1
|
Xiang Y, Fan B, Shang P, Ding R, Du J, Zhu T, Zhang H, Yan X. VR23 and Bisdemethoxycurcumin Enhanced Nanofiber Niche with Durable Bidirectional Functions for Promoting Wound Repair and Inhibiting Scar Formation. SMALL METHODS 2024; 8:e2400273. [PMID: 38733258 DOI: 10.1002/smtd.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Chronic wounds pose a significant clinical challenge worldwide, which is characterized by impaired tissue regeneration and excessive scar formation due to over-repair. Most studies have focused on developing wound repair materials that either facilitate the healing process or control hyperplastic scars caused by over-repair, respectively. However, there are limited reports on wound materials that can both promote wound healing and prevent scar hyperplasia at the same time. In this study, VR23-loaded dendritic mesoporous bioglass nanoparticles (dMBG) are synthesized and electrospun in poly(ester-curcumin-urethane)urea (PECUU) random composite nanofibers (PCVM) through the synergistic effects of physical adsorption, hydrogen bond, and electrospinning. The physicochemical characterization reveals that PCVM presented matched mechanical properties, suitable porosity, and wettability, and enabled sustained and temporal release of VR23 and BDC with the degradation of PCVM. In vitro experiments demonstrated that PCVM can modulate the functions and polarization of macrophages under an inflammatory environment, and possess effective anti-scarring potential and reliable cytocompatibility. Animal studies further confirmed that PCVM can efficiently promote re-epithelialization and angiogenesis and reduce excessive inflammation, thereby remarkably accelerating wound healing while preventing potential scarring. These findings suggest that the prepared PCVM holds promise as a bidirectional regulatory dressing for effectively promoting scar-free healing of chronic wounds.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| | - Beibei Fan
- Department of Pharmacy, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Panpan Shang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Ren Ding
- Department of Orthopedics, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| |
Collapse
|
2
|
Dong Y, Zhang Z, Huang H, Yu Y, Rao B, Kuang X, Zeng J, Zhao E, Chen Y, Lu J, Qiu F. ZFHX2-AS1 interacts with DKC1 to regulate ARHGAP5 pseudouridylation and suppress ovarian cancer progression. Cell Signal 2024; 124:111441. [PMID: 39368791 DOI: 10.1016/j.cellsig.2024.111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Ovarian cancer (OCa) remains a highly lethal disease, largely due to late-stage diagnosis and limited treatment options for recurrent metastatic tumors. Long non-coding RNAs (lncRNAs) have been recognized as key regulators of cancer hallmarks, yet their specific roles in driving OCa progression are not fully understood. In this study, we employed an integrated approach combining clinical correlation, functional assays, and mechanistic investigations to reveal that lncRNA ZFHX2-AS1 is significantly downregulated in OCa tissues and cells, with its reduced expression associated with poor clinical outcomes. Using in vitro and in vivo models, we demonstrated that overexpression of ZFHX2-AS1 suppresses OCa cell proliferation, migration and invasion, whereas ZFHX2-AS1 knockdown enhances these malignant phenotypes. Mechanistically, we defined that ZFHX2-AS1 interacts with and attenuates the enzymatic activity of the pseudouridine synthase DKC1, thereby reducing pseudouridylation and stabilizing the oncogenic ARHGAP5 mRNA. Re-expression of ARHGAP5 could partially reverse the tumor-suppressive effects of ZFHX2-AS1. Further, we found that ARHGAP5 promotes epithelial-mesenchymal transition (EMT) by regulating Rho GTPases activities, and that ZFHX2-AS1 inhibits EMT in OCa by downregulating ARHGAP5 expression and suppressing the Rho GTPase signaling pathway. Taken together, our findings identify ZFHX2-AS1 as a potent tumor suppressor in OCa, acting through the modulation of DKC1-mediated pseudouridylation of ARHGAP5 and the inhibition of the Rho GTPase pathway, thus offering a potential therapeutic target for combating OCa progression.
Collapse
Affiliation(s)
- Yongshun Dong
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China; Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongmei Huang
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China
| | - Yonghui Yu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China
| | - Boqi Rao
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China
| | - Xinjie Kuang
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China
| | - Jie Zeng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Eryong Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou 510000, China
| | - Yongxiu Chen
- Department of Gynaecology & Obstetrics, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
3
|
Baidya AK, Tiwary BK. A combination of conserved and stage-specific lncRNA biomarkers to detect lung adenocarcinoma progression. J Biomol Struct Dyn 2024:1-13. [PMID: 39601689 DOI: 10.1080/07391102.2024.2431190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 11/29/2024]
Abstract
Lung adenocarcinoma is highly heterogeneous at the molecular level between different stages; therefore, understanding molecular mechanisms contributing to such heterogeneity is needed. In addition, multiple stages of progression are critical factors for lung adenocarcinoma treatment. However, previous studies showed that cancer progression is associated with altered lncRNA expression, highlighting the tissue-specific and developmental stage-specific nature of lncRNAs in various diseases. Therefore, a study using an integrated network approach to explore the role of lncRNA in carcinogenesis was done using expression profiles revealing stage-specific and conserved lncRNA biomarkers in lung adenocarcinoma. We constructed ceRNA networks for each stage of lung adenocarcinoma and analysed them using network topology, differential co-expression network, protein-protein interaction network, functional enrichment, survival analysis, genomic analysis and deep learning to identify potential lncRNA biomarkers. The co-expression networks of healthy and three successive stages of lung adenocarcinoma have shown different network properties. One conserved and four stage-specific lncRNAs are identified as genome regulatory biomarkers. These lncRNAs can successfully identify lung adenocarcinoma and different stages of progression using deep learning. In addition, we identified five mRNAs, four miRNAs and twelve novel carcinogenic interactions associated with the progression of lung adenocarcinoma. These lncRNA biomarkers will provide a novel perspective into the underlying mechanism of adenocarcinoma progression and may be further helpful in early diagnosis, treatment and prognosis of this deadly disease.
Collapse
Affiliation(s)
- Anil K Baidya
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
4
|
Huang L, Wang J, Wang X, Zheng S, Liang K, Kang YE, Chang JW, Koo BS, Liu L, Gal A, Shan Y. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation. Cancer Lett 2024; 601:217145. [PMID: 39084455 DOI: 10.1016/j.canlet.2024.217145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.
Collapse
Affiliation(s)
- Lei Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Jiaxin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sicong Zheng
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kailin Liang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yea Eun Kang
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, 35015, Republic of Korea
| | - Lihua Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom.
| | - Yujuan Shan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Wang Y, Shi N, Zhang H, Luo J, Yan H, Hou H, Guan Z, Zhao L, Duan M. LINC01197 inhibits influenza A virus replication by serving as a PABPC1 decoy. Vet Res 2024; 55:121. [PMID: 39334466 PMCID: PMC11430458 DOI: 10.1186/s13567-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza A viruses (IAVs) significantly impact animal and human health due to their zoonotic potential. A growing body of evidence indicates that the host's long noncoding RNAs (lncRNAs) play crucial roles in regulating host-virus interactions during IAV infection. However, numerous lncRNAs associated with IAV infection have not been well characterised. Here, in this study, we identify the LINC01197 as an antiviral host factor. LINC01197 was significantly upregulated after IAV infection, which is controlled by the NF-κB pathway. Functional analysis revealed that overexpression of LINC01197 inhibited IAV replication and virus production, while knockdown of LINC01197 facilitated IAV replication. Mechanistically, LINC01197 directly interacts with poly(A) binding protein cytoplasmic 1 (PABPC1), which in turn sequesters and restricts its functions. This work shows that LINC01197 acts as a protein decoy, suppressing IAV replication and playing a key role in controlling IAV replication.
Collapse
Affiliation(s)
- Yihe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, 130021, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Hongjian Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Huiyan Hou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Lili Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 130062, Changchun, Jilin Province, China.
| |
Collapse
|
6
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
7
|
Lin WD, Liao WL, Chen WC, Liu TY, Chen YC, Tsai FJ. Genome-wide association study identifies novel susceptible loci and evaluation of polygenic risk score for chronic obstructive pulmonary disease in a Taiwanese population. BMC Genomics 2024; 25:607. [PMID: 38886662 PMCID: PMC11184693 DOI: 10.1186/s12864-024-10526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) describes a group of progressive lung diseases causing breathing difficulties. While COPD development typically involves a complex interplay between genetic and environmental factors, genetics play a role in disease susceptibility. This study used genome-wide association studies (GWAS) and polygenic risk score (PRS) to elucidate the genetic basis for COPD in Taiwanese patients. RESULTS GWAS was performed on a Taiwanese COPD case-control cohort with a sample size of 5,442 cases and 17,681 controls. Additionally, the PRS was calculated and assessed in our target groups. GWAS results indicate that although there were no single nucleotide polymorphisms (SNPs) of genome-wide significance, prominent COPD susceptibility loci on or nearby genes such as WWTR1, EXT1, INTU, MAP3K7CL, MAMDC2, BZW1/CLK1, LINC01197, LINC01894, and CFAP95 (C9orf135) were identified, which had not been reported in previous studies. Thirteen susceptibility loci, such as CHRNA4, AFAP1, and DTWD1, previously reported in other populations were replicated and confirmed to be associated with COPD in Taiwanese populations. The PRS was determined in the target groups using the summary statistics from our base group, yielding an effective association with COPD (odds ratio [OR] 1.09, 95% confidence interval [CI] 1.02-1.17, p = 0.011). Furthermore, replication a previous lung function trait PRS model in our target group, showed a significant association of COPD susceptibility with PRS of Forced Expiratory Volume in one second (FEV1)/Forced Vital Capacity (FCV) (OR 0.89, 95% CI 0.83-0.95, p = 0.001). CONCLUSIONS Novel COPD-related genes were identified in the studied Taiwanese population. The PRS model, based on COPD or lung function traits, enables disease risk estimation and enhances prediction before suffering. These results offer new perspectives on the genetics of COPD and serve as a basis for future research.
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Wei-Cheng Chen
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, 404333, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.
- Division of Genetics and Metabolism, China Medical University Children's Hospital, Taichung, 404327, Taiwan.
- Department of Medical Genetics, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413305, Taiwan.
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, North District, Taichung, 404327, Taiwan.
| |
Collapse
|
8
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
9
|
Luo D, Liang Y, Wang Y, Ye F, Jin Y, Li Y, Han D, Wang Z, Chen B, Zhao W, Wang L, Chen X, Jiang L, Yang Q. Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Res 2023; 25:109. [PMID: 37770991 PMCID: PMC10540452 DOI: 10.1186/s13058-023-01709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.
Collapse
Affiliation(s)
- Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Bing Chen
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhao
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Lijuan Wang
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Liyu Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Pal S, Bhowmick S, Sharma A, Sierra-Fonseca JA, Mondal S, Afolabi F, Roy D. Lymphatic vasculature in ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188950. [PMID: 37419192 PMCID: PMC10754213 DOI: 10.1016/j.bbcan.2023.188950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, United States
| | - Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Favour Afolabi
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States.
| |
Collapse
|
11
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
12
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
13
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 742] [Impact Index Per Article: 371.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Cicconetti C, Lauria A, Proserpio V, Masera M, Tamburrini A, Maldotti M, Oliviero S, Molineris I. 3plex enables deep computational investigation of triplex forming lncRNAs. Comput Struct Biotechnol J 2023; 21:3091-3102. [PMID: 37273849 PMCID: PMC10236371 DOI: 10.1016/j.csbj.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression through different molecular mechanisms, including DNA binding via the formation of RNA:DNA:DNA triple helices (TPXs). Despite the increasing amount of experimental evidence, TPXs investigation remains challenging. Here we present 3plex, a software able to predict TPX interactions in silico. Given an RNA sequence and a set of DNA sequences, 3plex integrates 1) Hoogsteen pairing rules that describe the biochemical interactions between RNA and DNA nucleotides, 2) RNA secondary structure prediction and 3) determination of the TPX thermal stability derived from a collection of TPX experimental evidences. We systematically collected and uniformly re-analysed published experimental lncRNA binding sites on human and mouse genomes. We used these data to evaluate 3plex performance and showed that its specific features allow a reliable identification of TPX interactions. We compared 3plex with the other available software and obtained comparable or even better accuracy at a fraction of the computation time. Interestingly, by inspecting collected data with 3plex we found that TPXs tend to be shorter and more degenerated than previously expected and that the majority of analysed lncRNAs can directly bind to the genome by TPX formation. Those results suggest that an important fraction of lncRNAs can exert its biological function through this mechanism. The software is available at https://github.com/molinerisLab/3plex.
Collapse
Affiliation(s)
- Chiara Cicconetti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Andrea Lauria
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Valentina Proserpio
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Marco Masera
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Annalaura Tamburrini
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Mara Maldotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Ivan Molineris
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| |
Collapse
|
15
|
Zhang X, Chen Q, He Y, Shi Q, Yin C, Xie Y, Yu H, Bao Y, Wang X, Tang C, Dong Z. STRIP2 motivates non-small cell lung cancer progression by modulating the TMBIM6 stability through IGF2BP3 dependent. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:19. [PMID: 36639675 PMCID: PMC9837939 DOI: 10.1186/s13046-022-02573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Striatin interacting protein 2 (STRIP2) is a core component of the striatin-interacting phosphatase and kinase (STRIPAK) complexes, which is involved in tumor initiation and progression via the regulation of cell contractile and metastasis. However, the underlying molecular mechanisms of STRIP2 in non-small cell lung cancer (NSCLC) progression remain largely unknown. METHODS The expressions of STRIP2 and IGF2BP3 in human NSCLC specimens and NSCLC cell lines were detected using quantitative RT-PCR, western blotting, and immunohistochemistry (IHC) analyses. The roles and molecular mechanisms of STRIP2 in promoting NSCLC progression were investigated in vitro and in vivo. RESULTS Here, we found that STRIP2 expression was significantly elevated in NSCLC tissues and high STRIP2 expression was associated with a poor prognosis. Knockdown of STRIP2 suppressed tumor growth and metastasis in vitro and in vivo, while STRIP2 overexpression obtained the opposite effect. Mechanistically, P300/CBP-mediated H3K27 acetylation activation in the promoter of STRIP2 induced STRIP2 transcription, which interacted with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and upregulated IGF2BP3 transcription. In addition, STRIP2-IGF2BP3 axis stimulated m6A modification of TMBIM6 mRNA and enhanced TMBIM6 stability. Consequently, TMBIM6 involved NSCLC cell proliferation, migration and invasion dependent on STRIP2 and IGF2BP3. In NSCLC patients, high co-expression of STRIP2, IGF2BP3 and TMBIM6 was associated with poor outcomes. CONCLUSIONS Our findings indicate that STRIP2 interacts with IGF2BP3 to regulate TMBIM6 mRNA stability in an m6A-dependent manner and may represent a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xilin Zhang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qiuqiang Chen
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying He
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qian Shi
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengyi Yin
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Yanping Xie
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Huanming Yu
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying Bao
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Xiang Wang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengwu Tang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Zhaohui Dong
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| |
Collapse
|
16
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
18
|
Lin S, Wen Z, Li S, Chen Z, Li C, Ouyang Z, Lin C, Kuang M, Xue C, Ding Y. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis. Acta Biomater 2022; 142:345-360. [PMID: 35151924 DOI: 10.1016/j.actbio.2022.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Aseptic loosening (AL), secondary to particle-caused periprosthetic osteolysis, is one of the main reasons of artificial joint failure. Suppressing the macrophage inflammatory response caused by wear particles extends the life of prosthesis, and the long noncoding RNAs (lncRNAs) may play a predominant part in it. Here, titanium particles' (TiPs') stimulation increases both the cytoplasmic and nuclear levels of lncRNA Neat1 in bone marrow derived macrophages (BMDMs), which further induces the inflammatory response. Mechanically, Neat1 facilitates Bruton's tyrosine kinase (BTK) transcription by reducing the transcriptional factor KLF4, which further activates the NF-κB pathway, NLRP3 inflammation, and M1 polarization in BMDMs. Cytoplasmic Neat1 also works as an miRNA sponge in miR-188-5p-regulated BTK expression in the post-transcriptional stage. In vivo, Neat1 downregulation can reduce the TiP-induced pro-inflammatory factors and reverse the osteolysis induced by BTK overexpression. In addition, the PLGA-based microparticles loaded with si-Neat1 are developed for the treatment of the mouse calvarial osteolysis model via local injection, presenting satisfactory anti-osteolysis efficacy. These findings indicate that Neat1 is a key regulator of AL. STATEMENT OF SIGNIFICANCE: Due to released particles, aseptic loosening (AL) is the most common reason for prosthesis failure and surgical revision and represents a substantial economic burden worldwide. Herein, we reported that lncRNA Neat1 is a key regulator in regulating wear particles-induced osteolysis by activating NF-κB pathway, NLRP3 inflammation and M1 polarization via BTK, and the underlying mechanisms of Neat1-BTK interaction were further portrayed. For potential clinical application, the microparticles are developed for effective si-Neat1 delivery, leading to a dramatically enhanced effect for the treatment of osteolysis, which might be a novel strategy to extend the life of the implant.
Collapse
|
19
|
Ducoli L, Agrawal S, Hon CC, Ramilowski JA, Sibler E, Tagami M, Itoh M, Kondo N, Abugessaisa I, Hasegawa A, Kasukawa T, Suzuki H, Carninci P, Shin JW, de Hoon MJL, Detmar M. The choice of negative control antisense oligonucleotides dramatically impacts downstream analysis depending on the cellular background. BMC Genom Data 2021; 22:33. [PMID: 34521352 PMCID: PMC8439024 DOI: 10.1186/s12863-021-00992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background The lymphatic and the blood vasculature are closely related systems that collaborate to ensure the organism’s physiological function. Despite their common developmental origin, they present distinct functional fates in adulthood that rely on robust lineage-specific regulatory programs. The recent technological boost in sequencing approaches unveiled long noncoding RNAs (lncRNAs) as prominent regulatory players of various gene expression levels in a cell-type-specific manner. Results To investigate the potential roles of lncRNAs in vascular biology, we performed antisense oligonucleotide (ASO) knockdowns of lncRNA candidates specifically expressed either in human lymphatic or blood vascular endothelial cells (LECs or BECs) followed by Cap Analysis of Gene Expression (CAGE-Seq). Here, we describe the quality control steps adopted in our analysis pipeline before determining the knockdown effects of three ASOs per lncRNA target on the LEC or BEC transcriptomes. In this regard, we especially observed that the choice of negative control ASOs can dramatically impact the conclusions drawn from the analysis depending on the cellular background. Conclusion In conclusion, the comparison of negative control ASO effects on the targeted cell type transcriptomes highlights the essential need to select a proper control set of multiple negative control ASO based on the investigated cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00992-1.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.,Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.,Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoto Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan.,Human Technopole, Via Cristina Belgioioso 171, 20157, Milan, Italy
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
He Y, Xu Y, Yu X, Sun Z, Guo W. The Vital Roles of LINC00662 in Human Cancers. Front Cell Dev Biol 2021; 9:711352. [PMID: 34354995 PMCID: PMC8329443 DOI: 10.3389/fcell.2021.711352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in many human diseases, particularly in tumorigenicity and progression. Although lncRNA research studies are increasing rapidly, our understanding of lncRNA mechanisms is still incomplete. The long intergenic non-protein coding RNA 662 (LINC00662) is a novel lncRNA, and accumulating evidence suggests that it is related to a variety of tumors in multiple systems, including the respiratory, reproductive, nervous, and digestive systems. LINC00662 has been shown to be upregulated in malignant tumors and has been confirmed to promote the development of malignant tumors. LINC00662 has also been reported to facilitate a variety of cellular events, such as tumor-cell proliferation, invasion, and migration, and its expression has been correlated to clinicopathological characteristics in patients with tumors. In terms of mechanisms, LINC00662 regulates gene expression by interacting with both proteins and with RNAs, so it may be a potential biomarker for cancer diagnosis, prognosis, and treatment. This article reviews the expression patterns, biological functions, and underlying molecular mechanisms of LINC00662 in tumors.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
21
|
Blei F. Update April 2021. Lymphat Res Biol 2021; 19:189-202. [PMID: 33900826 DOI: 10.1089/lrb.2021.29102.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|