1
|
Han Y, Qiu Z, Ji S, Zhao GR. Construction and Optimization of Engineered Saccharomyces cerevisiae for De Novo Synthesis of Phloretin and Its Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:735-746. [PMID: 39723863 DOI: 10.1021/acs.jafc.4c09893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Phloretin and its derivatives are dihydrochalcone compounds with diverse pharmacological properties and biological activities, offering significant potential for applications in the food and pharmaceutical industries. Due to their structural similarity to flavonoids, their extraction and isolation were highly challenging. Although the biosynthesis of phloretin via three distinct pathways has been reported, a systematic comparison within the same host has yet to be conducted. In this study, we employed rational design and synthetic biology approaches to engineer Saccharomyces cerevisiae for de novo synthesis of phloretin and its derivatives. We constructed and evaluated three biosynthetic pathways for phloretin in S. cerevisiae, demonstrating that effective phloretin synthesis is achievable only via the p-coumaryl-CoA pathway. Additionally, by optimizing enzyme screening, strain engineering, and coordinating heterologous pathways with endogenous metabolism, we achieved the highest reported de novo titer of 287.2 mg/L for phloretin, 184.6 mg/L for phlorizin, 103.1 mg/L for trilobatin, and 164.5 mg/L for nothofagin and the first-time synthesis of 4-methylphloretin and hesperetin dihydrochalcone. This study was committed to addressing the growing demand for dihydrochalcones while laying the foundation for the biosynthesis of more complex derivatives.
Collapse
Affiliation(s)
- Yumei Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Zetian Qiu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo District, Qingdao 266237, Shandong, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Shiqi Ji
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo District, Qingdao 266237, Shandong, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhao Y, Simpson A, Nakatsu C, Cross TW, Jones-Hall Y, Jiang Q. Combining vitamin E metabolite 13'-carboxychromanol and a lactic acid bacterium synergistically mitigates colitis and colitis-associated dysbiosis in mice. Free Radic Biol Med 2025; 226:397-407. [PMID: 39547524 DOI: 10.1016/j.freeradbiomed.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Synbiotics may be useful to mitigate intestinal diseases such as ulcerative colitis. Here we show that combining 13'-carboxychromanol (δT3-13'), a metabolite of vitamin E δ-tocotrienol (δT3) via omega-oxidation, and Lactococcus lactis subsp. cremori (L. cremoris), but neither agent alone, significantly attenuated dextran sulfate sodium (DSS)-induced fecal bleeding and diarrhea, histologic colitis and interleukin 1β in mice. The combination of δT3-13'+L. cremoris also synergistically prevented DSS-caused compositional changes in gut microbiota and enriched beneficial bacteria including Lactococcus and Butyricicoccus. Interestingly, the anti-colitis effect correlated with the concentrations of δT3-13'-hydrogenated metabolite that contains 2 double bonds on the side chain (δT2-13'), instead of δT3-13' itself. Moreover, in contrast to δT3-13', combining δT3 and L. cremoris showed modest anti-colitis effects and did not prevent colitis-associated dysbiosis. In addition, ex vivo anaerobic incubation studies revealed that gut microbes selected by δT3-13' in the animal study could metabolize this compound to δT2-13' via hydrogenation, which appeared to be enhanced by L. cremoris. Overall, our study demonstrates that combining δT3-13' and L. cremoris can synergically prevent dysbiosis, and may be a novel synbiotic against colitis potentially via promoting δT3-13' metabolizers, which in turn contributes to superior beneficial effects of the combination.
Collapse
Affiliation(s)
- Yiying Zhao
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Abigayle Simpson
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Cindy Nakatsu
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen Cross
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Qing Jiang
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Zhou Z, Hatzios SK. Microbial metabolism of host-derived antioxidants. Curr Opin Chem Biol 2024; 84:102565. [PMID: 39721219 DOI: 10.1016/j.cbpa.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Humans are exposed to a wide variety of small molecules with antioxidant properties that are poorly metabolized by mammalian cells. However, gastrointestinal microbes encode enzymes that convert these redox-active molecules into nutrient sources and electron acceptors to support bacterial growth in the gut. Here, we describe recent studies highlighting how microbial metabolism of host-derived antioxidants modulates interspecies interactions and provide an overview of the interdisciplinary approaches being used to map these metabolic pathways in vivo. Uncovering microbe-driven biotransformations of redox-active small molecules could create new opportunities to improve human health by modulating redox reactions at the host-microbe interface.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Gaur G, Gänzle M. Biochemical characterization of HcrF from Limosilactobacillus fermentum, a NADH-dependent 2-ene reductase with activity on hydroxycinnamic acids. Lett Appl Microbiol 2024; 77:ovae109. [PMID: 39521943 DOI: 10.1093/lambio/ovae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In fermented plant foods, phenolic compounds are metabolized by 2-ene reductases, which reduce double bonds adjacent to an aromatic rings in phytochemicals, including hydroxycinnamic acids, isoflavones, and flavones. Only few 2-ene reductases of lactic acid bacteria were characterized, including the hydrocinnamic reductases HcrB and Par1, and the daidzein reductase of Lactococcus lactis. This study aimed to characterize HcrF, a homologue of HcrB, in Limosilactobacillus fermentum. HcrF was purified after cloning in Escherichia coli and purification by affinity chromatography. HcrF was optimally active at 30°C-40°C and pH 7.0 and required both flavin mononucleotide and nicotinamide adenine dinucleotide as co-factors. Ferulic, caffeic, p-coumaric, and sinapic acids but not trans-cinnamic acids were reduced to dihydro derivatives. The maximum reaction velocity Vmax of HcrF was highest for ferulic acid. On a phylogenetic tree of 2-ene reductases, HcrF clustered most closely with the hydroxycinnamic acid reductase HcrB of Lactiplantibacillus plantarum. The hydroxycinnamic acid reductase Par1 of Furfurilactobacillus milii and flavone or isoflavone reductases were only distantly related to HcrF. In summary, current knowledge does not allow to predict the substrate specificity of 2-ene reductases on the basis of the protein sequence; this study adds HcrF to the short list of enzymes with known substrate specificity.
Collapse
Affiliation(s)
- Gautam Gaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada, T6G 2P5
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada, T6G 2P5
| |
Collapse
|
5
|
Tang S, Xu C, Zhou Y, Shen Y, Zeng Q, Su D. Akkermansia muciniphila Growth Promoted by Lychee Major Flavonoid through Bacteroides uniformis Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24552-24560. [PMID: 39436683 DOI: 10.1021/acs.jafc.4c07429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) possesses health-promoting properties. Nevertheless, A. muciniphila enrichment remains a challenging endeavor. Quercetin-3-O-rutinose-7-O-α-l-rhamnoside (QRR), a flavonoid found in lychee pulp, has a unique double-substituted glycosylated structure, requiring a specific intestinal microbiota for effective metabolism. Here, QRR was fermented using a coculture of Bacteroides uniformis and A. muciniphila, and the interactions between the two were elucidated in terms of QRR regulation of microbial growth changes and metabolic properties. The results demonstrated that QRR effectively promoted the proliferation of A. muciniphila based on the metabolic action of B. uniformis in vitro, which was evidenced by a notable increase in the number of viable bacteria. Furthermore, the coculture sample exhibited a significant increase in SCFAs. Qualitative analysis of metabolites by UPLC-ESI-Triple-TOF-MS/MS showed that B. uniformis could release sugars on QRR to produce quercetin-3-O-glucoside-7-O-α-rhamnoside and further quercetin. In the coculture and B. uniformis culture, quercetin was converted to taxifolin, which was identified as a crucial intermediate in the metabolism of QRR. Notably, the metabolite kaempferol was only detected in the coculture. The present study reveals the interaction between QRR and the coculture of A. muciniphila and B. uniformis, providing a practical basis for the potential prebiotic value of QRR.
Collapse
Affiliation(s)
- Shuying Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, P.R. China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
6
|
Huang G, Zhang M, Zhang S, Wang J, Zhang R, Dong L, Huang F, Su D, Deng M. Unveiling biotransformation of free flavonoids into phenolic acids and Chromones alongside dynamic migration of bound Phenolics in Lactobacillus-fermented lychee pulp. Food Chem 2024; 457:140115. [PMID: 38905839 DOI: 10.1016/j.foodchem.2024.140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Lactobacillus strains have emerged as promising probiotics for enhancing the bioactivities of plant-based foods associated with flavonoid biotransformation. Employing microbial fermentation and mass spectrometry, we explored flavonoid metabolism in lychee pulp fermented separately by Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Two novel metabolites, 3,5,7-trihydroxychromone and catechol, were exclusively identified in L. plantarum-fermented pulp. Concomitant with consumption of catechin and quercetin glycosides, dihydroquercetin glycosides, 2,4-dihydroxybenzoic acid and p-hydroxyphenyllactic acid were synthesized by two strains through hydrogenation and fission of C-ring. Quantitative analysis revealed that bound phenolics were primarily located in water-insoluble polysaccharides in lychee pulp. Quercetin 3-O-rutinoside was partially liberated from water-insoluble polysaccharides and migrated to water-soluble polysaccharides during fermentation. Meanwhile, substantial accumulations in short-chain fatty acids (increased 1.45 to 3.08-fold) and viable strains (increased by 1.97 to 2.00 Log10 CFU/mL) were observed in fermentative pulp. These findings provide broader insight into microbial biotransformation of phenolics and possible guidance for personalized nutrition.
Collapse
Affiliation(s)
- Guitao Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Mingwei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
7
|
Espín JC, Jarrín‐Orozco MP, Osuna‐Galisteo L, Ávila‐Gálvez MÁ, Romo‐Vaquero M, Selma MV. Perspective on the Coevolutionary Role of Host and Gut Microbiota in Polyphenol Health Effects: Metabotypes and Precision Health. Mol Nutr Food Res 2024; 68:e2400526. [PMID: 39538982 PMCID: PMC11605795 DOI: 10.1002/mnfr.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 11/16/2024]
Abstract
"Personalized nutrition" aims to establish nutritional strategies to improve health outcomes for non-responders. However, it is utopian since most people share similar nutritional requirements. "Precision health," encompassing lifestyles, may be more fitting. Dietary (poly)phenols are "healthy" but non-nutritional molecules (thus, we can live without them). The gut microbiota influences (poly)phenol effects, producing metabolites with different activity than their precursors. Furthermore, producing distinctive metabolites, like urolithins, lunularin, and equol, leads to the term "polyphenol-related gut microbiota metabotypes," grouping individuals based on a genuine microbial metabolism of ellagic acid, resveratrol, and isoflavones, respectively. Additionally, (poly)phenols exert prebiotic-like effects through their antimicrobial activities, typically reducing microbial diversity and modulating microbiota functionality by impacting its composition and transcriptomics. Since the gut microbiota perceives (poly)phenols as a threat, (poly)phenol effects are mostly a consequence of microbiota adaptation through differential (poly)phenol metabolism (e.g., distinctive reductions, dehydroxylations, etc.). This viewpoint is less prosaic than considering (poly)phenols as essential nutritional players in human health, yet underscores their health significance in a coevolutionary partnership with the gut microbiota. In the perspective on the gut microbiota and (poly)phenols interplay, microbiota metabotypes could arbiter health effects. An innovative aspect is also emphasized: modulating the interacting microbial networks without altering the composition.
Collapse
Affiliation(s)
- Juan Carlos Espín
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Paula Jarrín‐Orozco
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - Leire Osuna‐Galisteo
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Romo‐Vaquero
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| | - María Victoria Selma
- Laboratory of Food & Health; Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSIC30100 Campus de EspinardoMurciaSpain
| |
Collapse
|
8
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
9
|
Cao L, Wan M, Xian Z, Zhou Y, Dong L, Huang F, Su D. Lacticaseibacillus casei- and Bifidobacterium breve-fermented red pitaya promotes beneficial microbial proliferation in the colon. Food Funct 2024; 15:9434-9445. [PMID: 39189643 DOI: 10.1039/d4fo02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Red pitaya has been demonstrated to strongly inhibit α-glucosidase activity; however, the impact of red pitaya fermentation by probiotic bacteria on α-glucosidase inhibition remains unclear. In this study, six strains of lactic acid bacteria (Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus bulgaricus, Lacticaseibacillus casei, Lactobacillus acidophilus and Streptococcus thermophilus) and one strain of Bifidobacterium breve were utilized for the fermentation of red pitaya pulp. The α-glucosidase and α-amylase inhibition rates of red pitaya pulp were significantly greater after fermentation by Bifidobacterium breve and Lacticaseibacillus casei than by the other abovementioned strains. The LC group exhibited an α-glucosidase inhibition rate of 99%, with an α-amylase inhibition rate of 89.91%. In contrast, the BB group exhibited an α-glucosidase inhibition rate of 95.28%, accompanied by an α-amylase inhibition rate of 95.28%. Moreover, red pitaya pulp fermented with Bifidobacterium breve and Lacticaseibacillus casei produced a notable quantity of oligosaccharides, which was more than three times greater than that in the other groups. Furthermore, 16S rRNA high-throughput sequencing analysis was conducted to assess alterations in the composition of the gut microbiota. This revealed an increase in the abundance of Lactobacillus and Faecalibacterium in the pulp fermented by Bifidobacterium breve and Lacticaseibacillus casei, whereas the abundance of Sutterella decreased. Further analysis at the species level revealed that Bifidobacterium longum, Faecalibacterium prausnitzii, and Lactobacillus zeae were the dominant strains present during colonic fermentation. These results indicate a beneficial health trend associated with probiotic bacterial fermentation of red pitaya pulp, which is highly important for the development of functional products.
Collapse
Affiliation(s)
- Li Cao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mengxi Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhixing Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Xiang L, Zhuo S, Luo W, Tian C, Xu S, Li X, Zhu Y, Feng R, Chen M. Decoding polyphenol metabolism in patients with Crohn's disease: Insights from diet, gut microbiota, and metabolites. Food Res Int 2024; 192:114852. [PMID: 39147529 DOI: 10.1016/j.foodres.2024.114852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Crohn's disease (CD) is a chronic and progressive inflammatory disease that can involve any part of the gastrointestinal tract. The protective role of dietary polyphenols has been documented in preclinical models of CD. Gut microbiota mediates the metabolism of polyphenols and affects their bioactivity and physiological functions. However, it remains elusive the capacity of microbial polyphenol metabolism in CD patients and healthy controls (HCs) along with its correlation with polyphenols intake and polyphenol-derived metabolites. Thus, we aimed to decode polyphenol metabolism in CD patients through aspects of diet, gut microbiota, and metabolites. Dietary intake analysis revealed that CD patients exhibited decreased intake of polyphenols. Using metagenomic data from two independent clinical cohorts (FAH-SYSU and PRISM), we quantified abundance of polyphenol degradation associated bacteria and functional genes in CD and HCs and observed a lower capacity of flavonoids degradation in gut microbiota residing in CD patients. Furthermore, through analysis of serum metabolites and enterotypes in participants of FAH-SYSU cohort, we observed that CD patients exhibited reduced levels of serum hippuric acid (HA), one of polyphenol-derived metabolites. HA level was higher in healthier enterotypes (characterized by dominance of Ruminococcaceae and Prevotellaceae, dominant by HCs) and positively correlated with multiple polyphenols intake and abundance of bacteria engaged in flavonoids degradation as well as short-chain fatty acid production, which could serve as a biomarker for effective polyphenol metabolism by the gut microbiota and a healthier gut microbial community structure. Overall, our findings provide a foundation for future work exploring the polyphenol-based or microbiota-targeted therapeutic strategies in CD.
Collapse
Affiliation(s)
- Liyuan Xiang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuyu Zhuo
- Department of Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanrong Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunyang Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaozhi Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, China.
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Zhang L, Leng XX, Qi J, Wang N, Han JX, Tao ZH, Zhuang ZY, Ren Y, Xie YL, Jiang SS, Li JL, Chen H, Zhou CB, Cui Y, Chen X, Wang Z, Zhang ZZ, Hong J, Chen HY, Jiang W, Chen YX, Zhao X, Yu J, Fang JY. The adhesin RadD enhances Fusobacterium nucleatum tumour colonization and colorectal carcinogenesis. Nat Microbiol 2024; 9:2292-2307. [PMID: 39169124 DOI: 10.1038/s41564-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Lu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Li Y, Xu T, Tu Y, Li T, Wei Y, Zhou Y. An aldolase-dependent phloroglucinol degradation pathway in Collinsella sp. zg1085. Appl Environ Microbiol 2024; 90:e0104724. [PMID: 39028195 PMCID: PMC11337842 DOI: 10.1128/aem.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Phloroglucinol (1,3,5-trihydroxybenzene) is a key intermediate in the degradation of polyphenols such as flavonoids and hydrolysable tannins and can be used by certain bacteria as a carbon and energy source for growth. The identification of enzymes that participate in the fermentation of phloroglucinol to acetate and butyrate in Clostridia was recently reported. In this study, we present the discovery and characterization of a novel metabolic pathway for phloroglucinol degradation in the bacterium Collinsella sp. zg1085, from marmot respiratory tract. In both the Clostridial and Collinsella pathways, phloroglucinol is first reduced to dihydrophoroglucinol by the NADPH-dependent phloroglucinol reductase (PGR), followed by ring opening to form (S)-3-hydroxy-5-oxohexanoate by a Mn2+-dependent dihydrophloroglucinol cyclohydrolase (DPGC). In the Collinsella pathway, (S)-3-hydroxy-5-oxohexanoate is then cleaved to form malonate semialdehyde and acetone by a newly identified aldolase (HOHA). Finally, a NADP+-dependent malonate-semialdehyde dehydrogenase converts malonate semialdehyde to CO2 and acetyl-CoA, an intermediate in carbon and energy metabolism. Recombinant expression of the Collinsella PGR, DPGC, and HOHA in E. coli enabled the conversion of phloroglucinol into acetone, providing support for the proposed pathway. Experiments with Olsenella profusa, another bacterium containing the gene cluster of interest, show that the PGR, DPGC, HOHA, and MSDH are induced by phloroglucinol. Our findings add to the variety of metabolic pathways for the degradation of phloroglucinol, a widely distributed phenolic compound, in the anaerobic microbiome.IMPORTANCEPhloroglucinol is an important intermediate in the bacterial degradation of polyphenols, a highly abundant class of plant natural products. Recent research has identified key enzymes of the phloroglucinol degradation pathway in butyrate-producing anaerobic bacteria, which involves cleavage of a linear triketide intermediate by a beta ketoacid cleavage enzyme, requiring acetyl-CoA as a co-substrate. This paper reports a variant of the pathway in the lactic acid bacterium Collinsella sp. zg1085, which involves cleavage of the triketide intermediate by a homolog of deoxyribose-5-phosphate aldolase, highlighting the variety of mechanisms for phloroglucinol degradation by different anaerobic bacterial taxa.
Collapse
Affiliation(s)
- Yating Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tong Xu
- Department of Pharmacy, Northern Jiangsu People’s Hospital, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanqin Tu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tong Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Zhao Y, Zhang Y, Yang H, Xu Z, Li Z, Zhang Z, Zhang W, Deng J. A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks). Food Chem 2024; 443:138517. [PMID: 38295564 DOI: 10.1016/j.foodchem.2024.138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Leaves and stalks, which account for about 45% and 25% of broccoli biomass, respectively, are usually discarded during broccoli production, leading to the waste of green resources. In this study, the phytochemical composition and antioxidant capacity of broccoli florets and their by-products (leaves and stalks) were comprehensively analyzed. The metabolomics identified several unique metabolites (e.g., scopoletin, Harpagoside, and sinalbin) in the leaves and stalks compared to florets. Notably, the leaves were found to be a rich source of flavonoids and coumarins, with superior antioxidant capacity. The random forest model and correlation analysis indicated that flavonoids, coumarin, and indole compounds were the important factors contributing to the antioxidant activity. Moreover, the stalks contained higher levels of carbohydrates and exhibited better antioxidant enzyme activity. Together, these results provided valuable data to support the comprehensive utilization of broccoli waste, the development of new products, and the expansion of the broccoli industry chain.
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
14
|
Liu X, Diao N, Song S, Wang W, Cao M, Yang W, Guo C, Chen D. Inflammatory macrophage reprogramming strategy of fucoidan microneedles-mediated ROS-responsive polymers for rheumatoid arthritis. Int J Biol Macromol 2024; 271:132442. [PMID: 38761903 DOI: 10.1016/j.ijbiomac.2024.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
During the pathogenesis of rheumatoid arthritis, inflammatory cells usually infiltrate synovial tissues, notably, M1-type macrophages, whose redox imbalance leads to the degradation of joint structures and deterioration of function. Natural active products play a vital role in immune modulation and antioxidants. In this study, we constructed a ROS-responsive nanoparticle called FTL@SIN, which consists of fucoidan (Fuc) and luteolin (Lut) connected by a ROS-responsive bond, Thioketal (TK), and encapsulated with an anti-rheumatic drug, Sinomenine (SIN), for synergistic anti-inflammatory effects. The FTL@SIN is then dispersed in high molecular weight Fuc-fabricated dissolvable microneedles (FTL@SIN MNs) for local administration. Therapy of FTL@SIN MNs afforded a significant decrease in macrophage inflammation while decreasing key pro-inflammatory cytokines and repolarizing M1 type to M2 type, thereby ameliorating synovial inflammation, and promoting cartilage repair. Additionally, our investigations have revealed that Fucoidan (Fuc) demonstrates synergistic effects, exhibiting superior mechanical strength and enhanced physical stability when compared to microneedles formulated solely with hyaluronic acid. This study combines nanomedicine with traditional Chinese medicine, a novel drug delivery strategy that presents a promising avenue for therapeutic intervention in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shiqing Song
- Rehabilitation Department, Yantai Yuhuangding Hospital, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
15
|
Kim W, Park Y, Kim M, Cha Y, Jung J, Jeon CO, Park W. Sustainable control of Microcystis aeruginosa, a harmful cyanobacterium, using Selaginella tamariscina extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116375. [PMID: 38677071 DOI: 10.1016/j.ecoenv.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
16
|
Li C, Stražar M, Mohamed AMT, Pacheco JA, Walker RL, Lebar T, Zhao S, Lockart J, Dame A, Thurimella K, Jeanfavre S, Brown EM, Ang QY, Berdy B, Sergio D, Invernizzi R, Tinoco A, Pishchany G, Vasan RS, Balskus E, Huttenhower C, Vlamakis H, Clish C, Shaw SY, Plichta DR, Xavier RJ. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell 2024; 187:1834-1852.e19. [PMID: 38569543 PMCID: PMC11071153 DOI: 10.1016/j.cell.2024.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.
Collapse
Affiliation(s)
- Chenhao Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ahmed M T Mohamed
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tina Lebar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Shijie Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Lockart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrea Dame
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qi Yan Ang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Dallis Sergio
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachele Invernizzi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonio Tinoco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Ramachandran S Vasan
- Boston University and NHLBI's Framingham Heart Study, Framingham, MA, USA; Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; University of Texas School of Public Health, San Antonio, TX, USA
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanley Y Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Gao M, Liao C, Fu J, Ning Z, Lv Z, Guo Y. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. J Anim Sci Biotechnol 2024; 15:25. [PMID: 38369501 PMCID: PMC10874562 DOI: 10.1186/s40104-023-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Baicalin and probiotic cocktails are promising feed additives with broad application prospects. While probiotic cocktails are known to enhance intestinal health, the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored. Therefore, this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the health-promoting effects. RESULTS A total of 320 1-day-old male Arbor Acres broilers were divided into 4 groups, each with 8 replicates of 10 chicks per replicate. Over a period of 42 d, the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin (BC), 1,000 g/t probiotic cocktails (PC), or a combination of both BC (37.5 g/t) and PC (1,000 g/t). The results demonstrated that BC + PC exhibited positive synergistic effects, enhancing intestinal morphology, immune function, and barrier function. This was evidenced by increased VH/CD ratio, sIgA levels, and upregulated expression of occludin and claudin-1 (P < 0.05). 16S rRNA analysis indicated that PC potentiated the effects of BC, particularly in the ileum, where BC + PC significantly increased the α-diversity of the ileal microbiota, altered its β-diversity, and increased the relative abundance of Flavonifractor (P < 0.05), a flavonoid-metabolizing bacterium. Furthermore, Flavonifractor positively correlated with chicken ileum crypt depth (P < 0.05). While BC + PC had a limited effect on cecal microbiota structure, the PC group had a very similar microbial composition to BC + PC, suggesting that the effect of PC at the distal end of the gut overshadowed those of BC. CONCLUSIONS We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails. Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum, thereby influencing the ileal microbiota structure. This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota. These findings provide compelling evidence for the future development of feed additive combinations.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Xing H, Cai P, Liu D, Han M, Liu J, Le Y, Zhang D, Hu QN. High-throughput prediction of enzyme promiscuity based on substrate-product pairs. Brief Bioinform 2024; 25:bbae089. [PMID: 38487850 PMCID: PMC10940840 DOI: 10.1093/bib/bbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 03/18/2024] Open
Abstract
The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.
Collapse
Affiliation(s)
- Huadong Xing
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Liu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Yingying Le
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dachuan Zhang
- Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
20
|
Huang G, Zeng Q, Dong L, Zhang R, Zhang M, Huang F, Su D. Divergent metabolism of two lychee (Litchi chinensis Sonn.) pulp flavonols and their modulatory effects on gut microbiota: Discovery of hydroxyethylation in vitro colonic fermentation. Food Chem 2023; 429:136875. [PMID: 37454621 DOI: 10.1016/j.foodchem.2023.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Quercetin 3-O-rutinose-7-O-α-l-rhamnoside (QRR), a characteristic lychee pulp flavonoid, has been linked to diverse bioactivities involving microbial metabolism. By integrating colonic fermentation and mass spectrometry, the catabolites including 7-O-hydroxyethyl-isorhamnetin and 3'-amino-4'-O-methyl-7-O-hydroxyethyl-isorhamnetin were unprecedently identified and unique to QRR metabolism, relative to the structural analog quercetin 3-O-rutinoside (QR) metabolism. These above-described metabolites highlighted a special biotransformation hydroxyethylation in QRR catabolism. QRR was partially deglycosylated into quercetin 3-O-glucoside-7-O-α-l-rhamnoside potentially catalyzed by Bacteroides. QR was more directly degradable to aglycone during colonic fermentation than are QRR. Unlike with QR fermentation, equivalent QRR effectively upregulated concentrations of propionic and butyric acids that were highly relevant with Faecalibacterium and Coprococcus. After fermentation, the relative abundances of Bacteroides uniformis (0.03%) and Akkermansia muciniphila (0.13%) were only upregulated by QRR among all fermentation groups, leading to the enrichments of the corresponding genera. These results further reveal the relationship between flavonoid structures and metabolic characteristics.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Lal S, Sayeed Akhtar M, Faiyaz Khan M, Aldosari SA, Mukherjee M, Sharma AK. Molecular basis of phytochemical-gut microbiota interactions. Drug Discov Today 2023; 28:103824. [PMID: 37949428 DOI: 10.1016/j.drudis.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Dysbiosis-associated molecular pathology is significantly involved in developing and perpetuating metabolic disorders, disrupting host energy regulation, and triggering inflammatory signaling cascades, insulin resistance, and metabolic dysfunction. Concurrently, numerous phytoconstituents are able to interact with the gut microbiota and produce bioactive metabolites that influence host cellular pathways, inflammation, and metabolic processes. These effects include improved insulin sensitivity, lipid metabolism regulation, and suppression of chronic inflammation, highlighting the therapeutic potential of phytoconstituents against metabolic abnormalities. Understanding this symbiotic relationship and the underlying molecular cascades offers innovative strategies for tailored interventions and promising therapeutic approaches to address the growing burden of metabolic disease.
Collapse
Affiliation(s)
- Samridhi Lal
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| |
Collapse
|
22
|
Silva MC, Cunha G, Firmino P, Sallum LO, Menezes A, Dutra J, de Araujo-Neto J, Batista AA, Ellena J, Napolitano HB. Structural and Anticancer Studies of Methoxyflavone Derivative from Strychnos pseudoquina A.St.-Hil. (Loganiaceae) from Brazilian Cerrado. ACS OMEGA 2023; 8:40764-40774. [PMID: 37929093 PMCID: PMC10621014 DOI: 10.1021/acsomega.3c05841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
The Cerrado biome is the world's largest and most diversified tropical savanna. Despite its diversity, there remains a paucity of scientific discussion and evidence about the medicinal use of Cerrado plants. One of the greatest challenges is the complexity of secondary metabolites, such as flavonoids, present in those plants and their extraction, purification, and characterization, which involves a wide range of approaches, tools, and techniques. Notwithstanding these difficulties, the search for accurately proven medicinal plants against cancer, a leading cause of death worldwide, has contributed to this growing area of research. This study set out to extract, purify, and characterize 3-O-methylquercetin isolated from the plant Strychnos pseudoquina A.St.-Hil. (Loganiaceae) and to test it for antiproliferative activity and selectivity against different tumor and nontumor human cell lines. A combined-method approach was employed using 1H and 13C nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, Hirshfeld surface analysis, and theoretical calculations to extensively characterize this bioflavonoid. 3-O-methylquercetin melts around 275 °C and crystallizes in a nonplanar conformation with an angle of 18.02° between the pyran ring (C) and the phenyl ring (B), unlike quercetin and luteolin, which are planar. Finally, the in vitro cytotoxicity of 3-O-methylquercetin was compared with data from quercetin, luteolin, and cisplatin, showing that structural differences influenced the antiproliferative activity and the selectivity against different tumor cell lines.
Collapse
Affiliation(s)
- Marianna C. Silva
- Laboratório
de Novos Materiais, Universidade Evangélica
de Goiás, 75083-515 Anápolis, GO, Brazil
| | - Gracielle Cunha
- Laboratório
de Produtos Naturais, Universidade Estadual
de Goiás, 75132-903 Anápolis, GO, Brazil
| | - Pollyana Firmino
- Laboratório
Multiusuário de Cristalografia Estrutural, Instituto de Física
de São Carlos, Universidade de São
Paulo, 13566-590 São Carlos, SP, Brazil
| | - Loide O. Sallum
- Laboratório
de Novos Materiais, Universidade Evangélica
de Goiás, 75083-515 Anápolis, GO, Brazil
| | - Antônio Menezes
- Laboratório
de Produtos Naturais, Universidade Estadual
de Goiás, 75132-903 Anápolis, GO, Brazil
| | - Jocely Dutra
- Laboratório
de Estrutura e Reatividade de Compostos Inorgânicos, Departamento
de Química, Universidade Federal
de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - João de Araujo-Neto
- Laboratório
de Bioinorgânica, Catálise e Farmacologia, Instituto
de Química, Universidade de São
Paulo, 05508-000 São Paulo, SP, Brazil
| | - Alzir A. Batista
- Laboratório
de Estrutura e Reatividade de Compostos Inorgânicos, Departamento
de Química, Universidade Federal
de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Javier Ellena
- Laboratório
Multiusuário de Cristalografia Estrutural, Instituto de Física
de São Carlos, Universidade de São
Paulo, 13566-590 São Carlos, SP, Brazil
| | - Hamilton B. Napolitano
- Grupo
de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brazil
| |
Collapse
|
23
|
Zhou Y, Wei Y, Jiang L, Jiao X, Zhang Y. Anaerobic phloroglucinol degradation by Clostridium scatologenes. mBio 2023; 14:e0109923. [PMID: 37341492 PMCID: PMC10470551 DOI: 10.1128/mbio.01099-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Polyphenols are abundant in nature, and their anaerobic biodegradation by gut and soil bacteria is a topic of great interest. The O2 requirement of phenol oxidases is thought to explain the microbial inertness of phenolic compounds in anoxic environments, such as peatlands, termed the enzyme latch hypothesis. A caveat of this model is that certain phenols are known to be degraded by strict anaerobic bacteria, although the biochemical basis for this process is incompletely understood. Here, we report the discovery and characterization of a gene cluster in the environmental bacterium Clostridium scatologenes for the degradation phloroglucinol (1,3,5-trihydroxybenzene), a key intermediate in the anaerobic degradation of flavonoids and tannins, which constitute the most abundant polyphenols in nature. The gene cluster encodes the key C-C cleavage enzyme dihydrophloroglucinol cyclohydrolase, as well as (S)-3-hydroxy-5-oxo-hexanoate dehydrogenase and triacetate acetoacetate-lyase, which enable phloroglucinol to be utilized as a carbon and energy source. Bioinformatics studies revealed the presence of this gene cluster in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on human health and carbon preservation in peat soils and other anaerobic environmental niches. IMPORTANCE This study provides novel insights into the microbiota's anaerobic metabolism of phloroglucinol, a critical intermediate in the degradation of polyphenols in plants. Elucidation of this anaerobic pathway reveals enzymatic mechanisms for the degradation of phloroglucinol into short-chain fatty acids and acetyl-CoA, which are used as a carbon and energy source for bacterium growth. Bioinformatics studies suggested the prevalence of this pathway in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on carbon preservation in peat soils and human gut health.
Collapse
Affiliation(s)
- Yan Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Chu Z, Han S, Luo Y, Zhou Y, Zhu L, Luo F. Targeting gut-brain axis by dietary flavonoids ameliorate aging-related cognition decline: Evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 64:10281-10302. [PMID: 37300491 DOI: 10.1080/10408398.2023.2222404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aging-related cognitive impairment, mainly Alzheimer's disease (AD), has been widely studied. However, effective prevention and treatment methods are still lacking. In recent years, researchers have observed beneficial effects of plant-based supplements, such as flavonoids, on cognitive protection. This provides a new clue for the prevention of cognitive dysfunction. Studies have shown that dietary flavonoids have neuroprotective effects, but the mechanism is not clear. In this review, we systematically reviewed the research progress on the effects of dietary flavonoids on gut microbes and their metabolites, and concluded that flavonoids could improve cognitive function through the gut-brain axis. Flavonoids can be absorbed through the intestine, cross the blood-brain barrier, and enter the brain tissue. Flavonoids can inhibit the expression and secretion of inflammatory factors in brain tissue, reduce the damage caused by oxidative stress, clear neural damage proteins and inhibit neuronal apoptosis, thereby ameliorating age-related cognitive disorders. Future work will continue to explore the gut-brain axis and target genes regulated by flavonoids. In addition, clinical research and its mechanisms need to be further explored to provide solutions or advise for patients with cognitive impairment.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
25
|
Sun J, Zhu Z, Lin Q, Qi S, Li Q, Zhou Y, Li R. Metabolic Engineering of Escherichia coli for the Biosynthesis of 3-Phenylpropionic Acid and 3-Phenylpropyl Acetate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7451-7458. [PMID: 37146254 DOI: 10.1021/acs.jafc.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
3-Phenylpropionic acid (3PPA) and its derivative 3-phenylpropyl acetate (3PPAAc) are important aromatic compounds with broad applications in the cosmetics and food industries. In this study, we constructed a plasmid-free 3PPA-producing Escherichia coli strain and designed a novel 3PPAAc biosynthetic pathway. A module containing tyrosine ammonia lyase and enoate reductase, evaluated under the control of different promoters, was combined with phenylalanine-overproducing strain E. coli ATCC31884, enabling the plasmid-free de novo production of 218.16 ± 43.62 mg L-1 3PPA. The feasibility of the pathway was proved by screening four heterologous alcohol acetyltransferases, which catalyzed the transformation of 3-phenylpropyl alcohol into 3PPAAc. Afterward, 94.59 ± 16.25 mg L-1 3PPAAc was achieved in the engineered E. coli strain. Overall, we have not only demonstrated the potential of de novo synthesis of 3PPAAc in microbes for the first time but also provided a platform for the future of biosynthesis of other aromatic compounds.
Collapse
Affiliation(s)
- Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingfang Lin
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shilian Qi
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qianqian Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
26
|
Xu H, Yu H, Fu J, Zhang ZW, Hu JC, Lu JY, Yang XY, Bu MM, Jiang JD, Wang Y. Metabolites analysis of plantamajoside based on gut microbiota-drug interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154841. [PMID: 37196513 DOI: 10.1016/j.phymed.2023.154841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
27
|
Long Z, Li K, Xue Y, Sun Y, Li J, Su Z, Sun J, Liu Q, Liu H, Wei T. Purification and biochemical characterization of a novel ene- reductase from Kazachstania exigua HSC6 for dihydro-β-ionone from β-ionone. Biotechnol Lett 2023; 45:499-508. [PMID: 36738355 DOI: 10.1007/s10529-023-03355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE We purified and characterized a novel ene-reductase (KaDBR1) from Kazachstania exigua HSC6 for the synthesis of dihydro-β-ionone from β-ionone. METHODS KaDBR1 was purified to homogeneity by ammonium sulfate precipitation and phenyl-Sepharose Fast Flow and Q-Sepharose chromatography. The purified enzyme was characterized by measuring the amount of dihydro-β-ionone from β-ionone with LC-MS analysis method. RESULTS The molecular mass of KaDBR1 was estimated to be 45 kDa by SDS-PAGE. The purified KaDBR1 enzyme had optimal activity at 60 °C and pH 6.0. The addition of 5 mM Mg2+, Ca2+, Al3+, Na+, and dithiothreitol increased the activity of KaDBR1 by 25%, 18%, 34%, 20%, and 23%, respectively. KaDBR1 favored NADH over NADPH as a cofactor, and its catalytic efficiency (kcat/Km) toward β-ionone using NADH was 8.1-fold greater than when using NADPH. CONCLUSION Owing to its unique properties, KaDBR1 is a potential candidate for the enzymatic biotransformation of β-ionone to dihydro-β-ionone in biotechnology applications.
Collapse
Affiliation(s)
- Zhangde Long
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Kena Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yun Xue
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yongwei Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Jigang Li
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Zan Su
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Jiansheng Sun
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Qibin Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Hong Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China.
| |
Collapse
|
28
|
Zhang W, Zhang X, Feng D, Liang Y, Wu Z, Du S, Zhou Y, Geng C, Men P, Fu C, Huang X, Lu X. Discovery of a Unique Flavonoid Biosynthesis Mechanism in Fungi by Genome Mining. Angew Chem Int Ed Engl 2023; 62:e202215529. [PMID: 36704842 DOI: 10.1002/anie.202215529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.
Collapse
Affiliation(s)
- Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Dandan Feng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yajing Liang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Siyu Du
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yu Zhou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266101, China
| |
Collapse
|
29
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
31
|
Yang Y, Jin H, Li X, Yan J. Biohydrogenation of 1,3-Butadiene to 1-Butene under Acetogenic Conditions by Acetobacterium wieringae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1637-1645. [PMID: 36647731 DOI: 10.1021/acs.est.2c05683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The environmental fate and transformation mechanism(s) of 1,3-butadiene (BD) under anoxic conditions remain largely unexplored. Anaerobic consortia that can biohydrogenate BD to stoichiometric amounts of 1-butene at a maximum rate of 205.7 ± 38.6 μM day-1 were derived from freshwater river sediment. The formation of 1-butene occurred only in the presence of both H2 and CO2 with concomitant acetate production, suggesting the dependence of BD biohydrogenation on acetogenesis. The 16S rRNA gene-targeted amplicon sequencing revealed the enrichment and dominance of a novel Acetobacterium wieringae population, designated as strain N, in the BD-biohydrogenating community. Multiple genes encoding putative ene-reductases, candidate catalysts for the hydrogenation of the C═C bond in diene compounds, were annotated on the metagenome-assembled genome of strain N, and thus attributed the BD biohydrogenation activity to strain N. Our findings emphasize an essential but overlooked role of certain Acetobacterium members (e.g., strain N) contributing to the natural attenuation of BD in contaminated subsurface environments (e.g., sediment and groundwater). Future efforts to identify and characterize the ene-reductase(s) responsible for BD biohydrogenation in strain N hold promise for the development of industrial biocatalysts capable of stereoselective conversion of BD to 1-butene.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
32
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
33
|
Plant-Derived Xanthones against Clostridial Enteric Infections. Antibiotics (Basel) 2023; 12:antibiotics12020232. [PMID: 36830143 PMCID: PMC9952316 DOI: 10.3390/antibiotics12020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Intestinal bacterial infections are a major threat to human and animal health. In this study, we found plant-derived antibacterial xanthones, particularly α-mangostin (AMG) from the mangosteen peel, exhibiting extraordinary activities against Clostridium perfringens. Structure-activity relationship analysis showed that prenylation modulated the activity of xanthones. The efficacy of AMG (4, 8, 20 mg/kg body weight) was also demonstrated in the broiler chicken necrotic enteritis model infected with Clostridium perfringens. In the models (n = 6 per group), feed supplementation of AMG maintained the homeostasis of the gut microbiome by reducing the colonization of clostridia and promoting the integrity of intestinal barriers via the upregulation of mucin expression. These results suggest that plant-derived xanthones may be a potential alternative to antibiotics for treating clostridial enteric infections in the clinic.
Collapse
|
34
|
Luo S, Zhao Y, Zhu S, Liu L, Cheng K, Ye B, Han Y, Fan J, Xia M. Flavonifractor plautii Protects Against Elevated Arterial Stiffness. Circ Res 2023; 132:167-181. [PMID: 36575982 DOI: 10.1161/circresaha.122.321975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Dysbiosis of gut microbiota plays a pivotal role in vascular dysfunction and microbial diversity was reported to be inversely correlated with arterial stiffness. However, the causal role of gut microbiota in the progression of arterial stiffness and the specific species along with the molecular mechanisms underlying this change remain largely unknown. METHODS Participants with elevated arterial stiffness and normal controls free of medication were matched for age and sex. The microbial composition and metabolic capacities between the 2 groups were compared with the integration of metagenomics and metabolomics. Subsequently, Ang II (angiotensin II)-induced and humanized mouse model were employed to evaluate the protective effect of Flavonifractor plautii (F plautii) and its main effector cis-aconitic acid. RESULTS Human fecal metagenomic sequencing revealed a significantly high abundance and centrality of F plautii in normal controls, which was absent in the microbial community of subjects with elevated arterial stiffness. Moreover, blood pressure only mediated part of the effect of F plautii on lower arterial stiffness. The microbiome of normal controls exhibited an enhanced capacity for glycolysis and polysaccharide degradation, whereas, those of subjects with increased arterial stiffness were characterized by increased biosynthesis of fatty acids and aromatic amino acids. Integrative analysis with metabolomics profiling further suggested that increased cis-aconitic acid served as the main effector for the protective effect of F plautii against arterial stiffness. Replenishment with F plautii and cis-aconitic acid improved elastic fiber network and reversed increased pulse wave velocity through the suppression of MMP-2 (matrix metalloproteinase-2) and inhibition of MCP-1 (monocyte chemoattractant protein-1) and NF-κB (nuclear factor kappa-B) activation in both Ang II-induced and humanized model of arterial stiffness. CONCLUSIONS Our translational study identifies a novel link between F plautii and arterial function and raises the possibility of sustaining vascular health by targeting gut microbiota.
Collapse
Affiliation(s)
- Shiyun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Ludi Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.,Department of Statistics and Epidemiology (L.L., B.Y.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Ken Cheng
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China (K.C., Y.H.)
| | - Bingqi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.,Department of Statistics and Epidemiology (L.L., B.Y.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Yueyuan Han
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China (K.C., Y.H.)
| | - Jiahua Fan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| |
Collapse
|
35
|
Qin Y, Li Q, Fan L, Ning X, Wei X, You C. Biomanufacturing by In Vitro Biotransformation (ivBT) Using Purified Cascade Multi-enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:1-27. [PMID: 37455283 DOI: 10.1007/10_2023_231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In vitro biotransformation (ivBT) refers to the use of an artificial biological reaction system that employs purified enzymes for the one-pot conversion of low-cost materials into biocommodities such as ethanol, organic acids, and amino acids. Unshackled from cell growth and metabolism, ivBT exhibits distinct advantages compared with metabolic engineering, including but not limited to high engineering flexibility, ease of operation, fast reaction rate, high product yields, and good scalability. These characteristics position ivBT as a promising next-generation biomanufacturing platform. Nevertheless, challenges persist in the enhancement of bulk enzyme preparation methods, the acquisition of enzymes with superior catalytic properties, and the development of sophisticated approaches for pathway design and system optimization. In alignment with the workflow of ivBT development, this chapter presents a systematic introduction to pathway design, enzyme mining and engineering, system construction, and system optimization. The chapter also proffers perspectives on ivBT development.
Collapse
Affiliation(s)
- Yanmei Qin
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qiangzi Li
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lin Fan
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences Sino-Danish College, Beijing, China
| | - Xiao Ning
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xinlei Wei
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Chun You
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
36
|
Deng H, Gao S, Zhang W, Zhang T, Li N, Zhou J. High Titer of ( S)-Equol Synthesis from Daidzein in Escherichia coli. ACS Synth Biol 2022; 11:4043-4053. [PMID: 36282480 DOI: 10.1021/acssynbio.2c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
(S)-Equol is the terminal metabolite of daidzein and plays important roles in human health. However, due to anaerobic inefficiency, limited productivity in (S)-equol-producing strains often hinders (S)-equol mass production. Here, a multi-enzyme cascade system was designed to generate a higher (S)-equol titer. First, full reversibility of the (S)-equol synthesis pathway was found and a blocking reverse conversion strategy was established. As biosynthetic genes are present in the microbial genome, an effective daidzein reductase was chosen using evolutionary principles. And our analyses showed that NADPH was crucial for the pathway. In response to this, a novel NADPH pool was redesigned after analyzing a cofactor metabolism model. By adjusting synthesis pathway genes at the right expression level, the entire synthesis pathway can take place smoothly. Thus, the cascade system was optimized by regulating the gene expression intensity. Finally, after optimizing fermentation conditions, a 5 L bioreactor was used to generate a high (S)-equol production titer (3418.5 mg/L), with a conversion rate of approximately 85.9%. This study shows a feasible green process route for the production of (S)-equol.
Collapse
Affiliation(s)
- Hanning Deng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.,Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| |
Collapse
|
37
|
Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. MICROBIOME 2022; 10:233. [PMID: 36527160 PMCID: PMC9756786 DOI: 10.1186/s40168-022-01420-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/09/2022] [Indexed: 05/07/2023]
Abstract
Plant-microbe interactions dynamically affect plant growth, health, and development. The mechanisms underpinning these associations are-to a large extent-mediated by specialized host-derived secondary metabolites. Flavonoids are one of the most studied classes of such metabolites, regulating both plant development and the interaction with commensal microbes. Here, we provide a comprehensive review of the multiple roles of flavonoids in mediating plant-microbe interactions. First, we briefly summarize the general aspects of flavonoid synthesis, transport, and exudation in plants. Then, we review the importance of flavonoids regulating plant-microbe interactions and dynamically influencing the overall community assembly of plant-root microbiomes. Last, we highlight potential knowledge gaps in our understanding of how flavonoids determine the interactions between plants and commensal microbes. Collectively, we advocate the importance of advancing research in this area toward innovative strategies to effectively manipulate plant-microbiome composition, in this case, via flavonoid production and exudation in plant roots. Video Abstract.
Collapse
Affiliation(s)
- Lanxiang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pui-Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
38
|
Osborn LJ, Schultz K, Massey W, DeLucia B, Choucair I, Varadharajan V, Banerjee R, Fung K, Horak AJ, Orabi D, Nemet I, Nagy LE, Wang Z, Allende DS, Willard BB, Sangwan N, Hajjar AM, McDonald C, Ahern PP, Hazen SL, Brown JM, Claesen J. A gut microbial metabolite of dietary polyphenols reverses obesity-driven hepatic steatosis. Proc Natl Acad Sci U S A 2022; 119:e2202934119. [PMID: 36417437 PMCID: PMC9860326 DOI: 10.1073/pnas.2202934119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.
Collapse
Affiliation(s)
- Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| | - Karlee Schultz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- College of Arts and Sciences, John Carroll University, University Heights, OH44118
| | - William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| | - Beckey DeLucia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Kevin Fung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Anthony J. Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
- Department of General Surgery, Cleveland Clinic, Cleveland, OH44195
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Laura E. Nagy
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Daniela S. Allende
- Robert J. Tomsich Pathology and Laboratory Medicine Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Belinda B. Willard
- Mass Spectrometry Core, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Adeline M. Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Christine McDonald
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Cardiovascular Medicine, Heart Vascular, and Thoracic Institute Cleveland Clinic, Cleveland, OH44195
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH44195
| |
Collapse
|
39
|
A carbon-carbon hydrolase from human gut probiotics Flavonifractor plautii catalyzes phloretin conversion. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
41
|
Manna T, De A, Nurjamal K, Husain SM. Asymmetric synthesis of (+)-teratosphaerone B, its non-natural analogue and (+)-xylarenone using an ene- and naphthol reductase cascade. Org Biomol Chem 2022; 20:7410-7414. [PMID: 36093846 DOI: 10.1039/d2ob01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a one-pot bienzymatic cascade containing an ene and a naphthol reductase is developed. It is applied for the synthesis of (+)-(3R,4R)-teratosphaerone B, its non-natural regioisomer in both cis- and trans-forms and (+)-xylarenone by the reduction of chemically synthesized naphthoquinone precursors in high yields (76-92%) and excellent ee (>99%). This work implies similar biosynthetic steps in the formation of the synthesized natural products.
Collapse
Affiliation(s)
- Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Arijit De
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Khondekar Nurjamal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
42
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Yu H, Fu J, Guo HH, Pan LB, Xu H, Zhang ZW, Hu JC, Yang XY, Zhang HJ, Bu MM, Lin Y, Jiang JD, Wang Y. Metabolites Analysis of Anti-Myocardial Ischemia Active Components of Saussurea involucrata Based on Gut Microbiota-Drug Interaction. Int J Mol Sci 2022; 23:7457. [PMID: 35806462 PMCID: PMC9267203 DOI: 10.3390/ijms23137457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022] Open
Abstract
Saussurea involucrata has been reported to have potential therapeutic effects against myocardial ischemia. The pharmacological effects of oral natural medicines may be influenced by the participation of gut microbiota. In this study, we aimed to investigate the bidirectional regulation of gut microbiota and the main components of Saussurea involucrata. We first established a quantitative method for the four main components (chlorogenic acid, syringin, acanthoside B, rutin) which were chosen by fingerprint using liquid chromatography tandem mass spectrometry (LC-MS/MS), and found that gut microbiota has a strong metabolic effect on them. Meanwhile, we identified five major rat gut microbiota metabolites (M1-M5) using liquid chromatography tandem time-of-flight mass spectrometry (LC/MSn-IT-TOF). The metabolic properties of metabolites in vitro were preliminarily elucidated by LC-MS/MS for the first time. These five metabolites of Saussurea involucrata may all have potential contributions to the treatment of myocardial ischemia. Furthermore, the four main components (10 μg/mL) can significantly stimulate intestinal bacteria to produce short chain fatty acids in vitro, respectively, which can further contribute to the effect in myocardial ischemia. In this study, the therapeutic effect against myocardial ischemia of Saussurea involucrata was first reported to be related to the intestinal flora, which can be useful in understanding the effective substances of Saussurea involucrata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; (H.Y.); (J.F.); (H.-H.G.); (L.-B.P.); (H.X.); (Z.-W.Z.); (J.-C.H.); (X.-Y.Y.); (H.-J.Z.); (M.-M.B.); (Y.L.)
| |
Collapse
|
44
|
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022; 12:875. [PMID: 35883431 PMCID: PMC9312800 DOI: 10.3390/biom12070875] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
45
|
Biotransformation of Liquiritigenin into Characteristic Metabolites by the Gut Microbiota. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103057. [PMID: 35630532 PMCID: PMC9146493 DOI: 10.3390/molecules27103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
The bioavailability of flavonoids is generally low after oral administration. The metabolic transformation of flavonoids by the gut microbiota may be one of the main reasons for this, although these metabolites have potential pharmacological activities. Liquiritigenin is an important dihydroflavonoid compound found in Glycyrrhiza uralensis that has a wide range of pharmacological properties, such as antitumor, antiulcer, anti-inflammatory, and anti-AIDS effects, but its mechanism of action remains unclear. This study explored the metabolites of liquiritigenin by examining gut microbiota metabolism and hepatic metabolism in vitro. Using LC-MS/MS and LC/MSn-IT-TOF techniques, three possible metabolites of liquiritigenin metabolized by the gut microbiota were identified: phloretic acid (M3), resorcinol (M4), and M5. M5 is speculated to be davidigenin, which has antitumor activity. By comparing these two metabolic pathways of liquiritigenin (the gut microbiota and liver microsomes), this study revealed that there are three main metabolites of liquiritigenin generated by intestinal bacteria, which provides a theoretical basis for the study of pharmacologically active substances in vivo.
Collapse
|
46
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
47
|
Huang G, Lai M, Xu C, He S, Dong L, Huang F, Zhang R, Young DJ, Liu H, Su D. Novel Catabolic Pathway of Quercetin-3-O-Rutinose-7-O-α-L-Rhamnoside by Lactobacillus plantarum GDMCC 1.140: The Direct Fission of C-Ring. Front Nutr 2022; 9:849439. [PMID: 35369057 PMCID: PMC8966130 DOI: 10.3389/fnut.2022.849439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Lychee pulp phenolics (LPP) is mainly catabolized in the host colon, increasing the abundances of Bacteroides and Lactobacillus. Herein, five selected gut microbial strains (Bacteroides uniformis, B. thetaiotaomicron, Lactobacillus rhamnosus, L. plantarum, and L. acidophilus) were separately incubated with LPP to ascertain the specific strains participating in phenolic metabolism and the corresponding metabolites. The results indicated that B. uniformis, L. rhamnosus, and L. plantarum were involved in LPP utilization, contributing to 52.37, 28.33, and 45.11% of LPP degradation after 48 h fermentation, respectively. Unprecedentedly, the metabolic pathway of the major phenolic compound quercetin-3-O-rutinose-7-O-α-L-rhamnoside by L. plantarum, appeared to be the direct fission of C-ring at C2–O1 and C3–C4 bonds, which was proved from the occurrence of two substances with the deprotonated molecule [M–H]− ion at m/z 299 and 459, respectively. Meanwhile, it was fully confirmed that B. uniformis participated in the catabolism of isorhamnetin glycoside and procyanidin B2. In the B. uniformis culture, kaempferol was synthesized through dehydroxylation of quercetin which could be catabolized into alphitonin by L. rhamnosus. Furthermore, LPP metabolites exerted higher antioxidant activity than their precursors and gave clues to understand the interindividual differences for phenolic metabolism by gut microbiota.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Mingwen Lai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - David James Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Hesheng Liu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
- *Correspondence: Hesheng Liu
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
- Dongxiao Su
| |
Collapse
|
48
|
Platanus hybrida’s Phenolic Profile, Antioxidant Power, and Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Methicillin-resistant S. aureus (MRSA) are a threat to public health as they frequently reveal a multidrug-resistant pattern. Researchers all over the world are on an urgent hunt for new treatments to help fight infections before antibiotics become obsolete, and some natural alternatives, such as polyphenols, have already exhibited therapeutic properties. Therefore, this study aimed to determine the phenolic profile, antioxidant capacity, and antimicrobial activity against MRSA of the leaf, fruit, and stem bark extracts of Platanus hybrida. The polyphenols were extracted with a water/ethanol (20:80) mixture and the methodology included HPLC-DAD, DPPH, FRAP, and CuPRAC. To address this issue from a One Health perspective, the Kirby–Bauer disc diffusion method was performed against nine MRSA strains from three different sources (livestock, wild animals, and humans). Fourteen phenolics were identified and the leaf extract showed the highest phenolic content, followed by the fruit extract. The leaf extract also showed the highest antioxidant capacity while the fruit extract had the lowest antioxidant capacity. Both leaf and fruit extracts inhibited the growth of strains from all sources, while the stem bark extract did not inhibit the growth of human strains. This work highlights the complex chemical composition and the antioxidative and antimicrobial potential of extracts derived from P. hydrida.
Collapse
|
49
|
Muller CJF, Joubert E, Chellan N, Miura Y, Yagasaki K. New Insights into the Efficacy of Aspalathin and Other Related Phytochemicals in Type 2 Diabetes-A Review. Int J Mol Sci 2021; 23:ijms23010356. [PMID: 35008779 PMCID: PMC8745648 DOI: 10.3390/ijms23010356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of bioactive phytochemicals as a therapeutic strategy to manage metabolic risk factors for type 2 diabetes (T2D), aspalathin, C-glucosyl dihydrochalcone from rooibos (Aspalathus linearis), has received much attention, along with its C-glucosyl flavone derivatives and phlorizin, the apple O-glucosyl dihydrochalcone well-known for its antidiabetic properties. We provided context for dietary exposure by highlighting dietary sources, compound stability during processing, bioavailability and microbial biotransformation. The review covered the role of these compounds in attenuating insulin resistance and enhancing glucose metabolism, alleviating gut dysbiosis and associated oxidative stress and inflammation, and hyperuricemia associated with T2D, focusing largely on the literature of the past 5 years. A key focus of this review was on emerging targets in the management of T2D, as highlighted in the recent literature, including enhancing of the insulin receptor and insulin receptor substrate 1 signaling via protein tyrosine phosphatase inhibition, increasing glycolysis with suppression of gluconeogenesis by sirtuin modulation, and reducing renal glucose reabsorption via sodium-glucose co-transporter 2. We conclude that biotransformation in the gut is most likely responsible for enhancing therapeutic effects observed for the C-glycosyl parent compounds, including aspalathin, and that these compounds and their derivatives have the potential to regulate multiple factors associated with the development and progression of T2D.
Collapse
Affiliation(s)
- Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa;
- Department of Food Science, Stellenbosch University, Matieland 7602, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Yutaka Miura
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Kazumi Yagasaki
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| |
Collapse
|
50
|
Dysbiosis of human gut microbiome in young-onset colorectal cancer. Nat Commun 2021; 12:6757. [PMID: 34799562 PMCID: PMC8604900 DOI: 10.1038/s41467-021-27112-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of sporadic young-onset colorectal cancer (yCRC) is increasing. A significant knowledge gap exists in the gut microbiota and its diagnostic value for yCRC patients. Through 16S rRNA gene sequencing, 728 samples are collected to identify microbial markers, and an independent cohort of 310 samples is used to validate the results. Furthermore, species-level and functional analysis are performed by metagenome sequencing using 200 samples. Gut microbial diversity is increased in yCRC. Flavonifractor plautii is an important bacterial species in yCRC, while genus Streptococcus contains the key phylotype in the old-onset colorectal cancer. Functional analysis reveals that yCRC has unique characteristics of bacterial metabolism characterized by the dominance of DNA binding and RNA-dependent DNA biosynthetic process. The random forest classifier model achieves a powerful classification potential. This study highlights the potential of the gut microbiota biomarkers as a promising non-invasive tool for the accurate detection and distinction of individuals with yCRC.
Collapse
|