1
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2024:168814. [PMID: 39374889 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Tan Y, Gao M, Huang Y, Zhan D, Wu S, An J, Zhang X, Hu J. STK19 is a transcription-coupled repair factor that participates in UVSSA ubiquitination and TFIIH loading. Nucleic Acids Res 2024:gkae787. [PMID: 39353615 DOI: 10.1093/nar/gkae787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Transcription-coupled repair (TCR) is the major pathway to remove transcription-blocking lesions. Although discovered for nearly 40 years, the mechanism and critical players of mammalian TCR remain unclear. STK19 is a factor affecting cell survival and recovery of RNA synthesis in response to DNA damage, however, whether it is a necessary component for TCR is unknown. Here, we demonstrated that STK19 is essential for human TCR. Mechanistically, STK19 is recruited to damage sites through direct interaction with CSA. It can also interact with RNA polymerase II in vitro. Once recruited, STK19 plays an important role in UVSSA ubiquitination which is needed for TCR. STK19 also promotes TCR independent of UVSSA ubiquitination by stimulating TFIIH recruitment through its direct interaction with TFIIH. In summary, our results suggest that STK19 is a key factor of human TCR that links CSA, UVSSA ubiquitination and TFIIH loading, shedding light on the molecular mechanisms of TCR.
Collapse
Affiliation(s)
- Yuanqing Tan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Gao
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Delin Zhan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Sizhong Wu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiao An
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiping Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wang X, Zheng R, Dukhinova M, Wang L, Shen Y, Lin Z. Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models. J Zhejiang Univ Sci B 2024; 25:878-889. [PMID: 39420523 PMCID: PMC11494160 DOI: 10.1631/jzus.b2300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 10/19/2024]
Abstract
Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (ERCC6) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.
Collapse
Affiliation(s)
- Xintai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Marina Dukhinova
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine / International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322001, China
| | - Luxi Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhijie Lin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
5
|
Llerena Schiffmacher DA, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal ACO, Hoeijmakers JHJ, Marteijn JA, Lans H, Demmers JAA, Vermeulen M, Sixma TK, Ogi T, Vermeulen W, Pines A. The small CRL4 CSA ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics. Nat Commun 2024; 15:6374. [PMID: 39075067 PMCID: PMC11286758 DOI: 10.1038/s41467-024-50584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931, Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
van den Heuvel D, Rodríguez-Martínez M, van der Meer PJ, Moreno NN, Park J, Kim HS, van Schie JJM, Wondergem AP, D'Souza A, Yakoub G, Herlihy AE, Kashyap K, Boissière T, Walker J, Mitter R, Apelt K, de Lint K, Kirdök I, Ljungman M, Wolthuis RMF, Cramer P, Schärer OD, Kokic G, Svejstrup JQ, Luijsterburg MS. STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604575. [PMID: 39091731 PMCID: PMC11291029 DOI: 10.1101/2024.07.22.604575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and TFIIH around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a new TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryo-EM and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.
Collapse
|
7
|
Donnio LM, Giglia-Mari G. Keep calm and reboot - how cells restart transcription after DNA damage and DNA repair. FEBS Lett 2024. [PMID: 38991979 DOI: 10.1002/1873-3468.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 07/13/2024]
Abstract
The effects of genotoxic agents on DNA and the processes involved in their removal have been thoroughly studied; however, very little is known about the mechanisms governing the reinstatement of cellular activities after DNA repair, despite restoration of the damage-induced block of transcription being essential for cell survival. In addition to impeding transcription, DNA lesions have the potential to disrupt the precise positioning of chromatin domains within the nucleus and alter the meticulously organized architecture of the nucleolus. Alongside the necessity of resuming transcription mediated by RNA polymerase 1 and 2 transcription, it is crucial to restore the structure of the nucleolus to facilitate optimal ribosome biogenesis and ensure efficient and error-free translation. Here, we examine the current understanding of how transcriptional activity from RNA polymerase 2 is reinstated following DNA repair completion and explore the mechanisms involved in reassembling the nucleolus to safeguard the correct progression of cellular functions. Given the lack of information on this vital function, this Review seeks to inspire researchers to explore deeper into this specific subject and offers essential suggestions on how to investigate this complex and nearly unexplored process further.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| |
Collapse
|
8
|
van Sluis M, Yu Q, van der Woude M, Gonzalo-Hansen C, Dealy SC, Janssens RC, Somsen HB, Ramadhin AR, Dekkers DHW, Wienecke HL, Demmers JJPG, Raams A, Davó-Martínez C, Llerena Schiffmacher DA, van Toorn M, Häckes D, Thijssen KL, Zhou D, Lammers JG, Pines A, Vermeulen W, Pothof J, Demmers JAA, van den Berg DLC, Lans H, Marteijn JA. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4 CSA-mediated degradation. Nat Cell Biol 2024; 26:770-783. [PMID: 38600236 PMCID: PMC11098752 DOI: 10.1038/s41556-024-01394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.
Collapse
Affiliation(s)
- Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shannon C Dealy
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hedda B Somsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannah Lena Wienecke
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith G Lammers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Audrey A, Kok YP, Yu S, de Haan L, van de Kooij B, van den Tempel N, Chen M, de Boer HR, van der Vegt B, van Vugt MATM. RAD52-dependent mitotic DNA synthesis is required for genome stability in Cyclin E1-overexpressing cells. Cell Rep 2024; 43:114116. [PMID: 38625790 DOI: 10.1016/j.celrep.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.
Collapse
Affiliation(s)
- Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Lauren de Haan
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van de Kooij
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| |
Collapse
|
10
|
Barman P, Ferdoush J, Kaja A, Chakraborty P, Uprety B, Bhaumik R, Bhaumik R, Bhaumik SR. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C. Gene 2024; 894:148004. [PMID: 37977317 DOI: 10.1016/j.gene.2023.148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Risa Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Obermeyer S, Schrettenbrunner L, Stöckl R, Schwartz U, Grasser K. Different elongation factors distinctly modulate RNA polymerase II transcription in Arabidopsis. Nucleic Acids Res 2023; 51:11518-11533. [PMID: 37819035 PMCID: PMC10681736 DOI: 10.1093/nar/gkad825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Various transcript elongation factors (TEFs) including modulators of RNA polymerase II (RNAPII) activity and histone chaperones tune the efficiency of transcription in the chromatin context. TEFs are involved in establishing gene expression patterns during growth and development in Arabidopsis, while little is known about the genomic distribution of the TEFs and the way they facilitate transcription. We have mapped the genome-wide occupancy of the elongation factors SPT4-SPT5, PAF1C and FACT, relative to that of elongating RNAPII phosphorylated at residues S2/S5 within the carboxyterminal domain. The distribution of SPT4-SPT5 along transcribed regions closely resembles that of RNAPII-S2P, while the occupancy of FACT and PAF1C is rather related to that of RNAPII-S5P. Under transcriptionally challenging heat stress conditions, mutant plants lacking the corresponding TEFs are differentially impaired in transcript synthesis. Strikingly, in plants deficient in PAF1C, defects in transcription across intron/exon borders are observed that are cumulative along transcribed regions. Upstream of transcriptional start sites, the presence of FACT correlates with nucleosomal occupancy. Under stress conditions FACT is particularly required for transcriptional upregulation and to promote RNAPII transcription through +1 nucleosomes. Thus, Arabidopsis TEFs are differently distributed along transcribed regions, and are distinctly required during transcript elongation especially upon transcriptional reprogramming.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Lukas Schrettenbrunner
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
12
|
Huang Y, Gu L, Li GM. Heat shock protein DNAJA2 regulates transcription-coupled repair by triggering CSB degradation via chaperone-mediated autophagy. Cell Discov 2023; 9:107. [PMID: 37907457 PMCID: PMC10618452 DOI: 10.1038/s41421-023-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important genome maintenance system that preferentially removes DNA lesions on the transcribed strand of actively transcribed genes, including non-coding genes. TC-NER involves lesion recognition by the initiation complex consisting of RNA polymerase II (Pol II) and Cockayne syndrome group B (CSB), followed by NER-catalyzed lesion removal. However, the efficient lesion removal requires the initiation complex to yield the right of way to the excision machinery, and how this occurs in a timely manner is unknown. Here we show that heat shock protein DNAJA2 facilitates the HSC70 chaperone-mediated autophagy (CMA) to degrade CSB during TC-NER. DNAJA2 interacts with and enables HSC70 to recognize sumoylated CSB. This triggers the removal of both CSB and Pol II from the lesion site in a manner dependent on lysosome receptor LAMP2A. Defects in DNAJA2, HSC70 or LAMP2A abolish CSB degradation and block TC-NER. Our findings discover DNAJA2-mediated CMA as a critical regulator of TC-NER, implicating the DNAJA2-HSC70-CMA axis factors in genome maintenance.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
13
|
Schiffmacher DL, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal AC, Hoeijmakers JH, Marteijn JA, Lans H, Demmers JA, Vermeulen M, Sixma T, Ogi T, Vermeulen W, Pines A. DDA1, a novel factor in transcription-coupled repair, modulates CRL4 CSA dynamics at DNA damage-stalled RNA polymerase II. RESEARCH SQUARE 2023:rs.3.rs-3385435. [PMID: 37886519 PMCID: PMC10602077 DOI: 10.21203/rs.3.rs-3385435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- These authors contributed equally
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
- These authors contributed equally
| | - Katarzyna W. Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
- Current address: Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F. Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Current address: Department of Biology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, Brno, Czech Republic
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C.O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H.J. Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931 Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, The Netherlands
| | - Jurgen A. Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jeroen A.A. Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
- Oncode Institute, The Netherlands
| | - Titia Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Llerena Schiffmacher DA, Kliza KW, Theil AF, Kremers GJ, Demmers JAA, Ogi T, Vermeulen M, Vermeulen W, Pines A. Live cell transcription-coupled nucleotide excision repair dynamics revisited. DNA Repair (Amst) 2023; 130:103566. [PMID: 37716192 DOI: 10.1016/j.dnarep.2023.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Centre, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherland
| | - Tomoo Ogi
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
15
|
Reese JC. New roles for elongation factors in RNA polymerase II ubiquitylation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194956. [PMID: 37331651 PMCID: PMC10527621 DOI: 10.1016/j.bbagrm.2023.194956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
RNA polymerase II (RNAPII) encounters numerous impediments on its way to completing mRNA synthesis across a gene. Paused and arrested RNAPII are reactivated or rescued by elongation factors that travel with polymerase as it transcribes DNA. However, when RNAPII fails to resume transcription, such as when it encounters an unrepairable bulky DNA lesion, it is removed by the targeting of its largest subunit, Rpb1, for degradation by the ubiquitin-proteasome system (UPS). We are starting to understand this process better and how the UPS marks Rbp1 for degradation. This review will focus on the latest developments and describe new functions for elongation factors that were once thought to only promote elongation in unstressed conditions in the removal and degradation of RNAPII. I propose that in addition to changes in RNAPII structure, the composition and modification of elongation factors in the elongation complex determine whether to rescue or degrade RNAPII.
Collapse
Affiliation(s)
- Joseph C Reese
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Ellison MA, Namjilsuren S, Shirra M, Blacksmith M, Schusteff R, Kerr E, Fang F, Xiang Y, Shi Y, Arndt K. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:4814-4830. [PMID: 36928138 PMCID: PMC10250246 DOI: 10.1093/nar/gkad180] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew S Blacksmith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Schusteff
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eleanor M Kerr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
18
|
Kenaston MW, Shah PS. The Archer and the Prey: The Duality of PAF1C in Antiviral Immunity. Viruses 2023; 15:v15051032. [PMID: 37243120 DOI: 10.3390/v15051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In the ongoing arms race between virus and host, fine-tuned gene expression plays a critical role in antiviral signaling. However, viruses have evolved to disrupt this process and promote their own replication by targeting host restriction factors. Polymerase-associated factor 1 complex (PAF1C) is a key player in this relationship, recruiting other host factors to regulate transcription and modulate innate immune gene expression. Consequently, PAF1C is consistently targeted by a diverse range of viruses, either to suppress its antiviral functions or co-opt them for their own benefit. In this review, we delve into the current mechanisms through which PAF1C restricts viruses by activating interferon and inflammatory responses at the transcriptional level. We also highlight how the ubiquity of these mechanisms makes PAF1C especially vulnerable to viral hijacking and antagonism. Indeed, as often as PAF1C is revealed to be a restriction factor, viruses are found to have targeted the complex in reply.
Collapse
Affiliation(s)
- Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Li C, Guo Y, Wang L, Yan S. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis. EMBO J 2023; 42:e112756. [PMID: 36815434 PMCID: PMC10068331 DOI: 10.15252/embj.2022112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.
Collapse
Affiliation(s)
- Cunliang Li
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuyu Guo
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lili Wang
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
20
|
van den Heuvel D, Kim M, Wondergem AP, van der Meer PJ, Witkamp M, Lambregtse F, Kim HS, Kan F, Apelt K, Kragten A, González-Prieto R, Vertegaal ACO, Yeo JE, Kim BG, van Doorn R, Schärer OD, Luijsterburg MS. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc Natl Acad Sci U S A 2023; 120:e2208860120. [PMID: 36893274 PMCID: PMC10089173 DOI: 10.1073/pnas.2208860120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Annelotte P. Wondergem
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Paula J. van der Meer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Myrèse Witkamp
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Ferdy Lambregtse
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Folkert Kan
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative Medicine, University of Sevilla, 41092Seville, Spain
- Department of Cell Biology, University of Seville, 41012Seville, Spain
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Martijn S. Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| |
Collapse
|
21
|
Rauth S, Ganguly K, Atri P, Parte S, Nimmakayala RK, Varadharaj V, Nallasamy P, Vengoji R, Ogunleye AO, Lakshmanan I, Chirravuri R, Bessho M, Cox JL, Foster JM, Talmon GA, Bessho T, Ganti AK, Batra SK, Ponnusamy MP. Elevated PAF1-RAD52 axis confers chemoresistance to human cancers. Cell Rep 2023; 42:112043. [PMID: 36709426 PMCID: PMC10374878 DOI: 10.1016/j.celrep.2023.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Mika Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Tadayoshi Bessho
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
22
|
Lu H, Yang M, Zhou Q. Reprogramming transcription after DNA damage: recognition, response, repair, and restart. Trends Cell Biol 2022:S0962-8924(22)00261-6. [PMID: 36513571 DOI: 10.1016/j.tcb.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Genome integrity is constantly challenged by endogenous and exogenous insults that cause DNA damage. To cope with these threats, cells have a surveillance mechanism, known as the DNA damage response (DDR), to repair any lesions. Although transcription has long been implicated in DNA repair, how transcriptional reprogramming is coordinated with the DDR is just beginning to be understood. In this review, we highlight recent advances in elucidating the molecular mechanisms underlying major transcriptional events, including RNA polymerase (Pol) II stalling and transcriptional silencing and recovery, which occur in response to DNA damage. Furthermore, we discuss how such transcriptional adaptation contributes to sensing and eliminating damaged DNA and how it can jeopardize genome integrity when it goes awry.
Collapse
Affiliation(s)
- Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Min Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Kenaston MW, Pham OH, Petit MJ, Shah PS. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks. BMC Genomics 2022; 23:787. [PMID: 36451099 PMCID: PMC9713194 DOI: 10.1186/s12864-022-09013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,grid.301713.70000 0004 0393 3981MRC-University of Glasgow, Centre for Virus Research, G61 1HQ, Glasgow, UK
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,Department of Chemical Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
24
|
Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes (Basel) 2022; 13:1951. [PMID: 36360188 PMCID: PMC9689695 DOI: 10.3390/genes13111951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
RPB1, the major and catalytic subunit of human RNA Polymerase II (RNAPII), is specifically degraded by the ubiquitin-proteasome system upon induction of DNA damage by different agents, such as ultraviolet (UV) light. The "last resort" model of RNAPII degradation states that a persistently stalled RNAPII is degraded at the site of the DNA lesion in order to facilitate access to Nucleotide Excision Repair (NER) factors, thereby promoting repair in template strands of active genes. Recent identification and mutation of the lysine residue involved in RPB1 ubiquitylation and degradation unveiled the relevance of RNAPII levels in the control of gene expression. Inhibition of RNAPII degradation after UV light exposure enhanced RNAPII loading onto chromatin, demonstrating that the mere concentration of RNAPII shapes the gene expression response. In this review, we discuss the role of RNAPII ubiquitylation in NER-dependent repair, recent advances in RPB1 degradation mechanisms and its consequences in gene expression under stress, both in normal and repair deficient cells.
Collapse
Affiliation(s)
- Juan Cristobal Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Inés Beckerman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ramveer Choudhary
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - León Alberto Bouvier
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Manuel J. Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
25
|
The Paf1 complex is required for RNA polymerase II removal in response to DNA damage. Proc Natl Acad Sci U S A 2022; 119:e2207332119. [PMID: 36161924 DOI: 10.1073/pnas.2207332119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.
Collapse
|
26
|
Lemay JF, St-Hilaire E, Ronato DA, Gao Y, Bélanger F, Gezzar-Dandashi S, Kimenyi Ishimwe AB, Sawchyn C, Lévesque D, McQuaid M, Boisvert FM, Mallette FA, Masson JY, Drobetsky EA, Wurtele H. A genome-wide screen identifies SCAI as a modulator of the UV-induced replicative stress response. PLoS Biol 2022; 20:e3001543. [PMID: 36215310 PMCID: PMC9584372 DOI: 10.1371/journal.pbio.3001543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 10/20/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Helix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RFs). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for recruitment/activation of critical factors that promote DNA synthesis restart. However, during periods of severe replicative stress, RPA availability may become limiting due to inordinate sequestration of this multifunctional complex on ssDNA, thereby negatively impacting multiple vital RPA-dependent processes. Here, we performed a genome-wide screen to identify factors that restrict the accumulation of RPA-ssDNA during UV-induced replicative stress. While this approach revealed some expected "hits" acting in pathways such as nucleotide excision repair, translesion DNA synthesis, and the intra-S phase checkpoint, it also identified SCAI, whose role in the replicative stress response was previously unappreciated. Upon UV exposure, SCAI knock-down caused elevated accumulation of RPA-ssDNA during S phase, accompanied by reduced cell survival and compromised RF progression. These effects were independent of the previously reported role of SCAI in 53BP1-dependent DNA double-strand break repair. We also found that SCAI is recruited to UV-damaged chromatin and that its depletion promotes nascent DNA degradation at stalled RF. Finally, we (i) provide evidence that EXO1 is the major nuclease underlying ssDNA formation and DNA replication defects in SCAI knockout cells and, consistent with this, (ii) demonstrate that SCAI inhibits EXO1 activity on a ssDNA gap in vitro. Taken together, our data establish SCAI as a novel regulator of the UV-induced replicative stress response in human cells.
Collapse
Affiliation(s)
- Jean-François Lemay
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Edlie St-Hilaire
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Daryl A. Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Yuandi Gao
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - François Bélanger
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Sari Gezzar-Dandashi
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Aimé Boris Kimenyi Ishimwe
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Christina Sawchyn
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mary McQuaid
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - Frédérick A. Mallette
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Elliot A. Drobetsky
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Wurtele
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Ljungman M. Transcription and genome integrity. DNA Repair (Amst) 2022; 118:103373. [PMID: 35914488 DOI: 10.1016/j.dnarep.2022.103373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Transcription can cause genome instability by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some DNA repair proteins are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.
Collapse
Affiliation(s)
- Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Wang Z, Song A, Xu H, Hu S, Tao B, Peng L, Wang J, Li J, Yu J, Wang L, Li Z, Chen X, Wang M, Chi Y, Wu J, Xu Y, Zheng H, Chen FX. Coordinated regulation of RNA polymerase II pausing and elongation progression by PAF1. SCIENCE ADVANCES 2022; 8:eabm5504. [PMID: 35363521 PMCID: PMC11093130 DOI: 10.1126/sciadv.abm5504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Pleiotropic transcription regulator RNA polymerase II (Pol II)-associated factor 1 (PAF1) governs multiple transcriptional steps and the deposition of several epigenetic marks. However, it remains unclear how ultimate transcriptional outcome is determined by PAF1 and whether it relates to PAF1-controlled epigenetic marks. We use rapid degradation systems and reveal direct PAF1 functions in governing pausing partially by recruiting Integrator-PP2A (INTAC), in addition to ensuring elongation. Following acute PAF1 degradation, most destabilized polymerase undergoes effective release, which presumably relies on skewed balance between INTAC and P-TEFb, resulting in hyperphosphorylated substrates including SPT5. Impaired Pol II progression during elongation, along with altered pause release frequency, determines the final transcriptional outputs. Moreover, PAF1 degradation causes a cumulative decline in histone modifications. These epigenetic alterations in chromatin likely further influence the production of transcripts from PAF1 target genes.
Collapse
Affiliation(s)
- Zhenning Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Xu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bolin Tao
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linna Peng
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengyun Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai Zheng
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
29
|
Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation. Cell Death Dis 2022; 13:177. [PMID: 35210409 PMCID: PMC8873393 DOI: 10.1038/s41419-022-04634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
AbstractWhile cells activate a multifaceted DNA damage response to remove transcription-blocking DNA lesions, mechanisms to regulate genome-wide reduction of RNA synthesis and the paradoxical continuous loading of RNAP II at initiation sites are still poorly understood. Uncovering how dramatic changes to the transcriptional program contribute to TC-NER (transcription-coupled nucleotide excision repair) is important in DNA repair research. However, the functional significance of transcriptome dynamics and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we examined UV-induced gene expression regulation in human fibroblasts by performing RNA-seq with fractionated chromatin-associated and cytoplasmic transcripts. This approach allowed us to separate the synthesis of nascent transcripts from the accumulation of mature RNAs. In addition to documenting the subcellular locations of coding transcripts, our results also provide a high-resolution view of the transcription activities of noncoding RNAs in response to cellular stress. At the same time, the data showed that vast majority of genes exhibit large changes in chromatin-associated nascent transcripts without corresponding changes in cytoplasmic mRNA levels. Distinct from protein-coding genes that transcripts with shorter length prefer to be recovered first, repression of lncRNA transcription after UV exposure is inactivated first on noncoding transcripts with longer length. This work provides an updated framework for cellular RNA organization in response to stress and may provide useful information in understanding how cells respond to transcription-blocking DNA damage.
Collapse
|
30
|
Abstract
Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription–repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA. The authors resolve the structure of five complexes containing RNA polymerase II and the CSA and CSB proteins, offering insight into how the repair of DNA lesions is coupled to transcription.
Collapse
|
31
|
Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance 2021; 4:4/10/e202101159. [PMID: 34426491 PMCID: PMC8385305 DOI: 10.26508/lsa.202101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Exposure to chronic, elevated glucose inhibits nucleotide excision repair, which leads to accumulation of DNA glycation adducts, increased DNA strand breaks, and activation of the DNA damage response. We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
Collapse
Affiliation(s)
- Alexandra K Ciminera
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA.,Irell and Manella Graduate School of Biomedical Sciences, City of Hope, Duarte, CA, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| |
Collapse
|
32
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
33
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
34
|
Tiwari V, Kulikowicz T, Wilson DM, Bohr VA. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Nucleic Acids Res 2021; 49:6331-6346. [PMID: 34096589 DOI: 10.1093/nar/gkab458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive genetic disorder characterized by photosensitivity, developmental defects, neurological abnormalities, and premature aging. Mutations in CSA (ERCC8), CSB (ERCC6), XPB, XPD, XPG, XPF (ERCC4) and ERCC1 can give rise to clinical phenotypes resembling classic CS. Using a yeast two-hybrid (Y2H) screening approach, we identified LEO1 (Phe381-Ser568 region) as an interacting protein partner of full-length and C-terminal (Pro1010-Cys1493) CSB in two independent screens. LEO1 is a member of the RNA polymerase associated factor 1 complex (PAF1C) with roles in transcription elongation and chromatin modification. Supportive of the Y2H results, purified, recombinant LEO1 and CSB directly interact in vitro, and the two proteins exist in a common complex within human cells. In addition, fluorescently tagged LEO1 and CSB are both recruited to localized DNA damage sites in human cells. Cell fractionation experiments revealed a transcription-dependent, coordinated association of LEO1 and CSB to chromatin following either UVC irradiation or cisplatin treatment of HEK293T cells, whereas the response to menadione was distinct, suggesting that this collaboration occurs mainly in the context of bulky transcription-blocking lesions. Consistent with a coordinated interaction in DNA repair, LEO1 knockdown or knockout resulted in reduced CSB recruitment to chromatin, increased sensitivity to UVC light and cisplatin damage, and reduced RNA synthesis recovery and slower excision of cyclobutane pyrimidine dimers following UVC irradiation; the absence of CSB resulted in diminished LEO1 recruitment. Our data indicate a reciprocal communication between CSB and LEO1 in the context of transcription-associated DNA repair and RNA transcription recovery.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tomasz Kulikowicz
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, 3590 Diepenbeek, Belgium
| | - Vilhelm A Bohr
- Section on DNA repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
35
|
Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat Commun 2021; 12:3835. [PMID: 34158510 PMCID: PMC8219801 DOI: 10.1038/s41467-021-24153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.
Collapse
Affiliation(s)
- Déborah Bouvier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Juliette Ferrand
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie E Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
36
|
Cockayne Syndrome Group B (CSB): The Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer. Cells 2021; 10:cells10040866. [PMID: 33920220 PMCID: PMC8068816 DOI: 10.3390/cells10040866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.
Collapse
|