aminothiolate Ligand-Metal Interface. J Am Chem Soc 2023; 145:26038-26051. [PMID: 37973169 DOI: 10.1021/jacs.3c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Metallic catalyst modification by organic ligands is an emerging catalyst design in enhancing the activity and selectivity of electrocatalytic carbon dioxide (CO2) reactive capture and reduction to value-added fuels. However, a lack of fundamental science on how these ligand-metal interfaces interact with CO2 and key intermediates under working conditions has resulted in a trial-and-error approach for experimental designs. With the aid of density functional theory calculations, we provided a comprehensive mechanism study of CO2 reduction to multicarbon products over aminothiolate-coated copper (Cu) catalysts. Our results indicate that the CO2 reduction performance was closely related to the alkyl chain length, ligand coverage, ligand configuration, and Cu facet. The aminothiolate ligand-Cu interface significantly promoted initial CO2 activation and lowered the activation barrier of carbon-carbon coupling through the organic (nitrogen (N)) and inorganic (Cu) interfacial active sites. Experimentally, the selectivity and partial current density of the multicarbon products over aminothiolate-coated Cu increased by 1.5-fold and 2-fold, respectively, as compared to the pristine Cu at -1.16 VRHE, consistent with our theoretical findings. This work highlights the promising strategy of designing the ligand-metal interface for CO2 reactive capture and conversion to multicarbon products.
Collapse
Affiliation(s)
- Mingyu Wan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Zhengyang Yang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Heba Morgan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jinquan Shi
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06520, United States
| | - Fan Shi
- National Energy Technology Laboratory, P.O. Box 10940, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Mengxia Liu
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06520, United States
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Zhiyong Gu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
13
|
Chen X, Jia S, Chen C, Jiao J, Zhai J, Deng T, Xue C, Cheng H, Dong M, Xia W, Zeng J, Xing X, Wu H, He M, Han B. Highly Stable Layered Coordination Polymer Electrocatalyst toward Efficient CO 2 -to-CH 4 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310273. [PMID: 37974514 DOI: 10.1002/adma.202310273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Cu2+ -based materials, a class of promising catalysts for the electrocatalytic carbon dioxide reduction reaction (CO2 RR) to value-added chemicals, usually undergo inevitable and uncontrollable reorganization processes during the reaction, resulting in catalyst deactivation or the new active sites formation and bringing great challenges to exploring their structure-performance relationships. Herein, a facile strategy is reported for constructing Cu2+ and 3, 4-ethylenedioxythiophene (EDOT) coordination to stabilize Cu2+ ions to prepare a novel layered coordination polymer (CuPEDOT). CuPEDOT enables selective reduction of CO2 to CH4 with 62.7% Faradaic efficiency at the current density of 354 mA cm-2 in a flow cell, and the catalyst is stable for at least 15 h. In situ spectroscopic characterization and theoretical calculations reveal that CuPEDOT catalyst can maintain the Cu2+ -EDOT coordination structurally stable in CO2 RR and significantly promote the further hydrogenation of *CO intermediates, favoring the formation of CH4 instead of dimerization to C2 products. The strong coordination between EDOT and Cu2+ prevents the reduction of Cu2+ ions during CO2 RR. The finding of this work provides a new perspective on designing molecularly stable, highly active catalysts for CO2 RR.
Collapse
Affiliation(s)
- Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Ting Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Cheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Hailian Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Mengke Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Liu W, Wen Y, Fang N, Wang M, Xu Y, Huang X. Copper vulcanization realizes selective carbon dioxide reduction to formate. Chem Commun (Camb) 2023; 59:11843-11846. [PMID: 37718672 DOI: 10.1039/d3cc03263a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Herein, we demonstrate that the vulcanization of copper nanosheets (Cu2S NSs) can realize selective electrochemical carbon dioxide reduction (CO2RR) to formate (HCOOH). Results from experiments and in situ infrared spectroscopy reveal that Cu2S NSs favor CO2 reduction along the HCOO* pathway, leading to the selective formation of HCOOH. Impressively, the Faraday efficiency (FE) of HCOOH surpasses 70% in a broad potential range from -0.84 to -1.21 V versus (vs.) reversible hydrogen electrode (RHE), with a maximum value of 82%.
Collapse
Affiliation(s)
- Wenqiang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yan Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Nan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Mingmin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
15
|
Anzai A, Higashi M, Yamauchi M. Direct electrochemical CO 2 conversion using oxygen-mixed gas on a Cu network cathode and tailored anode. Chem Commun (Camb) 2023; 59:11188-11191. [PMID: 37622265 DOI: 10.1039/d3cc03298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Electrochemical CO2 reduction (eCO2R) by direct introduction of 60% air-containing CO2 mixed gas was demonstrated using a porous Cu network cathode formed on a hydrophobic gas diffusion layer (Cu/P-GDL). Cu/P-GDL exhibited eCO2R using the mixed gas with a remarkable faradaic efficiency of 85% for the production of C2+ chemicals, whereas a Cu cathode constructed on a conventional carbon gas diffusion layer (Cu/C-GDL) produced neither eCO2R products nor H2. Furthermore, the electrolyzer with Cu/P-GDL and optimized anode configuration achieved a partial current density of 132 mA cm-2 for C2+ chemicals even in the presence of 12% O2. Demonstration of eCO2R with impure CO2 gas would greatly expand its future applications.
Collapse
Affiliation(s)
- Akihiko Anzai
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manabu Higashi
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Miho Yamauchi
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Yu F, Liu X, Liao L, Xia G, Wang H. Multilayer-Cavity Tandem Catalyst for Profiling Sequentially Coupling of Intermediate CO in Electrocatalytic Reduction Reaction of CO 2 to Multi-Carbon Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301558. [PMID: 37118852 DOI: 10.1002/smll.202301558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is an effective approach to address CO2 emission, promote recycling, and synthesize high-value multi-carbon (C2+ ) chemicals for storing renewable electricity in the long-term. The construction of multilayer-bound nanoreactors to achieve management of intermediate CO is a promising strategy for tandem to C2+ products. In this study, a series of Ag@Cu2 O nanoreactors consisting of an Ag-yolk and a multilayer confined Cu shell is designed to profile electrocatalytic CO2 RR reactions. The optimized Ag@Cu2 O-2 nanoreactor exhibits a 74% Faradaic efficiency during the C2+ pathway and remains stable for over 10 h at a bias current density of 100 mA cm-2 . Using the finite element method, this model determines that the certain volume of cavity in the Ag@Cu2 O nanoreactors facilitates on-site CO retention and that multilayers of Cu species favor CO capture. Density functional theory calculations illustrate that the biased generation of ethanol products may arise from the (100)/(111) interface of the Cu layer. In-depth explorations in multilayer-bound nanoreactors provide structural and interfacial guidance for sequential coupling of CO2 RR intermediates for efficient C2+ generation.
Collapse
Affiliation(s)
- Fuqing Yu
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xian Liu
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Luliang Liao
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Guomin Xia
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Hongming Wang
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
17
|
Roy S, Li Z, Chen Z, Mata AC, Kumar P, Sarma SC, Teixeira IF, Silva IF, Gao G, Tarakina NV, Kibria MG, Singh CV, Wu J, Ajayan PM. Cooperative Copper Single-Atom Catalyst in 2D Carbon Nitride for Enhanced CO 2 Electrolysis to Methane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300713. [PMID: 37572690 DOI: 10.1002/adma.202300713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Renewable-electricity-powered carbon dioxide (CO2 ) reduction (eCO2 R) to high-value fuels like methane (CH4 ) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8-electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu-structures can boost eCO2 R-to-CH4 selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d-band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na-polyheptazine (PHI) and Li-polytriazine imides (PTI), are exploited to host Cu-N2 type single-atom sites with high density (≈1.5 at%), via a facile metal-ion exchange process. Optimized Cu loading in nanocrystalline Cu-PTI maximizes eCO2 R-to-CH4 performance with Faradaic efficiency (FECH4 ) of ≈68% and a high partial current density of 348 mA cm-2 at -0.84 V vs reversible hydrogen electrode (RHE), surpassing the state-of-the-art catalysts. Multi-Cu substituted N-appended nanopores in the CN frameworks yield thermodynamically stable quasi-dual/triple sites with large interatomic distances dictated by the pore dimensions. First-principles calculations elucidate the relative Cu-CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO2 -to-CH4 energy profile landscape. The 9N pores in Cu-PTI yield cooperative Cu-Cu sites that synergistically enhance the kinetics of the rate-limiting steps in the eCO2 R-to-CH4 pathway.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zhiwen Chen
- Department of Material Science and Engineering, University of Toronto, Ontario, M5S 1A1, Canada
| | - Astrid Campos Mata
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, T2N 1N4, Canada
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London, London, England, SW7 2AZ, UK
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Ingrid F Silva
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Guanhui Gao
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-, 14476, Potsdam, Germany
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, T2N 1N4, Canada
| | - Chandra Veer Singh
- Department of Material Science and Engineering, University of Toronto, Ontario, M5S 1A1, Canada
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
18
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, Plankensteiner N, Jobbagy M, Pahlavan S, Blom MJW, Janáky C, Cherevko S, Vereecken PM. Effects of Iron Species on Low Temperature CO 2 Electrolyzers. Angew Chem Int Ed Engl 2023:e202306503. [PMID: 37466922 DOI: 10.1002/anie.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.
Collapse
Affiliation(s)
- Anna F Staerz
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Marieke van Leeuwen
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
| | - Nina Plankensteiner
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Matias Jobbagy
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Sohrab Pahlavan
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Martijn J W Blom
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
- eChemicles Zrt., Alsó Kikötő sor 11, 6726, Szeged, Hungary
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Philippe M Vereecken
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Dai Y, Li H, Wang C, Xue W, Zhang M, Zhao D, Xue J, Li J, Luo L, Liu C, Li X, Cui P, Jiang Q, Zheng T, Gu S, Zhang Y, Xiao J, Xia C, Zeng J. Manipulating local coordination of copper single atom catalyst enables efficient CO 2-to-CH 4 conversion. Nat Commun 2023; 14:3382. [PMID: 37291114 PMCID: PMC10250324 DOI: 10.1038/s41467-023-39048-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Electrochemical CO2 conversion to methane, powered by intermittent renewable electricity, provides an entrancing opportunity to both store renewable electric energy and utilize emitted CO2. Copper-based single atom catalysts are promising candidates to restrain C-C coupling, suggesting feasibility in further protonation of CO* to CHO* for methane production. In theoretical studies herein, we find that introducing boron atoms into the first coordination layer of Cu-N4 motif facilitates the binding of CO* and CHO* intermediates, which favors the generation of methane. Accordingly, we employ a co-doping strategy to fabricate B-doped Cu-Nx atomic configuration (Cu-NxBy), where Cu-N2B2 is resolved to be the dominant site. Compared with Cu-N4 motifs, as-synthesized B-doped Cu-Nx structure exhibits a superior performance towards methane production, showing a peak methane Faradaic efficiency of 73% at -1.46 V vs. RHE and a maximum methane partial current density of -462 mA cm-2 at -1.94 V vs. RHE. Extensional calculations utilizing two-dimensional reaction phase diagram analysis together with barrier calculation help to gain more insights into the reaction mechanism of Cu-N2B2 coordination structure.
Collapse
Grants
- Professor Zeng acknowledges National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), NSFC (U19A2015, 22221003, 22250007), Fundamental Research Funds for the Central Universities, Provincial Key Research and Development Program of Anhui (202004a05020074), K. C. Wong Education (GJTD-2020-15), and the DNL Cooperation Fund, CAS (DNL202003).
Collapse
Affiliation(s)
- Yizhou Dai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuanhao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Weiqing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Menglu Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Songqi Gu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
20
|
Fan M, Miao RK, Ou P, Xu Y, Lin ZY, Lee TJ, Hung SF, Xie K, Huang JE, Ni W, Li J, Zhao Y, Ozden A, O'Brien CP, Chen Y, Xiao YC, Liu S, Wicks J, Wang X, Abed J, Shirzadi E, Sargent EH, Sinton D. Single-site decorated copper enables energy- and carbon-efficient CO 2 methanation in acidic conditions. Nat Commun 2023; 14:3314. [PMID: 37286531 DOI: 10.1038/s41467-023-38935-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Renewable CH4 produced from electrocatalytic CO2 reduction is viewed as a sustainable and versatile energy carrier, compatible with existing infrastructure. However, conventional alkaline and neutral CO2-to-CH4 systems suffer CO2 loss to carbonates, and recovering the lost CO2 requires input energy exceeding the heating value of the produced CH4. Here we pursue CH4-selective electrocatalysis in acidic conditions via a coordination method, stabilizing free Cu ions by bonding Cu with multidentate donor sites. We find that hexadentate donor sites in ethylenediaminetetraacetic acid enable the chelation of Cu ions, regulating Cu cluster size and forming Cu-N/O single sites that achieve high CH4 selectivity in acidic conditions. We report a CH4 Faradaic efficiency of 71% (at 100 mA cm-2) with <3% loss in total input CO2 that results in an overall energy intensity (254 GJ/tonne CH4), half that of existing electroproduction routes.
Collapse
Affiliation(s)
- Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ke Xie
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jun Li
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yong Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Yurou Celine Xiao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Shijie Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
| |
Collapse
|
21
|
Obasanjo CA, Gao G, Crane J, Golovanova V, García de Arquer FP, Dinh CT. High-rate and selective conversion of CO 2 from aqueous solutions to hydrocarbons. Nat Commun 2023; 14:3176. [PMID: 37264000 DOI: 10.1038/s41467-023-38963-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO2-to-CH4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO2 concentration by combining both dissolved CO2 and in-situ generated CO2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH4. The combination of these strategies leads to CH4 Faradaic efficiencies of over 70% in a wide current density range (100 - 750 mA cm-2) that is stable for at least 12 h at a current density of 500 mA cm-2. The system also delivers a CH4 concentration of 23.5% in the gas product stream.
Collapse
Affiliation(s)
- Cornelius A Obasanjo
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Guorui Gao
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jackson Crane
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Viktoria Golovanova
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - Cao-Thang Dinh
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
22
|
Zhao J, Zhang P, Yuan T, Cheng D, Zhen S, Gao H, Wang T, Zhao ZJ, Gong J. Modulation of *CH xO Adsorption to Facilitate Electrocatalytic Reduction of CO 2 to CH 4 over Cu-Based Catalysts. J Am Chem Soc 2023; 145:6622-6627. [PMID: 36939299 DOI: 10.1021/jacs.2c12006] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Copper (Cu) can efficiently catalyze the electrochemical CO2 reduction reaction (CO2RR) to produce value-added fuels and chemicals, among which methane (CH4) has drawn attention due to its high mass energy density. However, the linear scaling relationship between the adsorption energies of *CO and *CHxO on Cu restricts the selectivity toward CH4. Alloying a secondary metal in Cu provides a new freedom to break the linear scaling relationship, thus regulating the product distribution. This paper describes a controllable electrodeposition approach to alloying Cu with oxophilic metal (M) to steer the reaction pathway toward CH4. The optimized La5Cu95 electrocatalyst exhibits a CH4 Faradaic efficiency of 64.5%, with the partial current density of 193.5 mA cm-2. The introduction of oxophilic La could lower the energy barrier for *CO hydrogenation to *CHxO by strengthening the M-O bond, which would also promote the breakage of the C-O bond in *CH3O for the formation of CH4. This work provides a new avenue for the design of Cu-based electrocatalysts to achieve high selectivity in CO2RR through the modulation of the adsorption behaviors of key intermediates.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Tenghui Yuan
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Dongfang Cheng
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Shiyu Zhen
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hui Gao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
23
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
24
|
Zhang Y, Zhang XY, Sun WY. In Situ Carbon-Encapsulated Copper-Doped Cerium Oxide Derived from MOFs for Boosting CO 2-to-CH 4 Electro-Conversion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Ligand-confined bismuth based nanodots for robust carbon dioxide reduction to liquid fuel at 1 A/cm2. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Shao B, Chen X, Xu YT, Li GQ, Zhong JP, Meng T, Zhang Z, Huang FP, Huang J. Low-potential-driven electrocatalytic reduction of CO2 to hydrocarbons by cobalt-based metal-organic nanosheets. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Miao Y, Kreider P, Pommerenck J, AuYeung NJ, von Jouanne A, Jovanovic G, Yokochi A. CO 2 Reduction by Multiple Low-Energy Electric Discharges in a Microstructured Reactor: Experiments and Modeling. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Miao
- School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Peter Kreider
- Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Justin Pommerenck
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nick Jun AuYeung
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Annette von Jouanne
- School of Engineering and Computer Science, Baylor University, Waco, Texas 76798, United States
| | - Goran Jovanovic
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alexandre Yokochi
- School of Engineering and Computer Science, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
29
|
Lei B, Cui W, Chen P, Chen L, Li J, Dong F. C–Doping Induced Oxygen-Vacancy in WO 3 Nanosheets for CO 2 Activation and Photoreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Lei
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wen Cui
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
30
|
Wu Y, Chen C, Yan X, Wu R, Liu S, Ma J, Zhang J, Liu Z, Xing X, Wu Z, Han B. Enhancing CO 2 electroreduction to CH 4 over Cu nanoparticles supported on N-doped carbon. Chem Sci 2022; 13:8388-8394. [PMID: 35919725 PMCID: PMC9297438 DOI: 10.1039/d2sc02222b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
The electroreduction of CO2 to CH4 has attracted extensive attention. However, it is still a challenge to achieve high current density and faradaic efficiency (FE) for producing CH4 because the reaction involves eight electrons and four protons. In this work, we designed Cu nanoparticles supported on N-doped carbon (Cu-np/NC). It was found that the catalyst exhibited outstanding performance for the electroreduction of CO2 to CH4. The FE toward CH4 could be as high as 73.4% with a high current density of 320 mA cm-2. In addition, the mass activity could reach up to 6.4 A mgCu -1. Both experimental and theoretical calculations illustrated that the pyrrolic N in NC could accelerate the hydrogenation of *CO to the *CHO intermediate, resulting in high current density and excellent selectivity for CH4. This work conducted the first exploration of the effect of N-doped species in composites on the electrocatalytic performance of CO2 reduction.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
31
|
Chen S, Zhang Z, Jiang W, Zhang S, Zhu J, Wang L, Ou H, Zaman S, Tan L, Zhu P, Zhang E, Jiang P, Su Y, Wang D, Li Y. Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO 2 Methanation. J Am Chem Soc 2022; 144:12807-12815. [PMID: 35786905 DOI: 10.1021/jacs.2c03875] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The renewable energy-powered electrolytic reduction of carbon dioxide (CO2) to methane (CH4) using water as a reaction medium is one of the most promising paths to store intermittent renewable energy and address global energy and sustainability problems. However, the role of water in the electrolyte is often overlooked. In particular, the slow water dissociation kinetics limits the proton-feeding rate, which severely damages the selectivity and activity of the methanation process involving multiple electrons and protons transfer. Here, we present a novel tandem catalyst comprising Ir single-atom (Ir1)-doped hybrid Cu3N/Cu2O multisite that operates efficiently in converting CO2 to CH4. Experimental and theoretical calculation results reveal that the Ir1 facilitates water dissociation into proton and feeds to the hybrid Cu3N/Cu2O sites for the *CO protonation pathway toward *CHO. The catalyst displays a high Faradaic efficiency of 75% for CH4 with a current density of 320 mA cm-2 in the flow cell. This work provides a promising strategy for the rational design of high-efficiency multisite catalytic systems.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shahid Zaman
- Key Laboratory of Energy Conversion and Storage Technologies, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Lin Tan
- Key Laboratory of Energy Conversion and Storage Technologies, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
32
|
Shi Y, Sun K, Shan J, Li H, Gao J, Chen Z, Sun C, Shuai Y, Wang Z. Selective CO 2 Electromethanation on Surface-Modified Cu Catalyst by Local Microenvironment Modulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaoxuan Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jingjing Shan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huiyi Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianmin Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150001, China
| | - Chengyue Sun
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
33
|
Xie Y, Ou P, Wang X, Xu Z, Li YC, Wang Z, Huang JE, Wicks J, McCallum C, Wang N, Wang Y, Chen T, Lo BTW, Sinton D, Yu JC, Wang Y, Sargent EH. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal 2022. [DOI: 10.1038/s41929-022-00788-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat Commun 2022; 13:3158. [PMID: 35672315 PMCID: PMC9174297 DOI: 10.1038/s41467-022-30819-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Electrocatalytic CO2 reduction to value-added hydrocarbon products using metallic copper (Cu) catalysts is a potentially sustainable approach to facilitate carbon neutrality. However, Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis, which can have either adverse or beneficial effects on its electrocatalytic performance. In a break from the current catalyst design path, we propose a strategy guiding the reconstruction process in a favorable direction to improve the performance. Typically, the controlled surface reconstruction is facilely realized using an electrolyte additive, ethylenediamine tetramethylenephosphonic acid, to substantially promote CO2 electroreduction to CH4 for commercial polycrystalline Cu. As a result, a stable CH4 Faradaic efficiency of 64% with a partial current density of 192 mA cm−2, thus enabling an impressive CO2-to-CH4 conversion rate of 0.25 µmol cm−2 s−1, is achieved in an alkaline flow cell. We believe our study will promote the exploration of electrochemical reconstruction and provide a promising route for the discovery of high-performance electrocatalysts. Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis. The authors here guide the reconstruction process in a favorable direction using trace amount of electrolyte additives, promoting CO2 electroreduction to CH4.
Collapse
|
35
|
Wang J, Zheng M, Zhao X, Fan W. Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M–N 4–C Single-Atom Catalysts for Electrochemical CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Mingyue Zheng
- State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Xian Zhao
- Center for Optics Research and Engineering of Shandong University, Shandong University, Oingdao 266237, People’s Republic of China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
36
|
Yu S, Louisia S, Yang P. The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO 2 Conversion. JACS AU 2022; 2:562-572. [PMID: 35373197 PMCID: PMC8965827 DOI: 10.1021/jacsau.1c00562] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/01/2023]
Abstract
In the pursuit of a decarbonized society, electrocatalytic CO2 conversion has drawn tremendous research interest in recent years as a promising route to recycling CO2 into more valuable chemicals. To achieve high catalytic activity and selectivity, nanocatalysts of diverse structures and compositions have been designed. However, the dynamic structural transformation of the nanocatalysts taking place under operating conditions makes it difficult to study active site configurations present during the CO2 reduction reaction (CO2RR). In addition, although recognized as consequential to the catalytic performance, the reaction microenvironment generated near the nanocatalyst surface during CO2RR and its impact are still an understudied research area. In this Perspective, we discuss current understandings and difficulties associated with investigating such dynamic aspects of both the surface reaction site and its surrounding reaction environment as a whole. We further highlight the interactive influence of the structural transformation and the microenvironment on the catalytic performance of nanocatalysts. We also present future research directions to control the structural evolution of nanocatalysts and tailor their reaction microenvironment to achieve an ideal catalyst for improved electrochemical CO2RR.
Collapse
Affiliation(s)
- Sunmoon Yu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Vass Á, Kormányos A, Kószó Z, Endrődi B, Janáky C. Anode Catalysts in CO 2 Electrolysis: Challenges and Untapped Opportunities. ACS Catal 2022; 12:1037-1051. [PMID: 35096466 PMCID: PMC8787754 DOI: 10.1021/acscatal.1c04978] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Indexed: 02/08/2023]
Abstract
The field of electrochemical carbon dioxide reduction has developed rapidly during recent years. At the same time, the role of the anodic half-reaction has received considerably less attention. In this Perspective, we scrutinize the reports on the best-performing CO2 electrolyzer cells from the past 5 years, to shed light on the role of the anodic oxygen evolution catalyst. We analyze how different cell architectures provide different local chemical environments at the anode surface, which in turn determines the pool of applicable anode catalysts. We uncover the factors that led to either a strikingly high current density operation or an exceptionally long lifetime. On the basis of our analysis, we provide a set of criteria that have to be fulfilled by an anode catalyst to achieve high performance. Finally, we provide an outlook on using alternative anode reactions (alcohol oxidation is discussed as an example), resulting in high-value products and higher energy efficiency for the overall process.
Collapse
Affiliation(s)
| | | | - Zsófia Kószó
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Balázs Endrődi
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| |
Collapse
|
38
|
Chen S, Li W, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N‐Heterocyclic Carbene‐Ligated Copper Single‐Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenghua Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wen‐Hao Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology China Academy of Space Technology Beijing 100094 P. R. China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials School of Material Science and Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Honghui Ou
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zechao Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 P. R. China
| | - Xiaohui Sun
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
39
|
Daems N, Choukroun D, Merino P, Rettenmaier C, Pacquets L, Bergmann A, Santoro G, Vázquez L, Martínez L, Roldan Cuenya B, Martín Gago JA, Breugelmans T. Steering Hydrocarbon Selectivity in CO 2 Electroreduction over Soft-Landed CuO x Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2691-2702. [PMID: 34985252 DOI: 10.1021/acsami.1c17998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO2 reduction reaction (CO2RR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuOx nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO2 electrolyzer and obtain peak CH4 partial current densities of -143 mA cm-2 (mass activity of 7.2 kA/g) with a Faradaic efficiency (FE) of 48% and multicarbon partial current densities of -231 mA cm-2 at 76% FE (FEC2H4 = 56%). Using atomic force microscopy, electron microscopy, and quasi in situ X-ray photoelectron spectroscopy, we trace back the divergence in hydrocarbon selectivity to differences in NP film morphology and rule out the influence of both the NP size (3-15 nm, >20 μg cm-2) and in situ oxidation state. We show that the combination of the O2 flow rate to the aggregation zone during NP growth and deposition time, which affect the NP production rate and mass loading, respectively, gives rise to the formation of either densely packed CuOx NPs or rough three-dimensional networks made from CuOx NP building blocks, which in turn affects the governing CO2RR mechanism. This study highlights the potential held by SGAS-generated NP films for future CO2RR catalyst layer optimization and upscaling, where the NPs' tunable properties, homogeneity, and the complete absence of organic capping agents may prove invaluable.
Collapse
Affiliation(s)
- Nick Daems
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Daniel Choukroun
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pablo Merino
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Lien Pacquets
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Gonzalo Santoro
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Luis Vázquez
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Lidia Martínez
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Jose Angel Martín Gago
- ESISNA Research Group, Institute of Materials Science of Madrid (CSIC), 28049 Madrid, Spain
| | - Tom Breugelmans
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
40
|
Xie X, Zhang X, Xie M, Xiong L, Sun H, Lu Y, Mu Q, Rummeli MH, Xu J, Li S, Zhong J, Deng Z, Ma B, Cheng T, Goddard WA, Peng Y. Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat Commun 2022; 13:63. [PMID: 35039509 PMCID: PMC8763919 DOI: 10.1038/s41467-021-27768-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Direct implementation of metal-organic frameworks as the catalyst for CO2 electroreduction has been challenging due to issues such as poor conductivity, stability, and limited > 2e− products. In this study, Au nanoneedles are impregnated into a cupric porphyrin-based metal-organic framework by exploiting ligand carboxylates as the Au3+ -reducing agent, simultaneously cleaving the ligand-node linkage. Surprisingly, despite the lack of a coherent structure, the Au-inserted framework affords a superb ethylene selectivity up to 52.5% in Faradaic efficiency, ranking among the best for metal-organic frameworks reported in the literature. Through operando X-ray, infrared spectroscopies and density functional theory calculations, the enhanced ethylene selectivity is attributed to Au-activated nitrogen motifs in coordination with the Cu centers for C-C coupling at the metalloporphyrin sites. Furthermore, the Au-inserted catalyst demonstrates both improved structural and catalytic stability, ascribed to the altered charge conduction path that bypasses the incoherent framework. This study underlines the modulation of reticular metalloporphyrin structure by metal impregnation for steering the CO2 reduction reaction pathway. Metal-organic frameworks are promising catalysts for CO2 electroreduction, yet limited by their poor conductivity and stability. Here, Au nanoneedles are inserted into the metalloporphyrin framework to activate C-C coupling and stabilize the structure for much enhanced ethylene production.
Collapse
Affiliation(s)
- Xulan Xie
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Xiang Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Miao Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Likun Xiong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Hao Sun
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China.,Jiangsu Engineering Laboratory of New Materials for Sewage Treatment and Recycling, Suzhou, 215123, China
| | - Yongtao Lu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Qiaoqiao Mu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Mark H Rummeli
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Jiabin Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Shuo Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China.,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China
| | - Bingyun Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| | - William A Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China. .,Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou, 215006, China. .,Jiangsu Engineering Laboratory of New Materials for Sewage Treatment and Recycling, Suzhou, 215123, China.
| |
Collapse
|
41
|
Zhang H, Yang Y, Liang Y, Li J, Zhang A, Zheng H, Geng Z, Li F, Zeng J. Molecular Stabilization of Sub-Nanometer Cu Clusters for Selective CO 2 Electromethanation. CHEMSUSCHEM 2022; 15:e202102010. [PMID: 34714607 DOI: 10.1002/cssc.202102010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 methanation powered by renewable electricity provides a promising approach to utilizing CO2 in the form of a high-energy-density, clean fuel. Cu nanoclusters have been predicted by theoretical calculations to improve methane selectivity. Direct electrochemical reduction of Cu-based metal-organic frameworks (MOFs) results in large-size Cu nanoparticles which favor multi-carbon products. This study concerns an electrochemical oxidation-reduction method to prepare Cu clusters from MOFs. The derived Cu clusters exhibit a faradaic efficiency of 51.2 % for CH4 with a partial current density of >150 mA cm-2 . High-resolution microscopy, in situ X-ray absorption spectroscopy, in situ Raman spectroscopy, and a range of ex situ spectroscopies indicate that the distinctive CH4 selectivity is due to the sub-nanometer size of the derived materials, as well as stabilization of the clusters by residual ligands of the pristine MOF. This work offers a new insight into steering product selectivity of Cu by an electrochemical processing method.
Collapse
Affiliation(s)
- Han Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yongxiang Liang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Li
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - An Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Han Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fengwang Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jie Zeng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
42
|
Yadav RM, Li Z, Zhang T, Sahin O, Roy S, Gao G, Guo H, Vajtai R, Wang L, Ajayan PM, Wu J. Amine-Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105690. [PMID: 34632637 DOI: 10.1002/adma.202105690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical conversion of carbon dioxide (CO2 ) to methane (CH4 ), which can be used not only as fuel but also as a hydrogen carrier, has drawn great attention for use in supporting carbon capture and utilization. The design of active and selective electrocatalysts with exceptional CO2 -to-CH4 conversion efficiency is highly desirable; however, it remains a challenge. Here a molecular tuning strategy-in situ amine functionalization of nitrogen-doped graphene quantum dots (GQDs) for highly efficient CO2 -to-CH4 conversion is presented. Amine functionalized nitrogen-doped GQDs achieve a CH4 Faradic efficiency (FE) of 63% and 46%, respectively, at CH4 partial current densities of 170 and 258 mA cm-2 , approximating to or even outperforming state-of-the-art Cu-based electrocatalysts. These GQDs also convert CO2 to C2 products mainly including C2 H4 and C2 H5 OH with a maximum FE of ≈10%. A systematic analysis reveals that the CH4 yield varies linearly with amine group content, whereas the C2 production rate is positively dependent on pyridinic N dopant content. This work provides insight into the rational design of carbon catalysts with CO2 -to-CH4 conversion efficiency at the industrially relevant level.
Collapse
Affiliation(s)
- Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Physics, VSSD College, CSJM University, Kanpur, Uttar Pradesh, 208002, India
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Liang Wang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
43
|
Zheng T, Liu C, Guo C, Zhang M, Li X, Jiang Q, Xue W, Li H, Li A, Pao CW, Xiao J, Xia C, Zeng J. Copper-catalysed exclusive CO 2 to pure formic acid conversion via single-atom alloying. NATURE NANOTECHNOLOGY 2021; 16:1386-1393. [PMID: 34531557 DOI: 10.1038/s41565-021-00974-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Converting CO2 emissions, powered by renewable electricity, to produce fuels and chemicals provides an elegant route towards a carbon-neutral energy cycle. Progress in the understanding and synthesis of Cu catalysts has spurred the explosive development of electrochemical CO2 reduction (CO2RR) technology to produce hydrocarbons and oxygenates; however, Cu, as the predominant catalyst, often exhibits limited selectivity and activity towards a specific product, leading to low productivity and substantial post-reaction purification. Here, we present a single-atom Pb-alloyed Cu catalyst (Pb1Cu) that can exclusively (~96% Faradaic efficiency) convert CO2 into formate with high activity in excess of 1 A cm-2. The Pb1Cu electrocatalyst converts CO2 into formate on the modulated Cu sites rather than on the isolated Pb. In situ spectroscopic evidence and theoretical calculations revealed that the activated Cu sites of the Pb1Cu catalyst regulate the first protonation step of the CO2RR and divert the CO2RR towards a HCOO* path rather than a COOH* path, thus thwarting the possibility of other products. We further showcase the continuous production of a pure formic acid solution at 100 mA cm-2 over 180 h using a solid electrolyte reactor and Pb1Cu.
Collapse
Affiliation(s)
- Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chenxi Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China
| | - Menglu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Weiqing Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Aowen Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, People's Republic of China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, People's Republic of China.
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
44
|
Chen S, Li WH, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2021; 61:e202114450. [PMID: 34767294 DOI: 10.1002/anie.202114450] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
45
|
Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Chen S, Wang B, Zhu J, Wang L, Ou H, Zhang Z, Liang X, Zheng L, Zhou L, Su YQ, Wang D, Li Y. Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO 2 Methanation. NANO LETTERS 2021; 21:7325-7331. [PMID: 34493045 DOI: 10.1021/acs.nanolett.1c02502] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing an efficient catalyst for the electrocatalytic CO2 reduction reaction (CO2RR) is highly desired because of environmental and energy issues. Herein, we report a single-atomic-site Cu catalyst supported by a Lewis acid for electrocatalytic CO2 reduction to CH4. Theoretical calculations suggested that Lewis acid sites in metal oxides (e.g., Al2O3, Cr2O3) can regulate the electronic structure of Cu atoms by optimizing intermediate absorption to promote CO2 methanation. Based on these theoretical results, ultrathin porous Al2O3 with enriched Lewis acid sites was explored as an anchor for Cu single atoms; this modification achieved a faradaic efficiency (FE) of 62% at -1.2 V (vs RHE) with a corresponding current density of 153.0 mA cm-2 for CH4 formation. This work demonstrates an effective strategy for tailoring the electronic structure of Cu single atoms for the highly efficient reduction of CO2 into CH4.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bingqing Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R China
| | - Ya-Qiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
47
|
Shi Y, Zhan G, Li H, Wang X, Liu X, Shi L, Wei K, Ling C, Li Z, Wang H, Mao C, Liu X, Zhang L. Simultaneous Manipulation of Bulk Excitons and Surface Defects for Ultrastable and Highly Selective CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100143. [PMID: 34331321 DOI: 10.1002/adma.202100143] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The objective of photocatalytic CO2 reduction (PCR) is to achieve high selectivity for a single energy-bearing product with high efficiency and stability. The bulk configuration usually determines charge carrier kinetics, whereas surface atomic arrangement defines the PCR thermodynamic pathway. Concurrent engineering of bulk and surface structures is therefore crucial for achieving the goal of PCR. Herein, an ultrastable and highly selective PCR using homogeneously doped BiOCl nanosheets synthesized via an inventive molten strategy is presented. With B2 O3 as both the molten salt and doping precursor, this new doping approach ensures boron (B) doping from the surface into the bulk with dual functionalities. Bulk B doping mitigates strong excitonic effects confined in 2D BiOCl by significantly reducing exciton binding energies, whereas surface-doped B atoms reconstruct the BiOCl surface by extracting lattice hydroxyl groups, resulting in intimate B-oxygen vacancy (B-OV) associates. These exclusive B-OV associates enable spontaneous CO2 activation, suppress competitive hydrogen evolution and promote the proton-coupled electron transfer step by stabilizing *COOH for selective CO generation. As a result, the homogeneous B-doped BiOCl nanosheets exhibit 98% selectivity for CO2 -to-CO reduction under visible light, with an impressive rate of 83.64 µmol g-1 h-1 and ultrastability for long-term testing of 120 h.
Collapse
Affiliation(s)
- Yanbiao Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaobing Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiufan Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lujia Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhilin Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chengliang Mao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
48
|
Xiong L, Zhang X, Chen L, Deng Z, Han S, Chen Y, Zhong J, Sun H, Lian Y, Yang B, Yuan X, Yu H, Liu Y, Yang X, Guo J, Rümmeli MH, Jiao Y, Peng Y. Geometric Modulation of Local CO Flux in Ag@Cu 2 O Nanoreactors for Steering the CO 2 RR Pathway toward High-Efficacy Methane Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101741. [PMID: 34219292 DOI: 10.1002/adma.202101741] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/05/2021] [Indexed: 06/13/2023]
Abstract
The electroreduction of carbon dioxide (CO2 RR) to CH4 stands as one of the promising paths for resourceful CO2 utilization in meeting the imminent "carbon-neutral" goal of the near future. Yet, limited success has been witnessed in the development of high-efficiency catalysts imparting satisfactory methane selectivity at a commercially viable current density. Herein, a unique category of CO2 RR catalysts is fabricated with the yolk-shell nanocell structure, comprising an Ag core and a Cu2 O shell that resembles the tandem nanoreactor. By fixing the Ag core and tuning the Cu2 O envelope size, the CO flux arriving at the oxide-derived Cu shell can be regulated, which further modulates the *CO coverage and *H adsorption at the Cu surface, consequently steering the CO2 RR pathway. Density functional theory simulations show that lower CO coverage favors methane formation via stabilizing the intermediate *CHO. As a result, the best catalyst in the flow cell shows a high CH4 Faraday efficiency of 74 ± 2% and partial current density of 178 ± 5 mA cm- 2 at -1.2 VRHE , ranking above the state-of-the-art catalysts reported today for methane production. These findings mark the significance of precision synthesis in tailoring the catalyst geometry for achieving desired CO2 RR performance.
Collapse
Affiliation(s)
- Likun Xiong
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiang Zhang
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Ling Chen
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, Australia
| | - Zhao Deng
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yufeng Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Sun
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Yuebin Lian
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Baiyu Yang
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xuzhou Yuan
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Hui Yu
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Yu Liu
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xiaoqin Yang
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Jun Guo
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Mark H Rümmeli
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, Australia
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| |
Collapse
|
49
|
Affiliation(s)
- Gong Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300372 China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300372 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300372 China
| | - Bin Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300372 China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300372 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300372 China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300372 China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300372 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300372 China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300372 China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300372 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300372 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou Fujian 350207 China
| |
Collapse
|
50
|
Wu H, Kong XY, Wen X, Chai S, Lovell EC, Tang J, Ng YH. Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO
2
Reduction to CH
4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hao Wu
- School of Energy and Environment City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
- Particles and Catalysis Research Group School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Xin Ying Kong
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline School of Engineering Monash University Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Xiaoming Wen
- Centre for Translational Atomaterials Faculty of Science Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| | - Siang‐Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline School of Engineering Monash University Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Emma C. Lovell
- Particles and Catalysis Research Group School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Junwang Tang
- Department of Chemical Engineering University College London Torrington Place London WC1E 7JE UK
| | - Yun Hau Ng
- School of Energy and Environment City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
- Particles and Catalysis Research Group School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|