1
|
Becker J, Bühren V, Schmelzer L, Reckert A, Eickhoff SB, Ritz S, Naue J. Molecular age prediction using skull bone samples from individuals with and without signs of decomposition: a multivariate approach combining analysis of posttranslational protein modifications and DNA methylation. Int J Legal Med 2024:10.1007/s00414-024-03314-z. [PMID: 39256256 DOI: 10.1007/s00414-024-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
The prediction of the chronological age of a deceased individual at time of death can provide important information in case of unidentified bodies. The methodological possibilities in these cases depend on the availability of tissues, whereby bones are preserved for a long time due to their mineralization under normal environmental conditions. Age-dependent changes in DNA methylation (DNAm) as well as the accumulation of pentosidine (Pen) and D-aspartic acid (D-Asp) could be useful molecular markers for age prediction. A combination of such molecular clocks into one age prediction model seems favorable to minimize inter- and intra-individual variation. We therefore developed (I) age prediction models based on the three molecular clocks, (II) examined the improvement of age prediction by combination, and (III) investigated if samples with signs of decomposition can also be examined using these three molecular clocks. Skull bone from deceased individuals was collected to obtain a training dataset (n = 86), and two independent test sets (without signs of decomposition: n = 44, with signs of decomposition: n = 48). DNAm of 6 CpG sites in ELOVL2, KLF14, PDE4C, RPA2, TRIM59 and ZYG11A was analyzed using massive parallel sequencing (MPS). The D-Asp and Pen contents were analyzed by high performance liquid chromatography (HPLC). Age prediction models based on ridge regression were developed resulting in mean absolute errors (MAEs)/root mean square errors (RMSE) of 5.5years /6.6 years (DNAm), 7.7 years /9.3 years (Pen) and 11.7 years /14.6 years (D-Asp) in the test set. Unsurprisingly, a general lower accuracy for the DNAm, D-Asp, and Pen models was observed in samples from decomposed bodies (MAE: 7.4-11.8 years, RMSE: 10.4-15.4 years). This reduced accuracy could be caused by multiple factors with different impact on each molecular clock. To acknowledge general changes due to decomposition, a pilot model for a possible age prediction based on the decomposed samples as training set improved the accuracy evaluated by leave-one-out-cross validation (MAE: 6.6-12 years, RMSE: 8.1-15.9 years). The combination of all three molecular age clocks did reveal comparable MAE and RMSE results to the pure analysis of the DNA methylation for the test set without signs of decomposition. However, an improvement by the combination of all three clocks was possible for the decomposed samples, reducing especially the deviation in case of outliers in samples with very high decomposition and low DNA content. The results demonstrate the general potential in a combined analysis of different molecular clocks in specific cases.
Collapse
Affiliation(s)
- J Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - V Bühren
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - L Schmelzer
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - A Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - S B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, 52428, Juelich, Germany
| | - S Ritz
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany.
| | - J Naue
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Zhou H, Gui J, Zhu L, Mi Y. The Role and Mechanism of the Histone Methyltransferase G9a in Tumors: Update. Onco Targets Ther 2024; 17:449-462. [PMID: 38832355 PMCID: PMC11146345 DOI: 10.2147/ott.s451108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Methylation-mediated gene silencing is closely related to the occurrence and development of human tumors. The euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is highly expressed in many tumors and is generally considered to be an oncogene, which is associated with the poor outcome of many tumors. Combined immunotherapy and immune checkpoint blockade therapy also have good efficacy and certain safety. However, there are still many difficulties in the drugs targeting G9a, and the combined effect and safety of G9a with many drugs is still under study. This article aims to summarize the role and mechanism of G9a and its inhibitors in tumors in the past two years, and to understand the application prospect of G9a from the perspective of diagnosis and treatment.
Collapse
Affiliation(s)
- Hangsheng Zhou
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Jiandong Gui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| |
Collapse
|
3
|
Riccardi F, Tangredi C, Dal Bo M, Toffoli G. Targeted therapy for multiple myeloma: an overview on CD138-based strategies. Front Oncol 2024; 14:1370854. [PMID: 38655136 PMCID: PMC11035824 DOI: 10.3389/fonc.2024.1370854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological disease characterized by the uncontrolled growth of plasma cells primarily in the bone marrow. Although its treatment consists of the administration of combined therapy regimens mainly based on immunomodulators and proteosome inhibitors, MM remains incurable, and most patients suffer from relapsed/refractory disease with poor prognosis and survival. The robust results achieved by immunotherapy targeting MM-associated antigens CD38 and CD319 (also known as SLAMF7) have drawn attention to the development of new immune-based strategies and different innovative compounds in the treatment of MM, including new monoclonal antibodies, antibody-drug conjugates, recombinant proteins, synthetic peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in malignant plasma cells, has gained increasing attention in the panorama of MM target antigens, since its key role in MM tumorigenesis, progression and aggressiveness has been largely reported. Here, our aim is to provide an overview of the most important aspects of MM disease and to investigate the molecular functions of CD138 in physiologic and malignant cell states. In addition, we will shed light on the CD138-based therapeutic approaches currently being tested in preclinical and/or clinical phases in MM and discuss their properties, mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Carmela Tangredi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
4
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Giallongo S, Duminuco A, Dulcamare I, Zuppelli T, La Spina E, Scandura G, Santisi A, Romano A, Di Raimondo F, Tibullo D, Palumbo GA, Giallongo C. Engagement of Mesenchymal Stromal Cells in the Remodeling of the Bone Marrow Microenvironment in Hematological Cancers. Biomolecules 2023; 13:1701. [PMID: 38136573 PMCID: PMC10741414 DOI: 10.3390/biom13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous, non-hematopoietic fibroblast-like cells which play important roles in tissue repair, inflammation, and immune modulation. MSCs residing in the bone marrow microenvironment (BMME) functionally interact with hematopoietic stem progenitor cells regulating hematopoiesis. However, MSCs have also emerged in recent years as key regulators of the tumor microenvironment. Indeed, they are now considered active players in the pathophysiology of hematologic malignancies rather than passive bystanders in the hematopoietic microenvironment. Once a malignant event occurs, the BMME acquires cellular, molecular, and epigenetic abnormalities affecting tumor growth and progression. In this context, MSC behavior is affected by signals coming from cancer cells. Furthermore, it has been shown that stromal cells themselves play a major role in several hematological malignancies' pathogenesis. This bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective advantage over their normal counterparts and are protected from drug treatment. It is therefore of critical importance to unveil the underlying mechanisms which activate a protumor phenotype of MSCs for defining the unmasked vulnerabilities of hematological cancer cells which could be pharmacologically exploited to disrupt tumor/MSC coupling. The present review focuses on the current knowledge about MSC dysfunction mechanisms in the BMME of hematological cancers, sustaining tumor growth, immune escape, and cancer progression.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Andrea Duminuco
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Tatiana Zuppelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Annalisa Santisi
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Giuseppe A. Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| |
Collapse
|
6
|
Wang L, Yi W, Ma L, Lecea E, Hazlehurst LA, Adjeroh DA, Hu G. Inflammatory Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma: Transcriptional Signature and In Vitro Modeling. Cancers (Basel) 2023; 15:5148. [PMID: 37958322 PMCID: PMC10650304 DOI: 10.3390/cancers15215148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM MSCs) play a tumor-supportive role in promoting drug resistance and disease relapse in multiple myeloma (MM). Recent studies have discovered a sub-population of MSCs, known as inflammatory MSCs (iMSCs), exclusive to the MM BM microenvironment and implicated in drug resistance. Through a sophisticated analysis of public expression data from unexpanded BM MSCs, we uncovered a positive association between iMSC signature expression and minimal residual disease. While in vitro expansion generally results in the loss of the iMSC signature, our meta-analysis of additional public expression data demonstrated that cytokine stimulation, including IL1-β and TNF-α, as well as immune cells such as neutrophils, macrophages, and MM cells, can reactivate the signature expression of iMSCs to varying extents. These findings underscore the importance and potential utility of cytokine stimulation in mimicking the gene expression signature of early passage of iMSCs for functional characterizations of their tumor-supportive roles in MM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Li Ma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Emily Lecea
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
7
|
Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol 2023; 14:1243997. [PMID: 37744361 PMCID: PMC10516567 DOI: 10.3389/fimmu.2023.1243997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F. Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Marin-Bejar O, Romero-Moya D, Rodriguez-Ubreva J, Distefano M, Lessi F, Aretini P, Liquori A, Castaño J, Kozyra E, Kotmayer L, Bueno C, Cervera J, Rodriguez-Gallego JC, Nomdedeu JF, Murillo-Sanjuán L, De Heredia CD, Pérez-Martinez A, López-Cadenas F, Martínez-Laperche C, Dorado-Herrero N, Marco FM, Prósper F, Menendez P, Valcárcel D, Ballestar E, Bödör C, Bigas A, Catalá A, Wlodarski MW, Giorgetti A. Epigenome profiling reveals aberrant DNA methylation signature in GATA2 deficiency. Haematologica 2023; 108:2551-2557. [PMID: 36815365 PMCID: PMC10483368 DOI: 10.3324/haematol.2022.282305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Oskar Marin-Bejar
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Barcelona.
| | - Damia Romero-Moya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Barcelona
| | | | - Maximiliano Distefano
- Department of Hematology and Oncology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona
| | - Francesca Lessi
- Fondazione Pisana Per la Scienza ONLUS (FPS), San Giuliano Terme
| | - Paolo Aretini
- Fondazione Pisana Per la Scienza ONLUS (FPS), San Giuliano Terme
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid
| | - Julio Castaño
- Advanced and Cell Therapy Services. Banc de Sang i Teixits, Barcelona
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine; Faculty of Biology, University of Freiburg, Freiburg
| | - Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University. Budapest, Hungary
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute. Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona
| | - José Cervera
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia
| | - José Carlos Rodriguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain; Department of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria
| | - Josep F Nomdedeu
- Servei d'Hematologia Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, IIB Sant Pau/Josep Carreras Leukaemia Research Institute (IJC), Barcelona
| | - Laura Murillo-Sanjuán
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona
| | - Cristina Díaz De Heredia
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona
| | - Antonio Pérez-Martinez
- Pediatric Department, Universidad Autonoma de Madrid, Madrid, Spain; Hospital La Paz Institute for Health Research, Madrid, Spain; Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid
| | - Félix López-Cadenas
- Servicio de Hematología Hospital Clínico Universitario de Salamanca, salamanca, Spain; Instituto Biosanitario de Salamanca (IBSAL). Salamanca
| | - Carolina Martínez-Laperche
- Servicio de Hematología, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid
| | - Nieves Dorado-Herrero
- Servicio de Hematología, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid
| | - Francisco M Marco
- Immunology Department, Dr. Balmis General University Hospital; Institute for Health and Biomedical Research (ISABIAL), Alicante
| | - Felipe Prósper
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Area de Hemato-Oncología, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain; Servicio de Hematologia, CCUN, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona
| | - Pablo Menendez
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Josep Carreras Leukaemia Research Institute. Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain; Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III, Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - David Valcárcel
- Servei d'Hematologia, Vall d'Hebron Hospital Universitari; Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University. Budapest, Hungary
| | - Anna Bigas
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Programa de Investigación en Cáncer, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Barcelona
| | - Albert Catalá
- Department of Hematology and Oncology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Barcelona, Spain; Fondazione Pisana Per la Scienza ONLUS (FPS), San Giuliano Terme, Italy; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona.
| |
Collapse
|
9
|
Zhao Z, Zhang L, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front Immunol 2023; 14:1166536. [PMID: 37261347 PMCID: PMC10227589 DOI: 10.3389/fimmu.2023.1166536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic modification is a complex process of reversible and heritable alterations in gene function, and the combination of epigenetic and metabolic alterations is recognized as an important causative factor in diseases such as inflammatory bowel disease (IBD), osteoarthritis (OA), systemic lupus erythematosus (SLE), and even tumors. Mesenchymal stem cell (MSC) and MSC-derived exosome (MSC-EXO) are widely studied in the treatment of inflammatory diseases, where they appear to be promising therapeutic agents, partly through the potent regulation of epigenetic modifications such as DNA methylation, acetylation, phosphorylation, and expression of regulatory non-coding RNAs, which affects the occurrence and development of inflammatory diseases. In this review, we summarize the current research on the role of MSC-EXO in inflammatory diseases through their modulation of epigenetic modifications and discuss its potential application in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Shao C, Liu Y, Zhao Y, Jing Y, Li J, Lv Z, Fu T, Wang Z, Li G. DNA methyltransferases inhibitor azacitidine improves the skeletal phenotype of mild osteogenesis imperfecta by reversing the impaired osteogenesis and excessive osteoclastogenesis. Bone 2023; 170:116706. [PMID: 36822490 DOI: 10.1016/j.bone.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI), as a disease of congenital bone dysplasia, is often accompanied by the abnormal alteration of bone absorption and bone formation. DNA methyltransferases (Dnmts) can regulate the gene expression involved in osteogenesis and osteoclastogenesis. Dnmts changes and their effects on bone cells under OI is poorly understood. METHODS The Dnmts expression in adipose derived mesenchymal stem cells (ADSCs), bone marrow derived pre-osteoclasts (pre-Ocs) and femurs of Col1a2oim/+ and Col1a1+/-365 mice, both modeling mild OI types, were determined. The effects of azacitidine (Aza) administration and Dnmt3a knockdown by ShRNA on the osteogenic differentiation of ADSCs together with osteoclasts (Ocs) production of pre-Ocs were studied in vitro. The synthesis and secretion of collagen fibers of OI derived ADSCs were examined. The therapeutic outcomes of intraperitoneal (i.p.) infused Aza (1 mg/kg/2d) for 30 days were evaluated in OI mice. RESULTS Obviously elevated expression of Dnmts, especially Dnmt3a, existed in ADSCs, pre-Ocs, and femurs isolated from OI modeled mice. Much more collagen molecules of mutant ADSCs were secreted into the extracellular medium post Aza addition. Both Aza administration and Dnmt3a knockdown effectively enhanced the bone-forming capacity of affected ADSCs and reduced Ocs formation of OI mice in vitro. Aza treatment apparently improved the femora microstructure and biomechanical properties, increased bone formation and decreased the number of Ocs in mice with OI. CONCLUSION Highly expressed Dnmt3a contributed to the impaired osteogenesis and enhanced osteoclastogenesis of collagen defect-related OI. Aza medication effectively improved the femora phenotype of the two types of OI modeled mice partly by Dnmts inhibition and modulating cell stress response. These findings facilitated understanding the role of Dnmts alteration in skeletal pathological development of mild OI and preliminary confirmed the therapeutic potential of Dnmts depressants in mild OI treatment. Still, further researches are needed to explore the specific function of Dnmts in OI bones and clarify the benefits of Aza administration in OI treatment.
Collapse
Affiliation(s)
- Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
11
|
Genome-Wide Methylation Changes Associated with Replicative Senescence and Differentiation in Endothelial and Bone Marrow Mesenchymal Stromal Cells. Cells 2023; 12:cells12020285. [PMID: 36672222 PMCID: PMC9857206 DOI: 10.3390/cells12020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Bone marrow mesenchymal stromal cells (BMSCs) are multipotent cells able to self-renew and differentiate, depending on the microenvironment, into adipocytes and osteoblasts. These cells have a limited number of replications and enter replicative senescence during in vitro expansion. The role of DNA methylation (DNAm) assumes importance in cell function and commitment; however, its exact contribution to BMSC differentiation and replicative senescence is still unclear. We performed a genome-wide DNAm analysis on BMSCs cultured in vitro at early passages and induced to differentiate into adipocytes and osteoblasts, and on replicative senescent BMSCs and HUVECs, to identify DNAm patterns of senescence and differentiation. We also compared BMSCs and HUVECs in replicative senescence and found that, in both cellular systems, genome-wide hypomethylation was accompanied by a higher-than-expected overlap of differentially methylated positions (DMPs) and concordance in terms of direction of the change. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on lineage-independent senescence-associated DMPs revealed 16 common pathways, including Insulin resistance, Molecule adhesion, and Wnt/β-catenin signaling. In both adipogenesis and osteogenesis, we observed a general demethylation of CpG sites compared with undifferentiated BMSCs with a higher number of DMPs in osteogenesis. KEGG analysis resulted in 30 pathways enriched in osteoblasts and only 2 in adipocytes when compared to undifferentiated cells. When comparing differentiated BMSCs with senescent ones, osteogenesis exhibited a greater overlap with senescence in terms of number of DMPs and direction of methylation change compared to adipogenesis. In conclusion, this study may be useful for future research on general mechanisms that occur in replicative senescence and furthermore to identify trajectories of BMSC differentiation and common aspects of differentiated and senescent cells.
Collapse
|
12
|
LncRNA FPASL suppresses fibroblast proliferation through its DNA methylation via DNMT3b in hypertrophic scar. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-9. [PMID: 36514215 PMCID: PMC10157635 DOI: 10.3724/abbs.2022181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being implicated as key regulators of cell proliferation, apoptosis, and differentiation. However, the molecular mechanisms of specific lncRNAs in the context of hypertrophic scar remain largely unclear. Here, we find that the lncRNA FPASL (fibroblast proliferation-associated LncRNA) is downregulated in HS, and FPASL reduces fibroblast proliferation and colony formation and blocks cell cycle progression. Using GO annotation enrichment analysis along with AZC (a specific inhibitor of DNA methylation), we identify that DNA methylation is responsible for downregulating FPASL in hypertrophic scar. Subsequent studies demonstrate that high expression of DNMT3b inhibits FPASL expression in HS. Mechanistic study reveals a significant increase in fibroblast proliferation after transfection with LNA-FPASL, which is further inhibited by knockdown of DNMT3b. Thus, our study reveals that DNMT3b mediates hypermethylation of the lncRNA FPASL promoter and the downregulation of lncRNA FPASL promotes fibroblast proliferation in hypertrophic scar.
Collapse
|
13
|
[The guidelines for diagnosis and treatment of myeloma bone disease in China (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:979-985. [PMID: 36709102 PMCID: PMC9939330 DOI: 10.3760/cma.j.issn.0253-2727.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 01/30/2023]
|
14
|
Zhang F, Zhuang J. Pathophysiology and therapeutic advances in myeloma bone disease. Chronic Dis Transl Med 2022; 8:264-270. [PMID: 36420171 PMCID: PMC9676126 DOI: 10.1002/cdt3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022] Open
Abstract
Bone disease is the most common complication in patients with multiple myeloma (MM), and it may lead to skeletal-related events (SREs) such as bone pain, pathological fractures, and spinal cord compression, which impair a patients' quality of life and survival. The pathogenesis of myeloma bone disease (MBD) involves disruption of bone reconstitution balance including excessive activation of osteoclasts, inhibition of osteoblasts, and participation of osteocytes and bone marrow stromal cells. Various factors, such as the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG), dickkopf-1 (DKK-1), sclerostin, and activin-A, are involved in the development of MBD. Bisphosphonates and the anti-RANKL antibody denosumab are currently the main treatment options for MBD, delaying the onset of SREs. Denosumab is preferred in patients with MM and renal dysfunction. Although effective drugs have been approved, antimyeloma therapy is the most important method for controlling bone disease.
Collapse
Affiliation(s)
- Fujing Zhang
- Department of HematologyPeking Union Medical College HospitalBeijingChina
- Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Junling Zhuang
- Department of HematologyPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
15
|
Cao YJ, Zheng YH, Li Q, Zheng J, Ma LT, Zhao CJ, Li T. MSC Senescence-Related Genes Are Associated with Myeloma Prognosis and Lipid Metabolism-Mediated Resistance to Proteasome Inhibitors. JOURNAL OF ONCOLOGY 2022; 2022:4705654. [PMID: 36467498 PMCID: PMC9711959 DOI: 10.1155/2022/4705654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2024]
Abstract
BACKGROUND Complex carcinogenic mechanisms and the existence of tumour heterogeneity in multiple myeloma (MM) prevent the most commonly used staging system from effectively interpreting the prognosis of patients. Since the microenvironment plays an important role in driving tumour development and MM occurs most often in middle-aged and elderly patients, we hypothesize that ageing of bone marrow mesenchymal stem cells (BM-MSCs) may be associated with the progression of MM. METHODS In this study, we collected the transcriptome data on MM from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed genes in both senescent MSCs and MM tumour cells were considered relevant damaged genes. GO and KEGG analyses were applied for functional evaluation. A PPI network was constructed to identify hub genes. Subsequently, we studied the damaged genes that affected the prognosis of MM. Least absolute shrinkage and selection operator (lasso) regression was used to identify the most important features, and a risk model was created. The reliability of the risk model was evaluated with the other 3 GEO validation cohorts. In addition, ROC analysis was used to evaluate the novel risk model. An analysis of immune checkpoint-related genes, tumour immune dysfunction and exclusion (TIDE), and immunophenotypic scoring (IPS) were performed to assess the immune status of risk groups. pRRophetic was utilized to predict the sensitivity to administration of chemotherapeutic agents. RESULTS We identified that MAPK, PI3K, and p53 signalling pathways were activated in both senescent MSCs and tumour cells, and we also located hub genes. In addition, we constructed a 14-gene prognostic risk model, which was analysed with the ROC and validated in different datasets. Further analysis revealed significant differences in predicted risk values across the International Staging System (ISS) stage, sex, and 1q21 copy number. A high-risk group with higher immunogenicity was predicted to have low proteasome inhibitor sensitivity and respond poorly to immunotherapy. Lipid metabolism pathways were found to be significantly different between high-risk and low-risk groups. A nomogram was created by combining clinical data, and the optimization model was further improved. Finally, real-time qPCR was used to validate two bortezomib-resistant myeloma cell lines, and the test confirmed that 10 genes were detected to be expressed in resistant cell lines with the same trend as in the high-risk cohort compared to nonresistant cells. CONCLUSION Fourteen genes related to ageing in BM-MSCs were associated with the prognosis of MM, and by combining this genotypic information with clinical factors, a promising clinical prognostic model was established.
Collapse
Affiliation(s)
- Yang-Jia Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan-Hua Zheng
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University (Air Force Medical University), 169 Changle West Road, Xi'an, China
| |
Collapse
|
16
|
Wang W, Shen Y, Zhang P, Liu L, Sha X, Li H, Wang S, Zhang H, Zhou Y, Shi J. Histone acetylation modification regulator-mediated tumor microenvironment infiltration characteristics and prognostic model of lung adenocarcinoma patients. J Thorac Dis 2022; 14:3886-3902. [PMID: 36389327 PMCID: PMC9641363 DOI: 10.21037/jtd-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The incidence rate of lung adenocarcinoma (LUAD) is rapidly increasing. Recent studies have reported that histone acetylation modification plays an important role in the occurrence and development of tumors. However, the potential role of modification of histone acetylation modification in the development of tumor immune microenvironment is still unclear. METHODS In this study, we comprehensively evaluated the acetylation modification patterns of LUAD samples obtained from various different databases based on 36 histone modification regulators, and constructed a prognostic model based on The Cancer Genome Atlas (TCGA) LUAD cohort using the Cox regression method. The close relationship between histone acetylation and tumor immune characteristics was further studied, including immune infiltration, immune escape and immunotherapy. Finally, we combined three cohort (GSE30219, GSE72094 and GSE50081) from Gene Expression Omnibus (GEO) database to verify the above results. RESULTS We analyzed the expression, mutation and interaction of 36 histone acetylation regulated genes. After Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO), 5 genes (KAT2B, SIRT2, HDAC5, KAT8, HDAC2) were screened to establish the prognosis model and calculate the risk score. Then, patients in the TCGA cohort were divided into high- and low-risk groups based on the risk scores. Further analysis indicated that patients in the high-risk group exhibited significantly reduced overall survival (OS) compared with those in the low-risk group. The high- and low-risk groups exhibited significant differences in terms of tumor immune characteristics, such as immune infiltration, immune escape and immunotherapy. The high-risk group had lower immune score, less immune cell infiltration and higher clinical stage. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. In addition, drugs sensitive for this classification were identified. Finally, the efficacy of the prognostic model was validated by cohort (GSE30219, GSE72094 and GSE50081) from GEO database. CONCLUSIONS Our study provided a robust signature for predicting changing prognosis of patients with LUAD. Thus, it appears to be a potentially useful prognostic tool. Moreover, the important relationship between histone acetylation and tumor immune microenvironment was revealed.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Yao Shen
- School of Medicine, Nantong University, Nantong, China
| | - Peng Zhang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Houqiang Li
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Silin Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China;,School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
17
|
Zhao Z, Wang S, Zucknick M, Aittokallio T. Tissue-specific identification of multi-omics features for pan-cancer drug response prediction. iScience 2022; 25:104767. [PMID: 35992090 PMCID: PMC9385562 DOI: 10.1016/j.isci.2022.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Current statistical models for drug response prediction and biomarker identification fall short in leveraging the shared and unique information from various cancer tissues and multi-omics profiles. We developed mix-lasso model that introduces an additional sample group penalty term to capture tissue-specific effects of features on pan-cancer response prediction. The mix-lasso model takes into account both the similarity between drug responses (i.e., multi-task learning), and the heterogeneity between multi-omics data (multi-modal learning). When applied to large-scale pharmacogenomics dataset from Cancer Therapeutics Response Portal, mix-lasso enabled accurate drug response predictions and identification of tissue-specific predictive features in the presence of various degrees of missing data, drug-drug correlations, and high-dimensional and correlated genomic and molecular features that often hinder the use of statistical approaches in drug response modeling. Compared to tree lasso model, mix-lasso identified a smaller number of tissue-specific features, hence making the model more interpretable and stable for drug discovery applications. Pan-cancer cell lines provide a test bench for exploring gene-drug relationships Multi-omics data were integrated with pharmacological profiles for joint modeling Mix-lasso identifies tissue-specific biomarkers predictive of multi-drug responses Mix-lasso provides small number of stable features for drug discovery applications
Collapse
Affiliation(s)
- Zhi Zhao
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| | - Shixiong Wang
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
| | - Manuela Zucknick
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
- Corresponding author
| | - Tero Aittokallio
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Corresponding author
| |
Collapse
|
18
|
Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S, Zheng H. Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:857045. [PMID: 35756991 PMCID: PMC9213747 DOI: 10.3389/fcell.2022.857045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
20
|
Zhao S, Mo X, Wen Z, Ren L, Chen Z, Lin W, Wang Q, Min S, Chen B. Comprehensive bioinformatics analysis reveals the hub genes and pathways associated with multiple myeloma. Hematology 2022; 27:280-292. [PMID: 35192775 DOI: 10.1080/16078454.2022.2040123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE While the prognosis of multiple myeloma (MM) has significantly improved over the last decade because of new treatment options, it remains incurable. Aetiological explanations and biological targets based on genomics may provide additional help for rational disease intervention. MATERIALS AND METHODS Three microarray datasets associated with MM were downloaded from the Gene Expression Omnibus (GEO) database. GSE125364 and GSE39754 were used as the training set, and GSE13591 was used as the verification set. The differentially expressed genes (DEGs) were obtained from the training set, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate their functions. The hub genes were derived from the combined results of a protein-protein interaction (PPI) network and weighted gene coexpression network analysis (WGCNA). The receiver operating characteristic (ROC) curves of hub genes were plotted to evaluate their clinical diagnostic value. Biological processes and signaling pathways associated with hub genes were explained by gene set enrichment analysis (GSEA). RESULTS A total of 1759 DEGs were identified. GO and KEGG pathway analyses suggested that the DEGs were related to the process of protein metabolism. RPN1, SEC61A1, SPCS1, SRPR, SRPRB, SSR1 and TRAM1 were proven to have clinical diagnostic value for MM. The GSEA results suggested that the hub genes were widely involved in the N-glycan biosynthesis pathway. CONCLUSION The hub genes identified in this study can partially explain the potential molecular mechanisms of MM and serve as candidate biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Xiaoyi Mo
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Zhenxing Wen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Lijuan Ren
- Molecular Diagnosis and Gene Testing Center, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhipeng Chen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Wei Lin
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Shaoxiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Bailing Chen
- Department of Spine Surgery, the First Affiliated Hospital Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Liu R, Zhong Y, Chen R, Chen S, Huang Y, Liu H. Bacterial infections exacerbate myeloma bone disease. J Transl Med 2022; 20:16. [PMID: 34991592 PMCID: PMC8734283 DOI: 10.1186/s12967-021-03187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma is characterized by osteolytic lesions caused by reduced bone formation and activated bone resorption. An important feature of myeloma is a failure of bone healing after successful treatment. In this work, clinical studies indicated a highly positive correlation between bone marrow bacteria abundance and bone lesion numbers of myeloma patients in complete remission. Coculture experiments demonstrated that marrow Escherichia coli (E. coli) promotes osteoclast differentiation and inhibits osteoblast differentiation. Mechanism studies showed that E. coli lipopolysaccharides (LPS) activated NF-κB p65 signaling and reduced phosphorylated smad1/5/9 binding ability with RUNX2 promoter, leading to decreased RUNX2 expression in osteoblast progenitors. Additionally, LPS enhanced phosphorylated NF-κB p65 binding ability with NFATc1 promoter, leading to increased NFATc1 expression in osteoclast progenitors. In vivo studies revealed E. coli contributes to osteolytic bone lesion, and elimination of E. coli infection assists healing of bone lesion in mouse model of myeloma in complete remission. These findings establish a heretofore unrecognized effect for E. coli in the genesis of myeloma bone disease and suggest a new treatment strategy.
Collapse
Affiliation(s)
- Rui Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuping Zhong
- Department of Hematology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shiyi Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yazhu Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Huan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
22
|
Peng S, Gao Y, Shi S, Zhao D, Cao H, Fu T, Cai X, Xiao J. LncRNA-AK137033 inhibits the osteogenic potential of adipose-derived stem cells in diabetic osteoporosis by regulating Wnt signaling pathway via DNA methylation. Cell Prolif 2022; 55:e13174. [PMID: 34953002 PMCID: PMC8780896 DOI: 10.1111/cpr.13174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Bone tissue engineering based on adipose-derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON-ASCs), osteogenic potential of DOP-ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP-ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects. MATERIALS AND METHODS An animal model of DOP was established in mice. CON-ASCs and DOP-ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON-ASCs and DOP-ASCs in vitro. Lentiviruses that carried shRNA-AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON-ASCs and DOP-ASCs in vivo. Hematoxylin and eosin (H&E), Masson's, alizarin red, and alkaline phosphatase (ALP) staining, micro-computed tomography (Micro-CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite-specific PCR (BSP) were used to analyze the functional changes of ASCs. RESULTS The DOP mouse model was established successfully. Compared with CON-ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP-ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON-ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP-ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo. CONCLUSIONS LncRNA-AK137033 inhibits the osteogenic potential of DOP-ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.
Collapse
Affiliation(s)
- Shuanglin Peng
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- National Key Clinical SpecialtyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Yujin Gao
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- Orofacial Reconstruction and Regeneration LaboratoryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
| | - Sirong Shi
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Dan Zhao
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Huayue Cao
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- National Key Clinical SpecialtyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
| | - Ting Fu
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- National Key Clinical SpecialtyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jingang Xiao
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- National Key Clinical SpecialtyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Orofacial Reconstruction and Regeneration LaboratoryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
23
|
Chen T, Yang T, Zhang W, Shao J. The therapeutic potential of mesenchymal stem cells in treating osteoporosis. Biol Res 2021; 54:42. [PMID: 34930472 PMCID: PMC8686520 DOI: 10.1186/s40659-021-00366-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis (OP), a common systemic metabolic bone disease, is characterized by low bone mass, increasing bone fragility and a high risk of fracture. At present, the clinical treatment of OP mainly involves anti-bone resorption drugs and anabolic agents for bone, but their long-term use can cause serious side effects. The development of stem cell therapy and regenerative medicine has provided a new approach to the clinical treatment of various diseases, even with a hope for cure. Recently, the therapeutic advantages of the therapy have been shown for a variety of orthopedic diseases. However, these stem cell-based researches are currently limited to animal models; the uncertainty regarding the post-transplantation fate of stem cells and their safety in recipients has largely restricted the development of human clinical trials. Nevertheless, the feasibility of mesenchymal stem cells to treat osteoporotic mice has drawn a growing amount of intriguing attention from clinicians to its potential of applying the stem cell-based therapy as a new therapeutic approach to OP in the future clinic. In the current review, therefore, we explored the potential use of mesenchymal stem cells in human OP treatment.
Collapse
Affiliation(s)
- Tianning Chen
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui-Autonomous Region, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai, 200135, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai, 200135, China.
| |
Collapse
|
24
|
Schütt J, Nägler T, Schenk T, Brioli A. Investigating the Interplay between Myeloma Cells and Bone Marrow Stromal Cells in the Development of Drug Resistance: Dissecting the Role of Epigenetic Modifications. Cancers (Basel) 2021; 13:cancers13164069. [PMID: 34439223 PMCID: PMC8392438 DOI: 10.3390/cancers13164069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Despite advances made in the last two decades, multiple myeloma (MM) is still an incurable disease. The genetic complexity of MM and the presence of intra-clonal heterogeneity are major contributors to disease relapse and the development of treatment resistance. Additionally, the bone marrow microenvironment is known to play a pivotal role in MM disease progression. Together with genetic modifications, epigenetic changes have been shown to influence MM development and progression. However, epigenetic treatments for MM are still lacking. This is mainly due to the high rate of adverse events of epigenetic drugs in clinical practice. In this review, we will focus on the role of epigenetic modifications in MM disease progression and the development of drug resistance, as well as their role in shaping the interplay between bone marrow stromal cells and MM cells. The current and future treatment strategies involving epigenetic drugs will also be addressed. Abstract Multiple Myeloma (MM) is a malignancy of plasma cells infiltrating the bone marrow (BM). Many studies have demonstrated the crucial involvement of bone marrow stromal cells in MM progression and drug resistance. Together with the BM microenvironment (BMME), epigenetics also plays a crucial role in MM development. A variety of epigenetic regulators, including histone acetyltransferases (HATs), histone methyltransferases (HMTs) and lysine demethylases (KDMs), are altered in MM, contributing to the disease progression and prognosis. In addition to histone modifications, DNA methylation also plays a crucial role. Among others, aberrant epigenetics involves processes associated with the BMME, like bone homeostasis, ECM remodeling or the development of treatment resistance. In this review, we will highlight the importance of the interplay of MM cells with the BMME in the development of treatment resistance. Additionally, we will focus on the epigenetic aberrations in MM and their role in disease evolution, interaction with the BMME, disease progression and development of drug resistance. We will also briefly touch on the epigenetic treatments currently available or currently under investigation to overcome BMME-driven treatment resistance.
Collapse
Affiliation(s)
- Jacqueline Schütt
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Theresa Nägler
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
| | - Tino Schenk
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| | - Annamaria Brioli
- Clinic of Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany
- Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
| |
Collapse
|
25
|
Yang T, Liu X, Kumar SK, Jin F, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev 2021; 51:100872. [PMID: 34384602 DOI: 10.1016/j.blre.2021.100872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of DNA methylation in B cells has been observed during their neoplastic transformation and therefore closely associated with various B-cell malignancies including multiple myeloma (MM), a malignancy of terminally differentiated plasma cells. Emerging evidence has unveiled pronounced alterations in DNA methylation in MM, including both global and gene-specific changes that can affect genome stability and gene transcription. Moreover, dysregulated expression of DNA methylation-modifying enzymes has been related with myelomagenesis, disease progression, and poor prognosis. However, the functional roles of the epigenetic abnormalities involving DNA methylation in MM remain elusive. In this article, we review current understanding of the alterations in DNA methylome and DNA methylation modifiers in MM, particularly focusing on DNA methyltransferases (DNMTs) and tet methylcytosine dioxygenases (TETs). We also discuss how these DNA methylation modifiers may be regulated and function in MM cells, therefore providing a rationale for developing novel epigenetic therapies targeting DNA methylation in MM.
Collapse
Affiliation(s)
- Ting Yang
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| |
Collapse
|
26
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|