1
|
Paissoni C, Puri S, Broggini L, Sriramoju MK, Maritan M, Russo R, Speranzini V, Ballabio F, Nuvolone M, Merlini G, Palladini G, Hsu STD, Ricagno S, Camilloni C. A conformational fingerprint for amyloidogenic light chains. eLife 2025; 13:RP102002. [PMID: 40028903 DOI: 10.7554/elife.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.
Collapse
Affiliation(s)
| | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
- Indian Institute of Science Education and Research Pune, Pune, India
| | - Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San Donato, Milan, Italy
| | | | | | - Rosaria Russo
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | | | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM), Hiroshima University, Higashi-Hiroshima, Japan
| | - Stefano Ricagno
- Department of Bioscience, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San Donato, Milan, Italy
| | | |
Collapse
|
2
|
Puri S, Gadda A, Polsinelli I, Barzago MM, Toto A, Sriramoju MK, Visentin C, Broggini L, Valérie Bonnet DM, Russo R, Chaves-Sanjuan A, Merlini G, Nuvolone M, Palladini G, Gianni S, Hsu STD, Diomede L, Ricagno S. The Critical Role of the Variable Domain in Driving Proteotoxicity and Aggregation in Full-length Light Chains. J Mol Biol 2025; 437:168958. [PMID: 39842712 DOI: 10.1016/j.jmb.2025.168958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Light chain (AL) amyloidosis is the most common systemic amyloid disease characterized by abnormal accumulation of amyloid fibrils derived from immunoglobulin light chains (LCs). Both full-length (FL) LCs and their isolated variable (VL) and constant (CL) domains contribute to amyloid deposits in multiple organs, with the VL domain predominantly forming the fibril core. However, the role and interplay of these domains in amyloid aggregation and toxicity are poorly understood. Characterizing the amyloidogenic λ6-LC AL55, this study explores the properties of both FL and isolated domains and compares them with the available patient-derived data. FL AL55 biophysical features result from the interplay between its VL and CL domains where the limited VL-CL interface might play a major role. Slow refolding kinetic of FL confirms the unfolded VL domain as a kinetic trap possibly shifting the process towards misfolding. The X-ray structure of FL AL55 shows that VL domains may detach from the native dimeric assembly and establish non-native interdimeric interfaces. Additionally, isolated VL domains display significantly lower soluble toxicity compared to FL and do not form fibrils similar to those found ex vivo. Thus the data obtained in this work allowed us to draw a molecular sketch of the aggregation pathway for amyloidogenic LCs.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, University of Milan, Italy; Biology Department, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Angela Gadda
- Department of Biosciences, University of Milan, Italy
| | - Ivan Polsinelli
- Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San Donato, Milan, Italy
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Angelo Toto
- Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | - Luca Broggini
- Department of Biosciences, University of Milan, Italy
| | | | - Rosaria Russo
- Department of Pathophysiology and Transplantation, University of Milan, Italy
| | | | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Gianni
- Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617 Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS, Policlinico San Donato, Milan, Italy.
| |
Collapse
|
3
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
Sheehan K, Jeon H, Corr SC, Hayes JM, Mok KH. Antibody Aggregation: A Problem Within the Biopharmaceutical Industry and Its Role in AL Amyloidosis Disease. Protein J 2025; 44:1-20. [PMID: 39527351 DOI: 10.1007/s10930-024-10237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Due to the large size and rapid growth of the global therapeutic antibody market, there is major interest in understanding the aggregation of protein products as it can compromise efficacy, concentration, and safety. Various production and storage conditions have been identified as capable of inducing aggregation of polyclonal and monoclonal antibody (mAb) therapies such as low pH, freezing, light exposure, lyophilisation and increased ionic strength. The addition of stabilising excipients to these therapeutics helps to combat the formation of aggregates with future aggregation inhibition mechanisms involving the introduction of point mutations and glycoengineering within aggregation prone regions (APRs). Antibody aggregation also plays an integral role in the pathogenesis of a condition known as amyloid light chain (AL) amyloidosis which is characterised by the production of improperly folded and amyloidogenic immunoglobulin light chains (LCs). Current diagnostic tools rely heavily on histological staining with their future moving towards amyloid component identification and proteomic analysis. For many years, treatment options designed for multiple myeloma (MM) have been applied to AL amyloidosis patients by depleting plasma cell numbers. More recently, treatment strategies more specific to this condition have been developed with many designed to recognize amyloid fibrils and trigger their degradation without causing systemic plasma cell cytotoxicity. Amyloid fibrils in AL disease and aggregates in antibody therapeutics are both formed through the oligomerisation of misfolded / modified proteins attempting to reach a thermodynamically stable, free energy minimum that is lower than the respective monomers themselves. Although the final morphologies are different, by understanding the principles underlying such aggregation, we expect to find common insights that may contribute to the development of new and effective methods of antibody aggregation and/or amyloidosis management. We envision that this area of research will continue to be very relevant in both industry and clinical settings.
Collapse
Affiliation(s)
- Kate Sheehan
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Hyesoo Jeon
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Lonza Biologics Tuas Pte. Ltd., 35 Tuas South Ave 6, Singapore, 637377, Republic of Singapore
| | - Sinéad C Corr
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jerrard M Hayes
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - K H Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
5
|
Ezawa T, Otomo R, Kariya Y, Nozawa K, Kyoya S, Furutani C, Noguchi K, Yohda M, Odaka M, Matsumura H, Saito A, Saito M, Abe F, Fujioka Y, Kitadate A, Wakui H, Takahashi N. Multiple myeloma-associated non-crystalline proximal tubulopathy and crystalline cast nephropathy: Biochemical and structural features of disease-causing monoclonal kappa light chains. FASEB J 2025; 39:e70296. [PMID: 39781602 DOI: 10.1096/fj.202402104r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN). The patient's urinary κ-LC (Bence-Jones proteins, BJP-κ PT-CN) was detected through immunofixation. Renal biopsy revealed cytoplasmic vacuoles in swollen proximal tubular cells and distal tubular casts. Immunohistochemistry showed proximal tubular reabsorption granules and distal tubular casts positively stained with an anti-κ-LC antibody. Electron microscopy identified vacuolation and an increased number of lysosomes in proximal tubular epithelial cells without crystalline structures. Distal tubular casts comprised numerous crystals with both rod-shaped and needle-like configurations and tube-shaped materials. To elucidate the molecular mechanisms underlying tubular toxicity, we performed the following physicochemical analyses of BJP-κ PT-CN: N-terminal amino acid sequencing, cDNA cloning, size-exclusion chromatography, thermal shift assays, and X-ray crystallography. The variable segment of BJP-κ PT-CN was derived from the IGKV1-39 gene. The characteristic features of BJP-κ PT-CN were a positively charged surface patch, concentration-dependent monomer-dimer equilibrium, and the R61G mutation. This is the first biochemical and structural characterization of disease-causing BJPs in MM-associated LCPT and crystalline LCCN. The results obtained suggest that these characteristic features enhance protein binding to negatively charged sites on brush-border membranes in proximal tubules and promote the formation of organized casts in distal tubular lumens.
Collapse
Affiliation(s)
- Toshinori Ezawa
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Riku Otomo
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yumi Kariya
- Cooperative Research Center, Akita University, Akita, Japan
| | - Kyoko Nozawa
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Sonosuke Kyoya
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Chikako Furutani
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Odaka
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Hirotoshi Matsumura
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Ayano Saito
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masaya Saito
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumito Abe
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yuki Fujioka
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Hideki Wakui
- Emeritus Professor, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
6
|
Yan NL, Candido F, Tse E, Melo AA, Prusiner SB, Mordes DA, Southworth DR, Paras NA, Merz GE. Cryo-EM structure of a novel α-synuclein filament subtype from multiple system atrophy. FEBS Lett 2025; 599:33-40. [PMID: 39511911 PMCID: PMC11726156 DOI: 10.1002/1873-3468.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by accumulation of α-synuclein cross-β amyloid filaments in the brain. Previous structural studies of these filaments by cryo-electron microscopy (cryo-EM) revealed three discrete folds distinct from α-synuclein filaments associated with other neurodegenerative diseases. Here, we use cryo-EM to identify a novel, low-populated MSA filament subtype (designated Type I2) in addition to a predominant class comprising MSA Type II2 filaments. The 3.3-Å resolution structure of the Type I2 filament reveals a fold consisting of two asymmetric protofilaments, one of which adopts a novel structure that is chimeric between two previously reported protofilaments. These results further define MSA-specific folds of α-synuclein filaments and have implications for designing MSA diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nicholas L. Yan
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
| | - Francisco Candido
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoCAUSA
| | - Arthur A. Melo
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of Biochemistry and BiophysicsUniversity of California San FranciscoCAUSA
| | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of PathologyUniversity of California San FranciscoCAUSA
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of Biochemistry and BiophysicsUniversity of California San FranciscoCAUSA
| | - Nick A. Paras
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoCAUSA
| | - Gregory E. Merz
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San FranciscoCAUSA
- Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoCAUSA
| |
Collapse
|
7
|
Hughes MS, Lentzsch S. PRIMARY SYSTEMIC AMYLOIDOSIS: A BRIEF OVERVIEW. Presse Med 2024:104267. [PMID: 39672504 DOI: 10.1016/j.lpm.2024.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024] Open
Abstract
Primary systemic amyloidosis, or light chain (AL) amyloidosis, is a rare lymphoproliferative disorder in which aberrant light-chain immunoglobulins secreted into the bloodstream aggregate into fibrils and deposit into tissues, causing widespread organ damage and, if not treated, death. This review provides a comprehensive summary of the pathophysiology and manifestations of AL amyloidosis; standard-of-care diagnostic approach; typical treatment regimens; and areas of active investigation.
Collapse
Affiliation(s)
- Michael Sang Hughes
- Department of Hematology/Oncology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 6GN-435, New York, NY 10032.
| | - Suzanne Lentzsch
- Department of Hematology/Oncology, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 6GN-435, New York, NY 10032
| |
Collapse
|
8
|
Morgan GJ, Yung Z, Spencer BH, Sanchorawala V, Prokaeva T. Predicting Structural Consequences of Antibody Light Chain N-Glycosylation in AL Amyloidosis. Pharmaceuticals (Basel) 2024; 17:1542. [PMID: 39598451 PMCID: PMC11597191 DOI: 10.3390/ph17111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient's unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent in amyloid-associated light chains than in light chains from the normal immune repertoire. However, the mechanisms underlying this association are unknown. Here, we investigate the frequency and position within the light chain sequence of the N-glycosylation sequence motif, or sequon. Methods: Monoclonal light chains from AL amyloidosis and multiple myeloma were identified from the AL-Base repository. Polyclonal light chains were obtained from the Observed Antibody Space resource. We compared the fraction of light chains from each group harboring an N-glycosylation sequon, and the positions of these sequons within the sequences. Results: Sequons are enriched among AL-associated light chains derived from a subset of precursor germline genes. Sequons are observed at multiple positions, which differ between the two types of light chains, κ and λ, but are similar between light chains from AL amyloidosis and multiple myeloma. Positions of sequons map to residues with surface-exposed sidechains that are compatible with the folded structures of light chains. Within the known structures of λ AL amyloid fibrils, many residues where sequons are observed are buried, inconsistent with N-glycosylation. Conclusions: There is no clear structural rationale for why N-glycosylation of κ light chains is associated with AL amyloidosis. A better understanding of the roles of N-glycosylation in AL amyloidosis is required before it can be used as a marker for disease risk.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zach Yung
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Karimi-Farsijani S, Sharma K, Ugrina M, Kuhn L, Pfeiffer PB, Haupt C, Wiese S, Hegenbart U, Schönland SO, Schwierz N, Schmidt M, Fändrich M. Cryo-EM structure of a lysozyme-derived amyloid fibril from hereditary amyloidosis. Nat Commun 2024; 15:9648. [PMID: 39511224 PMCID: PMC11543692 DOI: 10.1038/s41467-024-54091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Systemic ALys amyloidosis is a debilitating protein misfolding disease that arises from the formation of amyloid fibrils from C-type lysozyme. We here present a 2.8 Å cryo-electron microscopy structure of an amyloid fibril, which was isolated from the abdominal fat tissue of a patient who expressed the D87G variant of human lysozyme. We find that the fibril possesses a stable core that is formed by all 130 residues of the fibril precursor protein. There are four disulfide bonds in each fibril protein that connect the same residues as in the globularly folded protein. As the conformation of lysozyme in the fibril is otherwise fundamentally different from native lysozyme, our data provide a structural rationale for the need of protein unfolding in the development of systemic ALys amyloidosis.
Collapse
Affiliation(s)
| | - Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Schulte T, Chaves-Sanjuan A, Speranzini V, Sicking K, Milazzo M, Mazzini G, Rognoni P, Caminito S, Milani P, Marabelli C, Corbelli A, Diomede L, Fiordaliso F, Anastasia L, Pappone C, Merlini G, Bolognesi M, Nuvolone M, Fernández-Busnadiego R, Palladini G, Ricagno S. Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis. Nat Commun 2024; 15:6359. [PMID: 39069558 PMCID: PMC11284220 DOI: 10.1038/s41467-024-50686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Systemic light chain (LC) amyloidosis (AL) is a disease where organs are damaged by an overload of a misfolded patient-specific antibody-derived LC, secreted by an abnormal B cell clone. The high LC concentration in the blood leads to amyloid deposition at organ sites. Indeed, cryogenic electron microscopy (cryo-EM) has revealed unique amyloid folds for heart-derived fibrils taken from different patients. Here, we present the cryo-EM structure of heart-derived AL amyloid (AL59) from another patient with severe cardiac involvement. The double-layered structure displays a u-shaped core that is closed by a β-arc lid and extended by a straight tail. Noteworthy, the fibril harbours an extended constant domain fragment, thus ruling out the variable domain as sole amyloid building block. Surprisingly, the fibrils were abundantly concatenated with a proteinaceous polymer, here identified as collagen VI (COLVI) by immuno-electron microscopy (IEM) and mass-spectrometry. Cryogenic electron tomography (cryo-ET) showed how COLVI wraps around the amyloid forming a helical superstructure, likely stabilizing and protecting the fibrils from clearance. Thus, here we report structural evidence of interactions between amyloid and collagen, potentially signifying a distinct pathophysiological mechanism of amyloid deposits.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | | | - Valentina Speranzini
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Melissa Milazzo
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Chiara Marabelli
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan, 20097, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy.
| |
Collapse
|
11
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
12
|
Karimi-Farsijani S, Pfeiffer PB, Banerjee S, Baur J, Kuhn L, Kupfer N, Hegenbart U, Schönland SO, Wiese S, Haupt C, Schmidt M, Fändrich M. Light chain mutations contribute to defining the fibril morphology in systemic AL amyloidosis. Nat Commun 2024; 15:5121. [PMID: 38879609 PMCID: PMC11180120 DOI: 10.1038/s41467-024-49520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Systemic AL amyloidosis is one of the most frequently diagnosed forms of systemic amyloidosis. It arises from mutational changes in immunoglobulin light chains. To explore whether these mutations may affect the structure of the formed fibrils, we determine and compare the fibril structures from several patients with cardiac AL amyloidosis. All patients are affected by light chains that contain an IGLV3-19 gene segment, and the deposited fibrils differ by the mutations within this common germ line background. Using cryo-electron microscopy, we here find different fibril structures in each patient. These data establish that the mutations of amyloidogenic light chains contribute to defining the fibril architecture and hence the structure of the pathogenic agent.
Collapse
Affiliation(s)
| | | | | | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Niklas Kupfer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
13
|
Pelaez-Aguilar AE, Mata-Salgado F, Morales-Ortiz A, Millán-Pacheco C, Olvera-Carranza C, Salgado-Delgado J, Pastor N, Rivillas-Acevedo L. Cu(II) binding to the λ6aJL2-R24G antibody light chain protein associated with light chain amyloidosis disease: The role of histidines. Int J Biol Macromol 2024; 270:132393. [PMID: 38761898 DOI: 10.1016/j.ijbiomac.2024.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Light chain amyloidosis is a conformational disease caused by the abnormal proliferation and deposition of antibody light chains as amyloid fibers in organs and tissues. The effect of Cu(II) binding to the model recombinant protein 6aJL2-R24G was previously characterized in our group, and we found an acceleration of the aggregation kinetics of the protein. In this study, in order to confirm the Cu(II) binding sites, histidine variants of 6aJL2-R24G were prepared and the effects of their interaction with Cu(II) were analyzed by circular dichroism, fluorescence spectroscopy, isothermal calorimetry titrations, and molecular dynamics simulations. Confirming our earlier work, we found that His8 and His99 are the highest affinity Cu(II) binding sites, and that Cu(II) binding to both sites is a cooperative event.
Collapse
Affiliation(s)
- Angel E Pelaez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernanda Mata-Salgado
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Alan Morales-Ortiz
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Jesus Salgado-Delgado
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
14
|
Ahmed Y, Nguyen BA, Afrin S, Singh V, Evers B, Singh P, Pedretti R, Wang L, Bassett P, del Carmen Fernandez-Ramirez M, Pekala M, Kluve-Beckerman B, Saelices L. Amyloid fibril polymorphism in the heart of an ATTR amyloidosis patient with polyneuropathy attributed to the V122Δ variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593396. [PMID: 38766262 PMCID: PMC11100820 DOI: 10.1101/2024.05.09.593396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
ATTR amyloidosis is a phenotypically heterogeneous disease characterized by the pathological deposition of transthyretin in the form of amyloid fibrils into various organs. ATTR amyloidosis may stem from mutations in variant (ATTRv) amyloidosis, or aging in wild-type (ATTRwt) amyloidosis. ATTRwt generally manifests as a cardiomyopathy phenotype, whereas ATTRv may present as polyneuropathy, cardiomyopathy, or mixed, in combination with many other symptoms deriving from secondary organ involvement. Over 130 different mutational variants of transthyretin have been identified, many of them being linked to specific disease symptoms. Yet, the role of these mutations in the differential disease manifestation remains elusive. Using cryo-electron microscopy, here we structurally characterized fibrils from the heart of an ATTRv patient carrying the V122Δ mutation, predominantly associated with polyneuropathy. Our results show that these fibrils are polymorphic, presenting as both single and double filaments. Our study alludes to a structural connection contributing to phenotypic variation in ATTR amyloidosis, as polymorphism in ATTR fibrils may manifest in patients with predominantly polyneuropathic phenotypes.
Collapse
Affiliation(s)
- Yasmin Ahmed
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Binh An Nguyen
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Bret Evers
- Department of Pathology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Preeti Singh
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Lanie Wang
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Parker Bassett
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Maria del Carmen Fernandez-Ramirez
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Maja Pekala
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Barbara Kluve-Beckerman
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| |
Collapse
|
15
|
Lavatelli F, Natalello A, Marchese L, Ami D, Corazza A, Raimondi S, Mimmi MC, Malinverni S, Mangione PP, Palmer MT, Lampis A, Concardi M, Verona G, Canetti D, Arbustini E, Bellotti V, Giorgetti S. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. J Biol Chem 2024; 300:107174. [PMID: 38499153 PMCID: PMC11016911 DOI: 10.1016/j.jbc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Loredana Marchese
- Pathology Unit, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy; Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Maria Chiara Mimmi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Malinverni
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Manel Terrones Palmer
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessio Lampis
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Monica Concardi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Bellotti
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
16
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. Protein Sci 2024; 33:e4871. [PMID: 38100259 PMCID: PMC10868443 DOI: 10.1002/pro.4871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Madeline E. West
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
17
|
Goldis R, Kaplan B, Arad M, Dispenzieri A, Dasari S, Kukuy OL, Simon AJ, Dori A, Shavit-Stein E, Ziv T, Murray D, Kourelis T, Gertz MA, Dominissini D, Magen H, Muchtar E. Amino acid sequence homology of monoclonal serum free light chain dimers and tissue deposited light chains in AL amyloidosis: a pilot study. Clin Chem Lab Med 2024; 62:464-471. [PMID: 37747270 DOI: 10.1515/cclm-2023-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Diagnosis of light chain amyloidosis (AL) requires demonstration of amyloid deposits in a tissue biopsy followed by appropriate typing. Previous studies demonstrated increased dimerization of monoclonal serum free light chains (FLCs) as a pathological feature of AL. To further examine the pathogenicity of FLC, we aimed at testing amino acid sequence homology between circulating and deposited light chains (LCs). METHODS Matched tissue biopsy and serum of 10 AL patients were subjected to tissue proteomic amyloid typing and nephelometric FLC assay, respectively. Serum FLC monomers (M) and dimers (D) were analyzed by Western blotting (WB) and mass spectrometry (MS). RESULTS WB of serum FLCs showed predominance of either κ or λ type, in agreement with the nephelometric assay data. Abnormal FLC M-D patterns typical of AL amyloidosis were demonstrated in 8 AL-λ patients and in one of two AL-κ patients: increased levels of monoclonal FLC dimers, high D/M ratio values of involved FLCs, and high ratios of involved to uninvolved dimeric FLCs. MS of serum FLC dimers showed predominant constant domain sequences, in concordance with the tissue proteomic amyloid typing. Most importantly, variable domain sequence homology between circulating and deposited LC species was demonstrated, mainly in AL-λ cases. CONCLUSIONS This is the first study to demonstrate homology between circulating FLCs and tissue-deposited LCs in AL-λ amyloidosis. The applied methodology can facilitate studying the pathogenicity of circulating FLC dimers in AL amyloidosis. The study also highlights the potential of FLC monomer and dimer analysis as a non-invasive screening tool for this disease.
Collapse
Affiliation(s)
- Rivka Goldis
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batia Kaplan
- Institute of Hematology and Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Arad
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Failure Institute, Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | | | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Olga Lesya Kukuy
- Institute of Nephrology and Hypertension, Sheba Medical Center, Ramat Gan, Israel
| | - Amos J Simon
- Institute of Hematology and Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ziv
- Smoler Protein Center, Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - David Murray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Dan Dominissini
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Wohl Institute of Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Hila Magen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Multiple Myeloma Unit, Hematology Department, Sheba Medical Center, Ramat Gan, Israel
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
19
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
20
|
Nguyen BA, Singh V, Afrin S, Yakubovska A, Wang L, Ahmed Y, Pedretti R, Fernandez-Ramirez MDC, Singh P, Pękała M, Cabrera Hernandez LO, Kumar S, Lemoff A, Gonzalez-Prieto R, Sawaya MR, Eisenberg DS, Benson MD, Saelices L. Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy. Nat Commun 2024; 15:581. [PMID: 38233397 PMCID: PMC10794703 DOI: 10.1038/s41467-024-44820-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.
Collapse
Affiliation(s)
- Binh An Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Anna Yakubovska
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Lanie Wang
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Yasmin Ahmed
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Maria Del Carmen Fernandez-Ramirez
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Maja Pękała
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Luis O Cabrera Hernandez
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Siddharth Kumar
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roman Gonzalez-Prieto
- Andalusian Center for Molecular Biology and regenerative Medicine (CABIMER), Universidad de Sevilla-CSIC-Universidad-Pablo de Olavide, Departmento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Michael R Sawaya
- Department of Biological Chemistry, University of California, Los Angeles, Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Biological Chemistry, University of California, Los Angeles, Howard Hughes Medical Institute, Los Angeles, CA, USA
| | - Merrill Douglas Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA.
- Peter O'Donnell Jr Brain Institute, University of Texas Southwestern Medical Center (UTSW), Dallas, TX, USA.
| |
Collapse
|
21
|
Sharma K, Stockert F, Shenoy J, Berbon M, Abdul-Shukkoor MB, Habenstein B, Loquet A, Schmidt M, Fändrich M. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat Commun 2024; 15:486. [PMID: 38212334 PMCID: PMC10784485 DOI: 10.1038/s41467-023-44489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.
Collapse
Affiliation(s)
- Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Fabian Stockert
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jayakrishna Shenoy
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | | | - Birgit Habenstein
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Antoine Loquet
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
22
|
Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH, Murzin AG, Freund SMV, Goedert M, Scheres SHW. Disease-specific tau filaments assemble via polymorphic intermediates. Nature 2024; 625:119-125. [PMID: 38030728 PMCID: PMC10764278 DOI: 10.1038/s41586-023-06788-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention1,2. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297-391) into paired helical filaments of Alzheimer's disease or into filaments of chronic traumatic encephalopathy3. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302-316. Nuclear magnetic resonance indicates that the same residues adopt rigid, β-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.
Collapse
Affiliation(s)
| | - David Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Wilkinson M, Xu Y, Thacker D, Taylor AIP, Fisher DG, Gallardo RU, Radford SE, Ranson NA. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023; 186:5798-5811.e26. [PMID: 38134875 DOI: 10.1016/j.cell.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander I P Taylor
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Declan G Fisher
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Broggini L, Barzago MM, Speranzini V, Schulte T, Sonzini F, Giono M, Romeo M, Milani P, Caminito S, Mazzini G, Rognoni P, Merlini G, Pappone C, Anastasia L, Nuvolone M, Palladini G, Diomede L, Ricagno S. Nanobodies counteract the toxicity of an amyloidogenic light chain by stabilizing a partially open dimeric conformation. J Mol Biol 2023; 435:168320. [PMID: 37865287 DOI: 10.1016/j.jmb.2023.168320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.
Collapse
Affiliation(s)
- Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | | | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy
| | - Federica Sonzini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Matteo Giono
- Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan 20097, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia 27100, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano 20156, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Italy; Department of Biosciences, Università degli Studi di Milano, Milan 20133, Italy.
| |
Collapse
|
25
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of complementarity-determining regions 1 and 3 in pathologic amyloid formation by human immunoglobulin κ1 light chains. Amyloid 2023; 30:364-378. [PMID: 37216473 PMCID: PMC10663386 DOI: 10.1080/13506129.2023.2212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. METHODS Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. RESULTS Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in βC'V and βEV that could initiate aggregation and decreased dynamics/exposure near the Cys23-Cys88 disulfide. CONCLUSIONS The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.
Collapse
Affiliation(s)
- Elena S. Klimtchuk
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Esther A. Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Lawreen H. Connors
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Olga Gursky
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
26
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Steinebrei M, Baur J, Pradhan A, Kupfer N, Wiese S, Hegenbart U, Schönland SO, Schmidt M, Fändrich M. Common transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis. Nat Commun 2023; 14:7623. [PMID: 37993462 PMCID: PMC10665346 DOI: 10.1038/s41467-023-43301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Systemic ATTR amyloidosis is an increasingly important protein misfolding disease that is provoked by the formation of amyloid fibrils from transthyretin protein. The pathological and clinical disease manifestations and the number of pathogenic mutational changes in transthyretin are highly diverse, raising the question whether the different mutations may lead to different fibril morphologies. Using cryo-electron microscopy, however, we show here that the fibril structure is remarkably similar in patients that are affected by different mutations. Our data suggest that the circumstances under which these fibrils are formed and deposited inside the body - and not only the fibril morphology - are crucial for defining the phenotypic variability in many patients.
Collapse
Affiliation(s)
- Maximilian Steinebrei
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Anaviggha Pradhan
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Niklas Kupfer
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, D-89081, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| |
Collapse
|
28
|
Puri S, Schulte T, Chaves-Sanjuan A, Mazzini G, Caminito S, Pappone C, Anastasia L, Milani P, Merlini G, Bolognesi M, Nuvolone M, Palladini G, Ricagno S. The Cryo-EM STRUCTURE of Renal Amyloid Fibril Suggests Structurally Homogeneous Multiorgan Aggregation in AL Amyloidosis. J Mol Biol 2023; 435:168215. [PMID: 37516426 DOI: 10.1016/j.jmb.2023.168215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Saritapuri1504
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy. https://twitter.com/@timpaul81
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@ChavesSanjuan
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy. https://twitter.com/@skinski74
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Martinobologne2
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy.
| |
Collapse
|
29
|
Berghaus N, Schreiner S, Poos AM, Raab MS, Goldschmidt H, Mai EK, Salwender HJ, Bernhard H, Thurner L, Müller-Tidow C, Weinhold N, Hegenbart U, Schönland SO, Huhn S. Comparison of IGLV2-14 light chain sequences of patients with AL amyloidosis or multiple myeloma. FEBS J 2023; 290:4256-4267. [PMID: 37097223 DOI: 10.1111/febs.16805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 04/26/2023]
Abstract
Light chain amyloidosis (AL) is one of the most common forms of systemic amyloidosis and is caused by the deposition of insoluble fibrils derived from misfolded and aggregated immunoglobulin light chains (LC). To uncover the causes leading to this aggregation, we compared AL LC sequences with those of patients with the related disease multiple myeloma (MM), which do not aggregate in insoluble fibrils in vivo. IGLV2-14 is one of the most common AL-associated IGLV subfamilies. Here, we analysed IGLV2-14 LC sequences of 13 AL and eight MM patients in detail. We found that AL-associated LCs presented a lower median mutation count (7.0 vs. 11.5 in MM; P = 0.045), as well as an overall composition of less charged amino acids than MM LCs. However, we did not find a mutation that was present in ≥ 50% of the AL and not in the MM sequences. Furthermore, we did not find a significant difference in the isoelectric point (pI) in general, suggesting similar stability of the LCs in AL and MM. However, the subgroup of patients without a detectable heavy chain stood out. Surprisingly, they are characterized by an increase in mutation count (median 7.0 vs. 5.5) and pI (median 7.82 vs. 6.44, P = 0.043). In conclusion, our data suggest that the amount of mutations and the introduction of charges play a crucial role in AL fibril formation, as well as the absence or presence of a potential heavy chain binding partner.
Collapse
Affiliation(s)
- Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Germany
| | - Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Germany
| | - Alexandra M Poos
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
| | - Marc S Raab
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
- National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hartmut Goldschmidt
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
| | - Elias K Mai
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
- National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Helga Bernhard
- Medical Department V, Hematology/Oncology, Hospital Darmstadt GmbH, Germany
| | - Lorenz Thurner
- Internal Medicine I, University Hospital Saarland, Homburg/ Saar, Germany
| | | | - Niels Weinhold
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Germany
| |
Collapse
|
30
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555139. [PMID: 37693524 PMCID: PMC10491100 DOI: 10.1101/2023.08.28.555139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline E West
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Arseni D, Chen R, Murzin AG, Peak-Chew SY, Garringer HJ, Newell KL, Kametani F, Robinson AC, Vidal R, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP. Nature 2023; 620:898-903. [PMID: 37532939 PMCID: PMC10447236 DOI: 10.1038/s41586-023-06405-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Renren Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
32
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
33
|
Pradhan T, Sarkar R, Meighen-Berger KM, Feige MJ, Zacharias M, Reif B. Mechanistic insights into the aggregation pathway of the patient-derived immunoglobulin light chain variable domain protein FOR005. Nat Commun 2023; 14:3755. [PMID: 37353525 PMCID: PMC10290123 DOI: 10.1038/s41467-023-39280-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Systemic antibody light chain (AL) amyloidosis is characterized by deposition of amyloid fibrils. Prior to fibril formation, soluble oligomeric AL protein has a direct cytotoxic effect on cardiomyocytes. We focus on the patient derived λ-III AL variable domain FOR005 which is mutated at five positions with respect to the closest germline protein. Using solution-state NMR spectroscopy, we follow the individual steps involved in protein misfolding from the native to the amyloid fibril state. Unfavorable mutations in the complementary determining regions introduce a strain in the native protein structure which yields partial unfolding. Driven by electrostatic interactions, the protein converts into a high molecular weight, oligomeric, molten globule. The high local concentration of aggregation prone regions in the oligomer finally catalyzes the conversion into fibrils. The topology is determined by balanced electrostatic interactions in the fibril core implying a 180° rotational switch of the beta-sheets around the conserved disulfide bond.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Riddhiman Sarkar
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Kevin M Meighen-Berger
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Bernd Reif
- Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstr. 4, 85747, Garching, Germany.
- Institute of Structural Biology (STB), Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
34
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
35
|
Baur J, Berghaus N, Schreiner S, Hegenbart U, Schönland SO, Wiese S, Huhn S, Haupt C. Identification of AL proteins from 10 λ-AL amyloidosis patients by mass spectrometry extracted from abdominal fat and heart tissue. Amyloid 2023; 30:27-37. [PMID: 35792725 DOI: 10.1080/13506129.2022.2095618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Systemic AL amyloidosis arises from the misfolding of patient-specific immunoglobulin light chains (LCs). Potential drivers of LC amyloid formation are mutational changes and post-translational modifications (PTMs). However, little information is available on the exact primary structure of the AL proteins and their precursor LCs. OBJECTIVE We analyse the exact primary structure of AL proteins extracted from 10 λ AL amyloidosis patients and their corresponding precursor LCs. MATERIALS AND METHODS By cDNA sequencing of the precursor LC genes in combination with mass spectrometry of the AL proteins, the exact primary structure and PTMs were determined. This information was used to analyse their biochemical properties. RESULTS All AL proteins comprise the VL and a small part of the CL with a common C-terminal truncation region. While all AL proteins retain the conserved native disulphide bond of the VL, we found no evidence for presence of other common PTMs. The analysis of the biochemical properties revealed that the isoelectric point of the VL is significantly increased due to introduced mutations. CONCLUSION Our data imply that mutational changes influence the surface charge properties of the VL and that common proteolytic processes are involved in the generation of the cleavage sites of AL proteins.
Collapse
Affiliation(s)
- Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
36
|
Absmeier RM, Rottenaicher GJ, Svilenov HL, Kazman P, Buchner J. Antibodies gone bad - the molecular mechanism of light chain amyloidosis. FEBS J 2023; 290:1398-1419. [PMID: 35122394 DOI: 10.1111/febs.16390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Light chain amyloidosis (AL) is a systemic disease in which abnormally proliferating plasma cells secrete large amounts of mutated antibody light chains (LCs) that eventually form fibrils. The fibrils are deposited in various organs, most often in the heart and kidney, and impair their function. The prognosis for patients diagnosed with AL is generally poor. The disease is set apart from other amyloidoses by the huge number of patient-specific mutations in the disease-causing and fibril-forming protein. The molecular mechanisms that drive the aggregation of mutated LCs into fibrils have been enigmatic, which hindered the development of efficient diagnostics and therapies. In this review, we summarize our current knowledge on AL amyloidosis and discuss open issues.
Collapse
Affiliation(s)
- Ramona M Absmeier
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Georg J Rottenaicher
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hristo L Svilenov
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Pamina Kazman
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
37
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of Complementarity-Determining Regions 1 and 3 in Pathologic Amyloid Formation by Human Immunoglobulin κ1 Light Chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526662. [PMID: 36778378 PMCID: PMC9915687 DOI: 10.1101/2023.02.01.526662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease whose understanding and treatment is complicated by vast numbers of patient-specific mutations. To address molecular origins of the disease, we explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Hydrogen-deuterium exchange mass spectrometry analysis of local conformational dynamics in full-length recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation, and amyloidogenic sequence propensities using spectroscopic, electron microscopic and bioinformatics tools. The results were mapped on the atomic structures of native and fibrillary proteins. Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower. These and other differences suggest different major factors influencing amyloid formation. In 33*01-related amyloid LC, these factors involved mutation-induced destabilization of the native structure and probable stabilization of amyloid. The atypical behaviour of 39*01-related amyloid LC tracked back to increased dynamics/exposure of amyloidogenic segments in βC' V and βE V that could initiate aggregation, combined with decreased dynamics/exposure near the Cys23-Cys88 disulfide whose rearrangement is rate-limiting to amyloidogenesis. The results suggest distinct amyloidogenic pathways for closely related LCs and point to the antigen-binding, complementarity-determining regions CDR1 and CDR3, which are linked via the conserved internal disulfide, as key factors in amyloid formation by various LCs.
Collapse
|
38
|
Aggregation mechanism and branched 3D morphologies of pathological human light chain proteins under reducing conditions. Colloids Surf B Biointerfaces 2023; 221:112983. [DOI: 10.1016/j.colsurfb.2022.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
39
|
Tomiyama R, So M, Yamaguchi K, Miyanoiri Y, Sakurai K. The residual structure of acid-denatured β 2 -microglobulin is relevant to an ordered fibril morphology. Protein Sci 2023; 32:e4487. [PMID: 36321362 PMCID: PMC9793977 DOI: 10.1002/pro.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
β2 -Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.
Collapse
Affiliation(s)
- Ryosuke Tomiyama
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan
| | - Masatomo So
- Institute for Protein ResearchOsaka UniversityOsakaJapan,Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | | | - Kazumasa Sakurai
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan,High Pressure Protein Research Center, Institute of Advanced TechnologyKindai UniversityWakayamaJapan
| |
Collapse
|
40
|
Lövestam S, Scheres SHW. High-throughput cryo-EM structure determination of amyloids. Faraday Discuss 2022; 240:243-260. [PMID: 35913272 PMCID: PMC9642048 DOI: 10.1039/d2fd00034b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The formation of amyloid filaments is characteristic of various degenerative diseases. Recent breakthroughs in electron cryo-microscopy (cryo-EM) have led to atomic structure determination of multiple amyloid filaments, both of filaments assembled in vitro from recombinant proteins, and of filaments extracted from diseased tissue. These observations revealed that a single protein may adopt multiple different amyloid folds, and that in vitro assembly does not necessarily lead to the same filaments as those observed in disease. In order to develop relevant model systems for disease, and ultimately to better understand the molecular mechanisms of disease, it will be important to determine which factors determine the formation of distinct amyloid folds. High-throughput cryo-EM, in which structure determination becomes a tool rather than a project in itself, will facilitate the screening of large numbers of in vitro assembly conditions. To this end, we describe a new filament picking algorithm based on the Topaz approach, and we outline image processing strategies in Relion that enable atomic structure determination of amyloids within days.
Collapse
Affiliation(s)
- Sofia Lövestam
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridge Biomedical CampusCB2 0QHCambridgeUK
| | - Sjors H. W. Scheres
- MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridge Biomedical CampusCB2 0QHCambridgeUK
| |
Collapse
|
41
|
Steinebrei M, Gottwald J, Baur J, Röcken C, Hegenbart U, Schönland S, Schmidt M. Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis. Nat Commun 2022; 13:6398. [PMID: 36302762 PMCID: PMC9613903 DOI: 10.1038/s41467-022-33591-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
Wild type transthyretin-derived amyloid (ATTRwt) is the major component of non-hereditary transthyretin amyloidosis. Its accumulation in the heart of elderly patients is life threatening. A variety of genetic variants of transthyretin can lead to hereditary transthyretin amyloidosis, which shows different clinical symptoms, like age of onset and pattern of organ involvement. However, in the case of non-hereditary transthyretin amyloidosis ATTRwt fibril deposits are located primarily in heart tissue. In this structural study we analyzed ATTRwt amyloid fibrils from the heart of a patient with non-hereditary transthyretin amyloidosis. We present a 2.78 Å reconstructed density map of these ATTRwt fibrils using cryo electron microscopy and compare it with previously published V30M variants of ATTR fibrils extracted from heart and eye of different patients. All structures show a remarkably similar spearhead like shape in their cross section, formed by the same N- and C-terminal fragments of transthyretin with some minor differences. This demonstrates common features for ATTR fibrils despite differences in mutations and patients.
Collapse
Affiliation(s)
- Maximilian Steinebrei
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Juliane Gottwald
- Department of Pathology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Building U33, Kiel, D-24105, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Building U33, Kiel, D-24105, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.
| |
Collapse
|
42
|
Blahut J, Brandl MJ, Pradhan T, Reif B, Tošner Z. Sensitivity-Enhanced Multidimensional Solid-State NMR Spectroscopy by Optimal-Control-Based Transverse Mixing Sequences. J Am Chem Soc 2022; 144:17336-17340. [PMID: 36074981 DOI: 10.1021/jacs.2c06568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, proton-detected magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy has become an attractive tool to study the structure and dynamics of insoluble proteins at atomic resolution. The sensitivity of the employed multidimensional experiments can be systematically improved when both transversal components of the magnetization are transferred simultaneously after an evolution period. The method of preservation of equivalent pathways has been explored in solution-state NMR; however, it does not find widespread application due to relaxation issues connected with increased molecular size. We present here for the first time heteronuclear transverse mixing sequences for correlation experiments at moderate and fast MAS frequencies. Optimal control allows to boost the signal-to-noise ratio (SNR) beyond the expected factor of 2 for each indirect dimension. In addition to the carbon-detected sensitivity-enhanced 2D NCA experiment, we present a novel proton-detected, doubly sensitivity-enhanced 3D hCANH pulse sequence for which we observe a 3-fold improvement in SNR compared to the conventional experimental implementation. The sensitivity gain turned out to be essential to unambiguously characterize a minor fibril polymorph of a human lambda-III immunoglobulin light chain protein that escaped detection so far.
Collapse
Affiliation(s)
- Jan Blahut
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Matthias J Brandl
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Tejaswini Pradhan
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| |
Collapse
|
43
|
Abstract
Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-β (Aβ) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aβ, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.
Collapse
|
44
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
45
|
Scalone E, Broggini L, Visentin C, Erba D, Bačić Toplek F, Peqini K, Pellegrino S, Ricagno S, Paissoni C, Camilloni C. Multi-eGO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2203181119. [PMID: 35737839 PMCID: PMC9245614 DOI: 10.1073/pnas.2203181119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.
Collapse
Affiliation(s)
- Emanuele Scalone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Davide Erba
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kaliroi Peqini
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
46
|
Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat Commun 2022; 13:3491. [PMID: 35715417 PMCID: PMC9205981 DOI: 10.1038/s41467-022-31240-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. Misfolded Cu, Zn-superoxide dismutase (SOD1) has been linked to both familial and sporadic ALS. SOD1 fibrils formed in vitro share toxic properties with ALS inclusions. Here we produced cytotoxic amyloid fibrils from full-length apo human SOD1 under reducing conditions and determined the atomic structure using cryo-EM. The SOD1 fibril consists of a single protofilament with a left-handed helix. The fibril core exhibits a serpentine fold comprising N-terminal segment (residues 3–55) and C-terminal segment (residues 86–153) with an intrinsic disordered segment. The two segments are zipped up by three salt bridge pairs. By comparison with the structure of apo SOD1 dimer, we propose that eight β-strands (to form a β-barrel) and one α-helix in the subunit of apo SOD1 convert into thirteen β-strands stabilized by five hydrophobic cavities in the SOD1 fibril. Our data provide insights into how SOD1 converts between structurally and functionally distinct states. Misfolded SOD1 has been linked to both familial and sporadic ALS. Here the authors have determined the cryo-EM structure of SOD1 fibrils, providing insights into the conversion of SOD1 from its immature form into an aggregated form during pathogenesis of ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xi Huang
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Wen-Chang Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Bin Dai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, 200030, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, 430072, Wuhan, China
| | - Liangyu Zou
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| |
Collapse
|
47
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
48
|
Li D, Liu C. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nat Rev Neurosci 2022; 23:523-534. [DOI: 10.1038/s41583-022-00603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
|
49
|
Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, Scheres SHW. Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. eLife 2022; 11:e76494. [PMID: 35244536 PMCID: PMC8983045 DOI: 10.7554/elife.76494] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Abundant filamentous inclusions of tau are characteristic of more than 20 neurodegenerative diseases that are collectively termed tauopathies. Electron cryo-microscopy (cryo-EM) structures of tau amyloid filaments from human brain revealed that distinct tau folds characterise many different diseases. A lack of laboratory-based model systems to generate these structures has hampered efforts to uncover the molecular mechanisms that underlie tauopathies. Here, we report in vitro assembly conditions with recombinant tau that replicate the structures of filaments from both Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE), as determined by cryo-EM. Our results suggest that post-translational modifications of tau modulate filament assembly, and that previously observed additional densities in AD and CTE filaments may arise from the presence of inorganic salts, like phosphates and sodium chloride. In vitro assembly of tau into disease-relevant filaments will facilitate studies to determine their roles in different diseases, as well as the development of compounds that specifically bind to these structures or prevent their formation.
Collapse
Affiliation(s)
- Sofia Lövestam
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sjors HW Scheres
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
50
|
Murray KA, Evans D, Hughes MP, Sawaya MR, Hu CJ, Houk KN, Eisenberg D. Extended β-Strands Contribute to Reversible Amyloid Formation. ACS NANO 2022; 16:2154-2163. [PMID: 35132852 DOI: 10.1021/acsnano.1c08043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assembly of proteins into fibrillar amyloid structures was once considered to be pathologic and essentially irreversible. Recent studies reveal amyloid-like structures that form reversibly, derived from protein low-complexity domains which function in cellular metabolism. Here, by comparing atomic-level structures of reversible and irreversible amyloid fibrils, we find that the β-sheets of reversible fibrils are enriched in flattened (as opposed to pleated) β-sheets formed by stacking of extended β-strands. Quantum mechanical calculations show that glycine residues favor extended β-strands which may be stabilized by intraresidue interactions between the amide proton and the carbonyl oxygen, known as C5 hydrogen-bonds. Larger residue side chains favor shorter strands and pleated sheets. These findings highlight a structural element that may regulate reversible amyloid assembly.
Collapse
|