1
|
Stoler-Barak L, Schmiedel D, Sarusi-Portuguez A, Rogel A, Blecher-Gonen R, Haimon Z, Stopka T, Shulman Z. SMARCA5-mediated chromatin remodeling is required for germinal center formation. J Exp Med 2024; 221:e20240433. [PMID: 39297882 PMCID: PMC11413417 DOI: 10.1084/jem.20240433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The establishment of long-lasting immunity against pathogens is facilitated by the germinal center (GC) reaction, during which B cells increase their antibody affinity and differentiate into antibody-secreting cells (ASC) and memory cells. These events involve modifications in chromatin packaging that orchestrate the profound restructuring of gene expression networks that determine cell fate. While several chromatin remodelers were implicated in lymphocyte functions, less is known about SMARCA5. Here, using ribosomal pull-down for analyzing translated genes in GC B cells, coupled with functional experiments in mice, we identified SMARCA5 as a key chromatin remodeler in B cells. While the naive B cell compartment remained unaffected following conditional depletion of Smarca5, effective proliferation during B cell activation, immunoglobulin class switching, and as a result GC formation and ASC differentiation were impaired. Single-cell multiomic sequencing analyses revealed that SMARCA5 is crucial for facilitating the transcriptional modifications and genomic accessibility of genes that support B cell activation and differentiation. These findings offer novel insights into the functions of SMARCA5, which can be targeted in various human pathologies.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Schmiedel
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi-Portuguez
- Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronnie Blecher-Gonen
- The Crown Genomics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Zhana Haimon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Banerjee A, Zhang S, Bahar I. Genome structural dynamics: insights from Gaussian network analysis of Hi-C data. Brief Funct Genomics 2024; 23:525-537. [PMID: 38654598 PMCID: PMC11428154 DOI: 10.1093/bfgp/elae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Characterization of the spatiotemporal properties of the chromatin is essential to gaining insights into the physical bases of gene co-expression, transcriptional regulation and epigenetic modifications. The Gaussian network model (GNM) has proven in recent work to serve as a useful tool for modeling chromatin structural dynamics, using as input high-throughput chromosome conformation capture data. We focus here on the exploration of the collective dynamics of chromosomal structures at hierarchical levels of resolution, from single gene loci to topologically associating domains or entire chromosomes. The GNM permits us to identify long-range interactions between gene loci, shedding light on the role of cross-correlations between distal regions of the chromosomes in regulating gene expression. Notably, GNM analysis performed across diverse cell lines highlights the conservation of the global/cooperative movements of the chromatin across different types of cells. Variations driven by localized couplings between genomic loci, on the other hand, underlie cell differentiation, underscoring the significance of the four-dimensional properties of the genome in defining cellular identity. Finally, we demonstrate the close relation between the cell type-dependent mobility profiles of gene loci and their gene expression patterns, providing a clear demonstration of the role of chromosomal 4D features in defining cell-specific differential expression of genes.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
| | - She Zhang
- OpenEye, Cadence Molecular Sciences, Santa Fe, NM 87508, USA
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| |
Collapse
|
3
|
Das P, San Martin R, Hong T, McCord RP. Rearrangement of 3D genome organization in breast cancer epithelial - mesenchymal transition and metastasis organotropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609227. [PMID: 39229150 PMCID: PMC11370564 DOI: 10.1101/2024.08.23.609227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Breast cancer cells exhibit organotropism during metastasis, showing preferential homing to certain organs such as bone, lung, liver, and brain. One potential explanation for this organotropic behavior is that cancer cells gain properties that enable thriving in certain microenvironments. Such specific metastatic traits may arise from gene regulation at the primary tumor site. Spatial genome organization plays a crucial role in oncogenic transformation and progression, but the extent to which chromosome architecture contributes to organ-specific metastatic traits is unclear. This work characterizes chromosome architecture changes associated with organotropic metastatic traits. By comparing a collection of genomic data from different subtypes of localized and lung metastatic breast cancer cells with both normal and cancerous lung cells, we find important trends of genomic reorganization. The most striking differences in 3D genome compartments segregate cell types according to their epithelial vs. mesenchymal status. This EMT compartment signature occurs at genomic regions distinct from transcription-defined EMT signatures, suggesting a separate layer of regulation. Specifically querying organotropism, we find 3D genome changes consistent with adaptations needed to survive in a new microenvironment, with lung metastatic breast cells exhibiting compartment switch signatures that shift the genome architecture to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state. TCGA patient data reveals gene expression changes concordant with these organ-permissive compartment changes. These results suggest that genome architecture provides an additional level of cell fate specification informing organotropism and enabling survival at the metastatic site.
Collapse
|
4
|
Sexton C, Victor Paul S, Barth D, Han M. Genome wide clustering on integrated chromatin states and Micro-C contacts reveals chromatin interaction signatures. NAR Genom Bioinform 2024; 6:lqae136. [PMID: 39363891 PMCID: PMC11447530 DOI: 10.1093/nargab/lqae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
We can now analyze 3D physical interactions of chromatin regions with chromatin conformation capture technologies, in addition to the 1D chromatin state annotations, but methods to integrate this information are lacking. We propose a method to integrate the chromatin state of interacting regions into a vector representation through the contact-weighted sum of chromatin states. Unsupervised clustering on integrated chromatin states and Micro-C contacts reveals common patterns of chromatin interaction signatures. This provides an integrated view of the complex dynamics of concurrent change occurring in chromatin state and in chromatin interaction, adding another layer of annotation beyond chromatin state or Hi-C contact separately.
Collapse
Affiliation(s)
- Corinne E Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Sylvia Victor Paul
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Dylan Barth
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
5
|
Li H, Playter C, Das P, McCord RP. Chromosome compartmentalization: causes, changes, consequences, and conundrums. Trends Cell Biol 2024; 34:707-727. [PMID: 38395734 PMCID: PMC11339242 DOI: 10.1016/j.tcb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The spatial segregation of the genome into compartments is a major feature of 3D genome organization. New data on mammalian chromosome organization across different conditions reveal important information about how and why these compartments form and change. A combination of epigenetic state, nuclear body tethering, physical forces, gene expression, and replication timing (RT) can all influence the establishment and alteration of chromosome compartments. We review the causes and implications of genomic regions undergoing a 'compartment switch' that changes their physical associations and spatial location in the nucleus. About 20-30% of genomic regions change compartment during cell differentiation or cancer progression, whereas alterations in response to a stimulus within a cell type are usually much more limited. However, even a change in 1-2% of genomic bins may have biologically relevant implications. Finally, we review the effects of compartment changes on gene regulation, DNA damage repair, replication, and the physical state of the cell.
Collapse
Affiliation(s)
- Heng Li
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Christopher Playter
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Priyojit Das
- University of Tennessee-Oak Ridge National Laboratory (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Playter C, Golloshi R, Garretson JH, Gonzalez AR, Olajide TH, Saad A, Benson SJ, McCord RP. Deciphering Pre-existing and Induced 3D Genome Architecture Changes involved in Constricted Melanoma Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609017. [PMID: 39229109 PMCID: PMC11370405 DOI: 10.1101/2024.08.21.609017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metastatic cancer cells traverse constricted spaces that exert forces on their nucleus and the genomic contents within. Cancerous tumors are highly heterogeneous and not all cells within them can achieve such a feat. Here, we investigated what initial genome architecture characteristics favor the constricted migratory ability of cancer cells and which arise only after passage through multiple constrictions. We identified a cell surface protein (ITGB4) whose expression correlates with increased initial constricted migration ability in human melanoma A375 cells. Sorting out this subpopulation allowed us to identify cellular and nuclear features that pre-exist and favor migration, as well as alterations that only appear after cells have passed through constrictions. We identified specific genomic regions that experienced altered genome spatial compartment profiles only after constricted migration. Our study reveals 3D genome structure contributions to both selection and induction mechanisms of cell fate change during cancer metastasis.
Collapse
|
7
|
Gil J, Navarrete E, Rosin L, Chowdhury N, Abraham S, Cornilleau G, Lei E, Mozziconacci J, Mirny L, Muller H, Drinnenberg I. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. RESEARCH SQUARE 2024:rs.3.rs-4732646. [PMID: 39149482 PMCID: PMC11326380 DOI: 10.21203/rs.3.rs-4732646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and insulated domains, including topologically associated domains (TADs). Yet, most of these elements of chromosome organization are derived from analyses of a limited set of model organisms, while large eukaryotic groups, including insects, remain mostly unexplored. Here we combine Hi-C, biophysical modeling, and microscopy to characterize the 3D genome architecture of the silkmoth, Bombyx mori. In contrast to other eukaryotes, B. mori chromosomes form highly separated territories. Similar to other eukaryotes, B. mori chromosomes segregate into active A and inactive B compartments, yet unlike in vertebrate systems, contacts between euchromatic A regions appear to be a strong driver of compartmentalization. Remarkably, we also identify a third compartment, called secluded "S," with a unique contact pattern. Each S region shows prominent short-range self-contacts and is remarkably devoid of contacts with the rest of the chromosome, including other S regions. Compartment S hosts a unique combination of genetic and epigenetic features, localizes towards the periphery of CTs, and shows developmental plasticity. Biophysical modeling reveals that the formation of such secluded domains requires highly localized loop extrusion within them, along with a low level of extrusion in A and B. Our Hi-C data supports predicted genome-wide and localized extrusion. Such a broad, non-uniform distribution of extruders has not been seen in other organisms. Overall, our analyses support loop extrusion in insects and highlight the evolutionary plasticity of 3D genome organization, driven by a new combination of known processes.
Collapse
Affiliation(s)
- J. Gil
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - E. Navarrete
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - L.F. Rosin
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - N. Chowdhury
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - S. Abraham
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G. Cornilleau
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - E.P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - J. Mozziconacci
- StrInG Lab, Museum National d’Histoire Naturelle, Paris, France
| | - L.A. Mirny
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H. Muller
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - I.A. Drinnenberg
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| |
Collapse
|
8
|
Gil J, Rosin LF, Navarrete E, Chowdhury N, Abraham S, Cornilleau G, Lei EP, Mozziconacci J, Mirny LA, Muller H, Drinnenberg IA. Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557757. [PMID: 37745315 PMCID: PMC10515926 DOI: 10.1101/2023.09.14.557757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and insulated domains, including topologically associated domains (TADs). Yet, most of these elements of chromosome organization are derived from analyses of a limited set of model organisms, while large eukaryotic groups, including insects, remain mostly unexplored. Here we combine Hi-C, biophysical modeling, and microscopy to characterize the 3D genome architecture of the silkworm, Bombyx mori. In contrast to other eukaryotes, B. mori chromosomes form highly separated territories. Similar to other eukaryotes, B. mori chromosomes segregate into active A and inactive B compartments, yet unlike in vertebrate systems, contacts between euchromatic A regions appear to be a strong driver of compartmentalization. Remarkably, we also identify a third compartment, called secluded S, with a unique contact pattern. Each S region shows prominent short-range self-contacts and is remarkably devoid of contacts with the rest of the chromosome, including other S regions. Compartment S hosts a unique combination of genetic and epigenetic features, localizes towards the periphery of CTs, and shows developmental plasticity. Biophysical modeling reveals that the formation of such secluded domains requires highly localized loop extrusion within them, along with a low level of extrusion in A and B. Our Hi-C data supports predicted genome-wide and localized extrusion. Such a broad, non-uniform distribution of extruders has not been seen in other organisms. Overall, our analyses support loop extrusion in insects and highlight the evolutionary plasticity of 3D genome organization, driven by a new combination of known processes.
Collapse
|
9
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. PLoS Pathog 2024; 20:e1011950. [PMID: 39083560 PMCID: PMC11318927 DOI: 10.1371/journal.ppat.1011950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/12/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knockout (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicated YY1 to be important for EBV-mediated transformation. We confirmed EBNA-LP and YY1 biochemical association in LCLs by endogenous co-immunoprecipitation and found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M. Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicolás M. Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
He M, Li X, Xu B, Lu Y, Lai J, Ling Y, Liu H, An Z, Zhang W, Li F. Reprogramming of 3D genome structure underlying HSPC development in zebrafish. Stem Cell Res Ther 2024; 15:172. [PMID: 38886858 PMCID: PMC11184745 DOI: 10.1186/s13287-024-03798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Development of hematopoietic stem and progenitor cells (HSPC) is a multi-staged complex process that conserved between zebrafish and mammals. Understanding the mechanism underlying HSPC development is a holy grail of hematopoietic biology, which is helpful for HSPC clinical application. Chromatin conformation plays important roles in transcriptional regulation and cell fate decision; however, its dynamic and role in HSPC development is poorly investigated. METHODS We performed chromatin structure and multi-omics dissection across different stages of HSPC developmental trajectory in zebrafish for the first time, including Hi-C, RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChIP-seq. RESULTS The chromatin organization of zebrafish HSPC resemble mammalian cells with similar hierarchical structure. We revealed the multi-scale reorganization of chromatin structure and its influence on transcriptional regulation and transition of cell fate during HSPC development. Nascent HSPC is featured by loose conformation with obscure structure at all layers. Notably, PU.1 was identified as a potential factor mediating formation of promoter-involved loops and regulating gene expression of HSPC. CONCLUSIONS Our results provided a global view of chromatin structure dynamics associated with development of zebrafish HSPC and discovered key transcription factors involved in HSPC chromatin interactions, which will provide new insights into the epigenetic regulatory mechanisms underlying vertebrate HSPC fate decision.
Collapse
Affiliation(s)
- Min He
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bingxiang Xu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yinbo Lu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingyi Lai
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yiming Ling
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Huakai Liu
- Vehicle Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Wu P, Liu Z, Zheng L, Zhou Z, Wang W, Lu C. Comprehensive multimodal and multiomic profiling reveals epigenetic and transcriptional reprogramming in lung tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597667. [PMID: 38895479 PMCID: PMC11185586 DOI: 10.1101/2024.06.06.597667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Epigenomic mechanisms are critically involved in mediation of genetic and environmental factors that underlie cancer development. Histone modifications represent highly informative epigenomic marks that reveal activation and repression of gene activities and dysregulation of transcriptional control due to tumorigenesis. Here, we present a comprehensive epigenomic and transcriptomic mapping of 18 tumor and 20 non-neoplastic tissues from non-small cell lung adenocarcinoma patients. Our profiling covers 5 histone marks including activating (H3K4me3, H3K4me1, and H3K27ac) and repressive (H3K27me3 and H3K9me3) marks and the transcriptome using only 20 mg of tissue per sample, enabled by low-input omic technologies. Using advanced integrative bioinformatic analysis, we uncovered cancer-driving signaling cascade networks, changes in 3D genome modularity, and differential expression and functionalities of transcription factors and noncoding RNAs. Many of these identified genes and regulatory molecules showed no significant change in their expression or a single epigenomic modality, emphasizing the power of integrative multimodal and multiomic analysis using patient samples.
Collapse
|
12
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff JL, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2024:e2401192. [PMID: 38837879 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S Britto
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Neev Trehan
- St Richards Hospital, University Hospitals Sussex NHS Foundation Trust, Chichester, West Sussex, PO19 6SE, UK
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jean L Koff
- Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
13
|
Wang X, Yue F. Hijacked enhancer-promoter and silencer-promoter loops in cancer. Curr Opin Genet Dev 2024; 86:102199. [PMID: 38669773 DOI: 10.1016/j.gde.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Recent work has shown that besides inducing fusion genes, structural variations (SVs) can also contribute to oncogenesis by disrupting the three-dimensional genome organization and dysregulating gene expression. At the chromatin-loop level, SVs can relocate enhancers or silencers from their original genomic loci to activate oncogenes or repress tumor suppressor genes. On a larger scale, different types of alterations in topologically associating domains (TADs) have been reported in cancer, such as TAD expansion, shuffling, and SV-induced neo-TADs. Furthermore, the transformation from normal cells to cancerous cells is usually coupled with active or repressive compartmental switches, and cancer-specific compartments have been proposed. This review discusses the sites, and the other latest advances in studying how SVs disrupt higher-order genome structure in cancer, which in turn leads to oncogene dysregulation. We also highlight the clinical implications of these changes and the challenges ahead in this field.
Collapse
Affiliation(s)
- Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Harris HL, Rowley MJ. Mechanistic drivers of chromatin organization into compartments. Curr Opin Genet Dev 2024; 86:102193. [PMID: 38626581 DOI: 10.1016/j.gde.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
The human genome is not just a simple string of DNA, it is a complex and dynamic entity intricately folded within the cell's nucleus. This three-dimensional organization of chromatin, the combination of DNA and proteins in the nucleus, is crucial for many biological processes and has been prominently studied for its intricate relationship to gene expression. Indeed, the transcriptional machinery does not operate in isolation but interacts intimately with the folded chromatin structure. Techniques for chromatin conformation capture, including genome-wide sequencing approaches, have revealed key organizational features of chromatin, such as the formation of loops by CCCTC-binding factor (CTCF) and the division of loci into chromatin compartments. While much of the recent research and reviews have focused on CTCF loops, we discuss several new revelations that have emerged concerning chromatin compartments, with a particular focus on what is known about mechanistic drivers of compartmentalization. These insights challenge the traditional views of chromatin organization and reveal the complexity behind the formation and maintenance of chromatin compartments.
Collapse
Affiliation(s)
- Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha 68198, NE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha 68198, NE, USA.
| |
Collapse
|
15
|
Park SJ, Nakai K. A computational approach for deciphering the interactions between proximal and distal gene regulators in GC B-cell response. NAR Genom Bioinform 2024; 6:lqae050. [PMID: 38711859 PMCID: PMC11071120 DOI: 10.1093/nargab/lqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Delineating the intricate interplay between promoter-proximal and -distal regulators is crucial for understanding the function of transcriptional mediator complexes implicated in the regulation of gene expression. The present study aimed to develop a computational method for accurately modeling the spatial proximal and distal regulatory interactions. Our method combined regression-based models to identify key regulators through gene expression prediction and a graph-embedding approach to detect coregulated genes. This approach enabled a detailed investigation of the gene regulatory mechanisms for germinal center B cells, accompanied by dramatic rearrangements of the genome structure. We found that while the promoter-proximal regulatory elements were the principal regulators of gene expression, the distal regulators fine-tuned transcription. Moreover, our approach unveiled the presence of modular regulators, such as cofactors and proximal/distal transcription factors, which were co-expressed with their target genes. Some of these modules exhibited abnormal expression patterns in lymphoma. These findings suggest that the dysregulation of interactions between transcriptional and architectural factors is associated with chromatin reorganization failure, which may increase the risk of malignancy. Therefore, our computational approach helps decipher the transcriptional cis-regulatory code spatially interacting.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Li N, Jin K, Liu B, Yang M, Shi P, Heng D, Wang J, Liu L. Single-cell 3D genome structure reveals distinct human pluripotent states. Genome Biol 2024; 25:122. [PMID: 38741214 PMCID: PMC11089717 DOI: 10.1186/s13059-024-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.
Collapse
Affiliation(s)
- Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Bin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Mingzhu Yang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - PanPan Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dai Heng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
17
|
Abdelrazak Morsy MH, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38237141 PMCID: PMC11103171 DOI: 10.1182/blood.2023022241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Magali Merrien
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA
| | - Agnes L. Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Ramírez-Cuéllar J, Ferrari R, Sanz RT, Valverde-Santiago M, García-García J, Nacht AS, Castillo D, Le Dily F, Neguembor MV, Malatesta M, Bonnin S, Marti-Renom MA, Beato M, Vicent GP. LATS1 controls CTCF chromatin occupancy and hormonal response of 3D-grown breast cancer cells. EMBO J 2024; 43:1770-1798. [PMID: 38565950 PMCID: PMC11066098 DOI: 10.1038/s44318-024-00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.
Collapse
Affiliation(s)
- Julieta Ramírez-Cuéllar
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Marta Valverde-Santiago
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Judith García-García
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
| | - Francois Le Dily
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sarah Bonnin
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marc A Marti-Renom
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
- ICREA, Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain.
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
19
|
Wright NE, Kennedy DE, Ai J, Veselits ML, Attaway M, Yoon YM, Durkee MS, Veselits J, Maienschein-Cline M, Mandal M, Clark MR. BRWD1 establishes epigenetic states for germinal center initiation, maintenance, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591154. [PMID: 38712068 PMCID: PMC11071454 DOI: 10.1101/2024.04.25.591154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and Igk recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery. In Brwd1 -/- follicular B cells, GC initiation and class switch recombination following immunization were inhibited. In contrast, in Brwd1 -/- GC B cells there was admixing of chromatin accessibility across GC subsets and transcriptional dysregulation including induction of inflammatory pathways. This global molecular GC dysregulation was associated with specific defects in proliferation, affinity maturation, and tolerance. These data suggest that GC subset identity is required for some but not all GC-attributed functions. Furthermore, these data demonstrate a central role for BRWD1 in orchestrating epigenetic transitions at multiple steps along B cell developmental and activation pathways.
Collapse
|
20
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
21
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
22
|
Massoni-Badosa R, Aguilar-Fernández S, Nieto JC, Soler-Vila P, Elosua-Bayes M, Marchese D, Kulis M, Vilas-Zornoza A, Bühler MM, Rashmi S, Alsinet C, Caratù G, Moutinho C, Ruiz S, Lorden P, Lunazzi G, Colomer D, Frigola G, Blevins W, Romero-Rivero L, Jiménez-Martínez V, Vidal A, Mateos-Jaimez J, Maiques-Diaz A, Ovejero S, Moreaux J, Palomino S, Gomez-Cabrero D, Agirre X, Weniger MA, King HW, Garner LC, Marini F, Cervera-Paz FJ, Baptista PM, Vilaseca I, Rosales C, Ruiz-Gaspà S, Talks B, Sidhpura K, Pascual-Reguant A, Hauser AE, Haniffa M, Prosper F, Küppers R, Gut IG, Campo E, Martin-Subero JI, Heyn H. An atlas of cells in the human tonsil. Immunity 2024; 57:379-399.e18. [PMID: 38301653 PMCID: PMC10869140 DOI: 10.1016/j.immuni.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/07/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.
Collapse
Affiliation(s)
| | | | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Paula Soler-Vila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marco Matteo Bühler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Sonal Rashmi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Clara Alsinet
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Catia Moutinho
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Sara Ruiz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Patricia Lorden
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Giulia Lunazzi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Will Blevins
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Lucia Romero-Rivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Judith Mateos-Jaimez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France; Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Sara Palomino
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hamish W King
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Peter M Baptista
- Department of Otorhinolaryngology, University of Navarra, Pamplona, Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Barcelona, Spain
| | - Cecilia Rosales
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Benjamin Talks
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Department of Otolaryngology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Felipe Prosper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ivo Glynne Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - José Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
23
|
Nolan B, Harris HL, Kalluchi A, Reznicek TE, Cummings CT, Rowley MJ. HiCrayon reveals distinct layers of multi-state 3D chromatin organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579821. [PMID: 38405883 PMCID: PMC10888951 DOI: 10.1101/2024.02.11.579821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The co-visualization of chromatin conformation with 1D 'omics data is key to the multi-omics driven data analysis of 3D genome organization. Chromatin contact maps are often shown as 2D heatmaps and visually compared to 1D genomic data by simple juxtaposition. While common, this strategy is imprecise, placing the onus on the reader to align features with each other. To remedy this, we developed HiCrayon, an interactive tool that facilitates the integration of 3D chromatin organization maps and 1D datasets. This visualization method integrates data from genomic assays directly into the chromatin contact map by coloring interactions according to 1D signal. HiCrayon is implemented using R shiny and python to create a graphical user interface (GUI) application, available in both web or containerized format to promote accessibility. HiCrayon is implemented in R, and includes a graphical user interface (GUI), as well as a slimmed-down web-based version that lets users quickly produce publication-ready images. We demonstrate the utility of HiCrayon in visualizing the effectiveness of compartment calling and the relationship between ChIP-seq and various features of chromatin organization. We also demonstrate the improved visualization of other 3D genomic phenomena, such as differences between loops associated with CTCF/cohesin vs. those associated with H3K27ac. We then demonstrate HiCrayon's visualization of organizational changes that occur during differentiation and use HiCrayon to detect compartment patterns that cannot be assigned to either A or B compartments, revealing a distinct 3rd chromatin compartment. Overall, we demonstrate the utility of co-visualizing 2D chromatin conformation with 1D genomic signals within the same matrix to reveal fundamental aspects of genome organization. Local version: https://github.com/JRowleyLab/HiCrayon Web version: https://jrowleylab.com/HiCrayon.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, 68198, NE, USA
| |
Collapse
|
24
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Morsy MHA, Lilienthal I, Lord M, Merrien M, Wasik AM, Sureda-Gómez M, Amador V, Johansson HJ, Lehtiö J, Garcia-Torre B, Martin-Subero JI, Tsesmetzis N, Tao S, Schinazi RF, Kim B, Sorteberg AL, Wickström M, Sheppard D, Rassidakis GZ, Taylor IA, Christensson B, Campo E, Herold N, Sander B. SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma. Blood 2024; 143:1953-1964. [PMID: 38774451 PMCID: PMC7615944 DOI: 10.1182/blood.2023022241/2210808/blood.2023022241.pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.
Collapse
Affiliation(s)
- Mohammad Hamdy Abdelrazak Morsy
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 21561, Alexandria, Egypt
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Immuno-oncology, Uppsala University Biomedical Centre (BMC), SE-751 24, Uppsala, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Agata Magdalena Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Agnes L Sorteberg
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Devon Sheppard
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgios Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Section, Department of Anatomic Pathology, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women’s, and Children’s Health, Karolinska Institutet, Solna, Sweden
- Paediatric Oncology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, SE14186, Stockholm, Sweden
| |
Collapse
|
26
|
Abraham A, Samaniego-Castruita D, Paladino J, Han I, Ramesh P, Tran MT, Southern RM, Shukla A, Shukla V. Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient Germinal Center B cell responses. RESEARCH SQUARE 2024:rs.3.rs-3871185. [PMID: 38313292 PMCID: PMC10836118 DOI: 10.21203/rs.3.rs-3871185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Differentiating B cells in germinal centers (GC) require tightly coordinated transcriptional and epigenetic transitions to generate efficient humoral immune responses. The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling, crucial for cellular differentiation and development, and are commonly mutated in several cancers, including GC-derived B cell lymphomas. However, the specific roles of distinct BAF complexes in GC B cell biology and generation of functional humoral immune responses are not well understood. Here, we show that the A-T Rich Interaction Domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and therefore high affinity antibody responses. While Arid1a-deficient B cells undergo activation to initiate GC responses, they fail to sustain the GC program resulting in premature GC collapse. We discovered that Arid1a-dependent cBAF activity establishes permissive chromatin landscapes during B cell activation and is concomitantly required to suppress inflammatory gene programs to maintain transcriptional fidelity in early GC B cells. Interestingly, the inflammatory signatures instigated by Arid1a deficiency in early GC B cells recruited neutrophils and inflammatory monocytes and eventually disrupted GC homeostasis. Dampening of inflammatory cues with anti-inflammatory glucocorticoid receptor signaling rescued GC B cell differentiation of Arid1a-deficient B cells, thus highlighting a critical role of inflammation in impeding GC responses. In sum, our work identifies essential functions of Arid1a-dependent BAF activity in promoting efficient GC responses. These findings further support an emerging paradigm in which unrestrained inflammation limits GC-derived humoral responses, as reported in the context of severe bacterial and viral infections.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| | | | - Jillian Paladino
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Prathyaya Ramesh
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Mi Thao Tran
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Rebecca M Southern
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Ashima Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| |
Collapse
|
27
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574580. [PMID: 38260266 PMCID: PMC10802455 DOI: 10.1101/2024.01.07.574580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-γ coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
28
|
Zhao J, Faryabi RB. Spatial promoter-enhancer hubs in cancer: organization, regulation, and function. Trends Cancer 2023; 9:1069-1084. [PMID: 37599153 PMCID: PMC10840977 DOI: 10.1016/j.trecan.2023.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be driven by altered enhancer landscapes. Recent studies in genome organization have revealed that multiple enhancers and promoters can spatially coalesce to form dynamic topological assemblies, known as promoter-enhancer hubs, which strongly correlate with elevated gene expression. In this review, we discuss the structure and complexity of promoter-enhancer hubs recently identified in multiple cancer types. We further discuss underlying mechanisms driving dysregulation of promoter-enhancer hubs and speculate on their functional role in pathogenesis. Understanding the role of promoter-enhancer hubs in transcriptional dysregulation can provide insight into new therapeutic approaches to target these complex features of genome organization.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
31
|
Ng M, Verboon L, Issa H, Bhayadia R, Vermunt MW, Winkler R, Schüler L, Alejo O, Schuschel K, Regenyi E, Borchert D, Heuser M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. Myeloid leukemia vulnerabilities embedded in long noncoding RNA locus MYNRL15. iScience 2023; 26:107844. [PMID: 37766974 PMCID: PMC10520325 DOI: 10.1016/j.isci.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The noncoding genome presents a largely untapped source of new biological insights, including thousands of long noncoding RNA (lncRNA) loci. While lncRNA dysregulation has been reported in myeloid malignancies, their functional relevance remains to be systematically interrogated. We performed CRISPRi screens of lncRNA signatures from normal and malignant hematopoietic cells and identified MYNRL15 as a myeloid leukemia dependency. Functional dissection suggests an RNA-independent mechanism mediated by two regulatory elements embedded in the locus. Genetic perturbation of these elements triggered a long-range chromatin interaction and downregulation of leukemia dependency genes near the gained interaction sites, as well as overall suppression of cancer dependency pathways. Thus, this study describes a new noncoding myeloid leukemia vulnerability and mechanistic concept for myeloid leukemia. Importantly, MYNRL15 perturbation caused strong and selective impairment of leukemia cells of various genetic backgrounds over normal hematopoietic stem and progenitor cells in vitro, and depletion of patient-derived xenografts in vivo.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marit Willemijn Vermunt
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leah Schüler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oriol Alejo
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eniko Regenyi
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dirk Heckl
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Kai Y, Liu N, Orkin SH, Yuan GC. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC. BMC Genomics 2023; 24:614. [PMID: 37833630 PMCID: PMC10571287 DOI: 10.1186/s12864-023-09675-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. RESULTS To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. CONCLUSIONS DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.
Collapse
Affiliation(s)
- Yan Kai
- Cancer and Blood Disorders Center, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howards Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Charles Bronfman Institute for Precision Medicine, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Piroeva KV, McDonald C, Xanthopoulos C, Fox C, Clarkson CT, Mallm JP, Vainshtein Y, Ruje L, Klett LC, Stilgenbauer S, Mertens D, Kostareli E, Rippe K, Teif VB. Nucleosome repositioning in chronic lymphocytic leukemia. Genome Res 2023; 33:1649-1661. [PMID: 37699659 PMCID: PMC10691546 DOI: 10.1101/gr.277298.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.
Collapse
Affiliation(s)
- Kristan V Piroeva
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Charlotte McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Charalampos Xanthopoulos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Chelsea Fox
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Jan-Philipp Mallm
- German Cancer Research Center (DKFZ) Heidelberg, Single Cell Open Lab, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Lara C Klett
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Stilgenbauer
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
| | - Daniel Mertens
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Cooperation Unit Mechanisms of Leukemogenesis, 69120 Heidelberg, Germany
| | - Efterpi Kostareli
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom;
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany;
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom;
| |
Collapse
|
34
|
Liu T, Wang Z. HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM. Brief Bioinform 2023; 24:bbad263. [PMID: 37478379 PMCID: PMC10516390 DOI: 10.1093/bib/bbad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
The Hi-C experiments have been extensively used for the studies of genomic structures. In the last few years, spatiotemporal Hi-C has largely contributed to the investigation of genome dynamic reorganization. However, computationally modeling and forecasting spatiotemporal Hi-C data still have not been seen in the literature. We present HiC4D for dealing with the problem of forecasting spatiotemporal Hi-C data. We designed and benchmarked a novel network and named it residual ConvLSTM (ResConvLSTM), which is a combination of residual network and convolutional long short-term memory (ConvLSTM). We evaluated our new ResConvLSTM networks and compared them with the other five methods, including a naïve network (NaiveNet) that we designed as a baseline method and four outstanding video-prediction methods from the literature: ConvLSTM, spatiotemporal LSTM (ST-LSTM), self-attention LSTM (SA-LSTM) and simple video prediction (SimVP). We used eight different spatiotemporal Hi-C datasets for the blind test, including two from mouse embryogenesis, one from somatic cell nuclear transfer (SCNT) embryos, three embryogenesis datasets from different species and two non-embryogenesis datasets. Our evaluation results indicate that our ResConvLSTM networks almost always outperform the other methods on the eight blind-test datasets in terms of accurately predicting the Hi-C contact matrices at future time-steps. Our benchmarks also indicate that all of the methods that we benchmarked can successfully recover the boundaries of topologically associating domains called on the experimental Hi-C contact matrices. Taken together, our benchmarks suggest that HiC4D is an effective tool for predicting spatiotemporal Hi-C data. HiC4D is publicly available at both http://dna.cs.miami.edu/HiC4D/ and https://github.com/zwang-bioinformatics/HiC4D/.
Collapse
Affiliation(s)
- Tong Liu
- Department of Computer Science, University of Miami, 1365 Memorial Drive, 33124, FL, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1365 Memorial Drive, 33124, FL, USA
| |
Collapse
|
35
|
Wright NE, Mandal M, Clark MR. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol 2023; 44:668-677. [PMID: 37573227 PMCID: PMC10530527 DOI: 10.1016/j.it.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.
Collapse
Affiliation(s)
- Nathaniel E Wright
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A, Krishna A, Jacobs M, Cauer G, Pham M, Rao SSP, Dudchenko O, Omer A, Mohajeri K, Kim S, Nichols MH, Davis ES, Gkountaroulis D, Udupa D, Aiden AP, Corces VG, Phanstiel DH, Noble WS, Nir G, Di Pierro M, Seo JS, Talkowski ME, Aiden EL, Rowley MJ. Chromatin alternates between A and B compartments at kilobase scale for subgenic organization. Nat Commun 2023; 14:3303. [PMID: 37280210 PMCID: PMC10244318 DOI: 10.1038/s41467-023-38429-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF's RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.
Collapse
Affiliation(s)
- Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiya Gu
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Moshe Olshansky
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Irene Farabella
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BISB), 17 08028, Barcelona, Spain
- Integrative Nuclear Architecture Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Yossi Eliaz
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Akshay Krishna
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mozes Jacobs
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Gesine Cauer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Melanie Pham
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Suhas S P Rao
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimos Gkountaroulis
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Devika Udupa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - William Stafford Noble
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeong-Sun Seo
- Macrogen Inc, Seoul, Republic of Korea
- Asian Genome Institute, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Michael E Talkowski
- Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Zhang Y, Zhang J, Zhang W, Wang M, Wang S, Xu Y, Zhao L, Li X, Li G. Mapping Multi-factor-mediated Chromatin Interactions to Assess Dysregulation of Lung Cancer-related Genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:573-588. [PMID: 36702236 PMCID: PMC10787015 DOI: 10.1016/j.gpb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Studies on the lung cancer genome are indispensable for developing a cure for lung cancer. Whole-genome resequencing, genome-wide association studies, and transcriptome sequencing have greatly improved our understanding of the cancer genome. However, dysregulation of long-range chromatin interactions in lung cancer remains poorly described. To better understand the three-dimensional (3D) genomic interaction features of the lung cancer genome, we used the A549 cell line as a model system and generated high-resolution chromatin interactions associated with RNA polymerase II (RNAPII), CCCTC-binding factor (CTCF), enhancer of zeste homolog 2 (EZH2), and histone 3 lysine 27 trimethylation (H3K27me3) using long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Analysis showed that EZH2/H3K27me3-mediated interactions further repressed target genes, either through loops or domains, and their distributions along the genome were distinct from and complementary to those associated with RNAPII. Cancer-related genes were highly enriched with chromatin interactions, and chromatin interactions specific to the A549 cell line were associated with oncogenes and tumor suppressor genes, such as additional repressive interactions on FOXO4 and promoter-promoter interactions between NF1 and RNF135. Knockout of an anchor associated with chromatin interactions reversed the dysregulation of cancer-related genes, suggesting that chromatin interactions are essential for proper expression of lung cancer-related genes. These findings demonstrate the 3D landscape and gene regulatory relationships of the lung cancer genome.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohan Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Xu
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Kai Y, Liu N, Orkin SH, Yuan GC. Identifying Quantitatively Differential Chromosomal Compartmentalization Changes and Their Biological Significance from Hi-C data using DARIC. RESEARCH SQUARE 2023:rs.3.rs-2814806. [PMID: 37162846 PMCID: PMC10168473 DOI: 10.21203/rs.3.rs-2814806/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. Results To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. Conclusions DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.
Collapse
Affiliation(s)
| | - Nan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Stuart H Orkin
- Howards Hughes Medical Institute, Boston MA 02115, USA
- Lead contact
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Precision Medicine, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
- Lead contact
| |
Collapse
|
40
|
Lambuta RA, Nanni L, Liu Y, Diaz-Miyar J, Iyer A, Tavernari D, Katanayeva N, Ciriello G, Oricchio E. Whole-genome doubling drives oncogenic loss of chromatin segregation. Nature 2023; 615:925-933. [PMID: 36922594 PMCID: PMC10060163 DOI: 10.1038/s41586-023-05794-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.
Collapse
Affiliation(s)
- Ruxandra A Lambuta
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Luca Nanni
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Juan Diaz-Miyar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Arvind Iyer
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniele Tavernari
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Écublens, Switzerland.
- Swiss Cancer Center Leman, Lausanne, Switzerland.
| |
Collapse
|
41
|
Paul P, Stüssi G, Bruscaggin A, Rossi D. Genetics and epigenetics of CLL. Leuk Lymphoma 2023; 64:551-563. [PMID: 36503384 DOI: 10.1080/10428194.2022.2153359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic lymphocytic leukemia (CLL) has a heterogeneous biological behavior, which is highly influenced by its immunogenetic, epigenetic, and genomic properties. The remarkably variable clinical course of the disease has been associated with genetic features such as chromosomal abnormalities, the presence of either high or low numbers of somatic hypermutations (SHM) in the variable region of the immunoglobulin heavy chain locus (IGHV), and somatic mutations of several specific driver genes. Next-generation sequencing (NGS) technologies have provided a comprehensive characterization of the genomic and epigenomic landscape in CLL, elucidating important underlying mechanisms of the disease's biology. The scope of this review is to summarize the most recent discoveries about novel genetic and epigenetic alterations, discussing their impact on clinical outcomes and response to currently available therapy.
Collapse
Affiliation(s)
- Pamella Paul
- Department of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Georg Stüssi
- Department of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology of Southern Switzerland, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology of Southern Switzerland, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
42
|
Wang J, Xue Y, He Y, Quan H, Zhang J, Gao YQ. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res 2023; 33:247-260. [PMID: 36828586 PMCID: PMC10069467 DOI: 10.1101/gr.277206.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.,Changping Laboratory, Beijing, 102206, China
| |
Collapse
|
43
|
Kulis M, Martin-Subero JI. Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications. Br J Haematol 2023; 200:280-290. [PMID: 36121003 DOI: 10.1111/bjh.18465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is not only characterised by driver genetic alterations but by extensive epigenetic changes. Over the last decade, epigenomic studies have described the DNA methylome, chromatin accessibility, histone modifications and the three-dimensional (3D) genome architecture of CLL. Beyond its regulatory role, the DNA methylome contains imprints of the cellular origin and proliferative history of CLL cells. These two aspects are strong independent prognostic factors. Integrative analyses of chromatin marks have uncovered novel regulatory elements and altered transcription factor networks as non-genetic means mediating gene deregulation in CLL. Additionally, CLL cells display a disease-specific pattern of 3D genome interactions. From the technological perspective, we are currently witnessing a transition from bulk omics to single-cell analyses. This review aims at summarising the major findings from the epigenomics field as well as providing a prospect of the present and future of single-cell analyses in CLL.
Collapse
Affiliation(s)
- Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
44
|
Tomás-Daza L, Rovirosa L, López-Martí P, Nieto-Aliseda A, Serra F, Planas-Riverola A, Molina O, McDonald R, Ghevaert C, Cuatrecasas E, Costa D, Camós M, Bueno C, Menéndez P, Valencia A, Javierre BM. Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution. Nat Commun 2023; 14:268. [PMID: 36650138 PMCID: PMC9845235 DOI: 10.1038/s41467-023-35911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover factors and regulatory networks involved in disease pathogenesis.
Collapse
Affiliation(s)
- Laureano Tomás-Daza
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | - Llorenç Rovirosa
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Paula López-Martí
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | | | - François Serra
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Oscar Molina
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Cedric Ghevaert
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Esther Cuatrecasas
- Pediatric Institute of Rare Diseases, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Dolors Costa
- Hospital Clinic, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Cancer Network Biomedical Research Center, Barcelona, Spain
| | - Mireia Camós
- Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona, Spain
- Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
- Center for Biomedical Research in the Rare Diseases Network (CIBERER), Carlos III Health Institute, Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
45
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
46
|
Sureda-Gómez M, Balsas P, Rodríguez ML, Nadeu F, De Bolòs A, Eguileor Á, Kulis M, Castellano G, López C, Giné E, Demajo S, Jares P, Martín-Subero JI, Beà S, Campo E, Amador V. Tumorigenic role of Musashi-2 in aggressive mantle cell lymphoma. Leukemia 2023; 37:408-421. [PMID: 36509891 PMCID: PMC9898029 DOI: 10.1038/s41375-022-01776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
SOX11 overexpression has been associated with aggressive behavior of mantle cell lymphomas (MCL). SOX11 is overexpressed in embryonic and cancer stem cells (CSC) of some tumors. Although CSC have been isolated from primary MCL, their relationship to SOX11 expression and contribution to MCL pathogenesis and clinical evolution remain unknown. Here, we observed enrichment in leukemic and hematopoietic stem cells gene signatures in SOX11+ compared to SOX11- MCL primary cases. Musashi-2 (MSI2) emerged as one of the most significant upregulated stem cell-related genes in SOX11+ MCLs. SOX11 is directly bound to the MSI2 promoter upregulating its expression in vitro. MSI2 intronic enhancers were strongly activated in SOX11+ MCL cell lines and primary cases. MSI2 upregulation was significantly associated with poor overall survival independently of other high-risk features of MCL. MSI2 knockdown decreased the expression of genes related to apoptosis and stem cell features and significantly reduced clonogenic growth, tumor cell survival and chemoresistance in MCL cells. MSI2-knockdown cells had reduced tumorigenic engraftment into mice bone marrow and spleen compared to control cells in xenotransplanted mouse models. Our results suggest that MSI2 might play a key role in sustaining stemness and tumor cell survival, representing a possible novel target for therapeutic interventions in MCL.
Collapse
Affiliation(s)
- Marta Sureda-Gómez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Balsas
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta-Leonor Rodríguez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna De Bolòs
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Eguileor
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Giancarlo Castellano
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Hematology Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Santiago Demajo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Jares
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - José I. Martín-Subero
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Silvia Beà
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
47
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
48
|
Reed KSM, Davis ES, Bond ML, Cabrera A, Thulson E, Quiroga IY, Cassel S, Woolery KT, Hilton I, Won H, Love MI, Phanstiel DH. Temporal analysis suggests a reciprocal relationship between 3D chromatin structure and transcription. Cell Rep 2022; 41:111567. [PMID: 36323252 PMCID: PMC9707392 DOI: 10.1016/j.celrep.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
To infer potential causal relationships between 3D chromatin structure, enhancers, and gene transcription, we mapped each feature in a genome-wide fashion across eight narrowly spaced time points of macrophage activation. Enhancers and genes connected by loops exhibit stronger correlations between histone H3K27 acetylation and expression than can be explained by genomic distance or physical proximity alone. At these looped enhancer-promoter pairs, changes in acetylation at distal enhancers precede changes in gene expression. Changes in gene expression exhibit a directional bias at differential loop anchors; gained loops are associated with increased expression of genes oriented away from the center of the loop, and lost loops are often accompanied by high levels of transcription within the loop boundaries themselves. These results are consistent with a reciprocal relationship where loops can facilitate increased transcription by connecting promoters to distal enhancers, whereas high levels of transcription can impede loop formation.
Collapse
Affiliation(s)
- Kathleen S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marielle L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ivana Yoseli Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shannon Cassel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kamisha T Woolery
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Isaac Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hyejung Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation. Proc Natl Acad Sci U S A 2022; 119:e2207009119. [PMID: 35969760 PMCID: PMC9407307 DOI: 10.1073/pnas.2207009119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.
Collapse
|