1
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Larsson L, Giraldo-Osorno P, Garaicoa-Pazmino C, Giannobile W, Asa’ad F. DNA and RNA Methylation in Periodontal and Peri-implant Diseases. J Dent Res 2025; 104:131-139. [PMID: 39629934 PMCID: PMC11752639 DOI: 10.1177/00220345241291533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Periodontal and peri-implant diseases are primarily biofilm-induced pathologies in susceptible hosts affecting the periodontium and dental implants. Differences in disease susceptibility, severity, and patterns of progression have been attributed to immune regulatory mechanisms such as epigenetics. DNA methylation is an essential epigenetic mechanism governing gene expression that plays pivotal roles in genomic imprinting, chromosomal stability, apoptosis, and aging. Clinical studies have explored DNA methylation inhibitors for cancer treatment and predictive methylation profiles for disease progression. In periodontal health, DNA methylation has emerged as critical, evidenced by clinical studies unraveling its complex interplay with inflammatory genes and its regulatory role in periodontitis contributing to disease severity. Human studies have shown that methylation enzymes associated with gene reactivation (e.g., ten-eleven translocation-2) are elevated in periodontitis compared with gingivitis. Dysregulation of these genes can lead to the production of inflammatory cytokines and an altered initial response to bacteria via the toll-like receptor signaling pathway in periodontal diseases. In addition, in peri-implant diseases, this dysregulation can result in altered DNA methylation levels and enzymatic activity influenced by the properties of the titanium surface. Beyond traditional perspectives, recent evidence highlights the involvement of RNA methylation (e.g., N6-methyladenosine [m6A], N6,2'-0-dimethyladenosine [m6Am]) in periodontitis and peri-implantitis lesions, playing vital roles in the innate immune response, production of inflammatory cytokines, and activation of dendritic cells. Both DNA and RNA methylation can influence the gene expression, virulence, and bacterial behavior of well-known periodontal pathogens such as Porphyromonas gingivalis. Alterations in bacterial methylation patterns result in changes in the metabolism, drug resistance, and gene expression related to survival in the host, thereby promoting tissue degradation and chronic inflammatory responses. In summary, the present state-of-the-art review navigates the evolving landscape of DNA and RNA methylation in periodontal and peri-implant diseases, integrating recent developments and mechanisms to reshape the understanding of epigenetic dynamics in oral health.
Collapse
Affiliation(s)
- L. Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - P.M. Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - C. Garaicoa-Pazmino
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, Iowa, USA
- Research Center, School of Dentistry, Universidad de Especialidades Espiritu Santo, Samborondón, Ecuador
| | - W.V. Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - F. Asa’ad
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Ren Q, Xiang M, Qiao J, Liu Z, Zhang G, Gu L, Zhou J, Tian W, Deng D. TTC7B triggers the PI4KA-AKT1-RXRA-FTO axis and inhibits colon cancer cell proliferation by increasing RNA methylation. Int J Biol Sci 2025; 21:1127-1143. [PMID: 39897037 PMCID: PMC11781174 DOI: 10.7150/ijbs.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
TTC7B is the PI4KA-binding protein. The upstream regulatory network associated with the expression of genes involved in RNA N6-adenine (m6A) methylation is not clear. Bioinformatics analysis revealed that the expression levels of TTC7B, PI4KA, and FTO are positively correlated with each other across human tissues. These genes are consistently downregulated in many cancers. We initially confirmed the correlation of the expression of these genes in colon cancer tissues from patients (n=105) and reported that TTC7B downregulation was significantly associated with poor prognosis. We subsequently performed a series of biological experiments and demonstrated that TTC7B upregulated RXRA expression probably through the PI4KA-mediated AKT1 pathway and that RXRA was a transcription factor for the FTO gene. TTC7B inhibited the proliferation of colon cancer cells by increasing the recruitment of RXRA to the FTO promoter, increasing FTO expression, and decreasing the total RNA m6A level. Ablation of FTO demethylase activity completely abolished the inhibitory effect of TTC7B on the proliferation of cancer cells in vitro and in vivo. In conclusion, our study demonstrated for the first time that TTC7B triggers the RXRA-FTO axis through PI4KA binding, which leads to a decrease in total RNA m6A modification and the inhibition of colon cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
4
|
Jin G, Song Y, Fang S, Yan M, Yang Z, Shao Y, Zhao K, Liu M, Wang Z, Guo Z, Dong Z. hnRNPU-mediated pathogenic alternative splicing drives gastric cancer progression. J Exp Clin Cancer Res 2025; 44:8. [PMID: 39773744 PMCID: PMC11705778 DOI: 10.1186/s13046-024-03264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alternative splicing (AS) is a process that facilitates the differential inclusion of exonic sequences from precursor messenger RNAs, significantly enhancing the diversity of the transcriptome and proteome. In cancer, pathogenic AS events are closely related to cancer progression. This study aims to investigate the role and regulatory mechanisms of AS in gastric cancer (GC). METHODS We analyzed AS events in various tumor samples and identified hnRNPU as a key splicing factor in GC. The effects of hnRNPU on cancer progression were assessed through in vitro and in vivo experiments. Gene knockout models and the FTO inhibitor (meclofenamic acid) were used to validate the interaction between hnRNPU and FTO and their impact on AS. RESULTS We found that hnRNPU serves as a key splicing factor in GC, and its high expression is associated with poor clinical prognosis. Genetic depletion of hnRNPU significantly reduced GC progression. Mechanistically, the m6A demethylase FTO interacts with hnRNPU transcripts, decreasing the m6A modification levels of hnRNPU, which leads to exon 14 skipping of the MET gene, thereby promoting GC progression. The FTO inhibitor meclofenamic acid effectively inhibited GC cell growth both in vitro and in vivo. CONCLUSION The FTO/hnRNPU axis induces aberrant exon skipping of MET, thereby promoting GC cell growth. Targeting the FTO/hnRNPU axis may interfere with abnormal AS events and provide a potential diagnostic and therapeutic strategy for GC.
Collapse
Affiliation(s)
- Guoguo Jin
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanming Song
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Shaobo Fang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
- Department of Medical Imaging, Zhengzhou University People's Hospital& Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Mingyang Yan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhaojie Yang
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Yang Shao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Kexin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Meng Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhenwei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Shi Y, Lei Y, Chen M, Ma H, Shen T, Zhang Y, Huang X, Ling W, Liu SY, Pan Y, Dai Z, Xu Y. A Demethylation-Switchable Aptamer Design Enables Lag-Free Monitoring of m 6A Demethylase FTO with Energy Self-Sufficient and Structurally Integrated Features. J Am Chem Soc 2024; 146:34638-34650. [PMID: 39628311 DOI: 10.1021/jacs.4c12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA N6-methyladenosine (m6A) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific m6A (DSA-m6A) for lag-free monitoring of the m6A demethylase FTO activity in living cells. As a proof of concept, a DNA aptamer against adenosine triphosphate (ATP) is selected to construct the DSA-m6A model, as the "universal energy currency" role of ATP could guarantee the equally fast and spontaneous conformation change of DSA-m6A sensor upon demethylation and ATP binding in living organisms, thus enabling sensitive monitoring of FTO activity with neither time delay nor recourse to extra supply of substances. This ATP-driven DSA-m6A design facilitates biomedical research, including live-cell imaging, inhibitor screening, single-cell tracking of dynamic FTO nuclear translocation upon starvation stimuli, FTO characterization in a biomimetic heterotypic three-dimensional (3D) multicellular spheroid model, as well as the first report on the in vivo imaging of FTO activity. This strategy provides a simple yet versatile toolbox for clinical diagnosis, drug discovery, therapeutic evaluation, and biological study of RNA demethylation.
Collapse
Affiliation(s)
- Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yutian Lei
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Taorong Shen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wanxuan Ling
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Tarullo M, Fernandez Rodriguez G, Iaiza A, Venezia S, Macone A, Incocciati A, Masciarelli S, Marchioni M, Giorgis M, Lolli ML, Fornaseri F, Proietti L, Grebien F, Rosignoli S, Paiardini A, Rotili D, Mai A, Bochenkova E, Caflisch A, Fazi F, Fatica A. Off-Target Inhibition of Human Dihydroorotate Dehydrogenase ( hDHODH) Highlights Challenges in the Development of Fat Mass and Obesity-Associated Protein (FTO) Inhibitors. ACS Pharmacol Transl Sci 2024; 7:4096-4111. [PMID: 39698280 PMCID: PMC11651170 DOI: 10.1021/acsptsci.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
FTO, an N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (hDHODH). Notably, structural similarities between the catalytic pockets of FTO and hDHODH enabled FB23-2 to inhibit both enzymes. In contrast, the hDHODH-inactive FB23-2 analog, ZLD115, required FTO for its antiproliferative activity. Similarly, the FTO inhibitor CS2 (brequinar), known as one of the most potent hDHODH inhibitors, exhibited FTO-independent antileukemic effects. Uridine supplementation fully rescued leukemia cells from FB23-2 and CS2-induced growth inhibition, but not ZLD115, confirming the inhibition of pyrimidine synthesis as the primary mechanism of action underlying their antileukemic activity. These findings underscore the importance of considering off-target effects on hDHODH in the development of FTO inhibitors to optimize their therapeutic potential and minimize unintended consequences.
Collapse
Affiliation(s)
- Marco Tarullo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Alessia Iaiza
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Venezia
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Incocciati
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Masciarelli
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Marcella Marchioni
- Institute
of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, 00185 Rome, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Federico Fornaseri
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Ludovica Proietti
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
| | - Florian Grebien
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
- St.
Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Serena Rosignoli
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Science, Roma Tre University, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, 00185 Rome, Italy
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Francesco Fazi
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Alessandro Fatica
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Xiong Q, Zhang Y, Zheng Y, Zhu Q. Regulation and application of m 6A modification in tumor immunity. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2648-0. [PMID: 39648245 DOI: 10.1007/s11427-024-2648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/11/2024] [Indexed: 12/10/2024]
Abstract
The m6A modification is an RNA modification that impacts various processes of RNA molecules, including transcription, splicing, stability, and translation. Recently, researchers have discovered that the presence of m6A modification can influence the interaction between tumor cells and immune cells and also play a role in regulating the expression of immune response-related genes. Additionally, m6A modification is intricately involved in the regulation of tumor immune evasion and drug resistance. Specifically, certain tumor cells can manipulate the gene expression through m6A modification to evade immune system attacks. Therefore, it might be possible to enhance tumor immune surveillance and improve the effectiveness of immune-based therapies by manipulating m6A modification. This review systematically discusses the role of m6A modification in tumor immunity, specifically highlighting its regulation of immune cells and immune-related genes in tumor cells. Furthermore, we explore the potential of m6A modification inhibitors as anti-cancer therapies and the significance of m6A regulatory factors in predicting the efficacy of tumor immune therapy.
Collapse
Affiliation(s)
- Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaguang Zhang
- Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
He YZ, Li XN, Li HT, Bai XH, Liu YC, Li FN, Lv BL, Qi TJ, Zhao XM, Li S. FTO promotes gefitinib-resistance by enhancing PELI3 expression and autophagy in non-small cell lung cancer. Pulm Pharmacol Ther 2024; 87:102317. [PMID: 39154901 DOI: 10.1016/j.pupt.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells. This FTO-driven gefitinib resistance is hinged upon the co-occurrence of PELI3 (Pellino E3 Ubiquitin Protein Ligase Family Member 3) expression and concurrent autophagy activation. Manipulation of PELI3 expression and autophagy activation, including its attenuation, was efficacious in both inducing and overcoming gefitinib resistance within NSCLC cells, as validated in vitro and in vivo. In summary, this study has successfully elucidated the intricate interplay involving FTO-mediated m6A modification, its consequential downstream effect on PELI3, and the concurrent involvement of autophagy in fostering the emergence of gefitinib resistance within the therapeutic context of NSCLC.
Collapse
Affiliation(s)
- Yu-Zheng He
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiao-Ning Li
- Department of Thoracic Surgery, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Hai-Tao Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xian-Hua Bai
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Yan-Chao Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Fan-Nian Li
- Department of Thoracic Surgery, The First Hospital of XingTai, No.376 Shunde Road, XingTai City, Hebei Province, 054001, China
| | - Bao-Lei Lv
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, No.365 Jianhua South Street, Shijiazhuang, 050000, Hebei Province, China
| | - Tian-Jie Qi
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiu-Min Zhao
- Department of The integrated treatment of traditional Chinese and Western Medicine, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Shuai Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
10
|
Bove G, Crepaldi M, Amin S, Megchelenbrink WL, Nebbioso A, Carafa V, Altucci L, Del Gaudio N. The m 6A-independent role of epitranscriptomic factors in cancer. Int J Cancer 2024; 155:1705-1713. [PMID: 38935523 DOI: 10.1002/ijc.35067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.
Collapse
Affiliation(s)
- Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Crepaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sajid Amin
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Wouter Leonard Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
- IEOS-CNR Institute for Endocrinology and Oncology "Gaetano Salvatore", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
12
|
Jaafar C, Aguiar RCT. Dynamic multilayered control of m 6A RNA demethylase activity. Proc Natl Acad Sci U S A 2024; 121:e2317847121. [PMID: 39495907 PMCID: PMC11572932 DOI: 10.1073/pnas.2317847121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Similar to DNA and histone, RNA can also be methylated. In its most common form, a N6-methyladenosine (m6A) chemical modification is introduced into nascent messenger ribonucleic acid (mRNA) by a specialized methyltransferase complex and removed by the RNA demethylases, Fat mass and obesity-associated (FTO), and ALKBH5. The fate of m6A-marked mRNA is uniquely diverse, ranging from degradation to stabilization/translation, which has been suggested to be largely dependent on its interaction with the family of YT521-B homology (YTH) domain-containing proteins. Here, we highlight a series of control levers that impinge on the RNA demethylases. We present evidence to indicate that intermediary metabolism and various posttranslation modifications modulate the activity, stability, and the subcellular localization of FTO and ALKBH5, further dispelling the notion that m6A methylation is not a dynamic process. We also discuss how examination of these underappreciated regulatory nodes adds a more nuanced view of the role of FTO and ALKBH5 and should guide their study in cancer and nonmalignant conditions alike.
Collapse
Affiliation(s)
- Carine Jaafar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
| | - Ricardo C. T. Aguiar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
- South Texas Veterans Health Care System, Audie Murphy Veterans Affairs Hospital, San Antonio, TX78229
| |
Collapse
|
13
|
Akichika S, Suzuki T. Cap-specific m 6Am modification: A transcriptional anti-terminator by sequestering PCF11 with implications for neuroblastoma therapy. Mol Cell 2024; 84:4051-4052. [PMID: 39515291 DOI: 10.1016/j.molcel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
In this issue of Molecular Cell, An et al.1 reports a novel function of cap-specific m6Am modification acting as an anti-terminator for premature RNA polymerase II transcription by sequestering a transcriptional terminator PCF11. This study provides new insights into RNA modifications in transcriptional control and cancer treatment.
Collapse
Affiliation(s)
- Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
An H, Hong Y, Goh YT, Koh CWQ, Kanwal S, Zhang Y, Lu Z, Yap PML, Neo SP, Wong CM, Wong AST, Yu Y, Ho JSY, Gunaratne J, Goh WSS. m 6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation. Mol Cell 2024; 84:4142-4157.e14. [PMID: 39481383 DOI: 10.1016/j.molcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
N6,2'-O-dimethyladenosine (m6Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m6Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m6Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m6Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m6Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m6Am-modified RNAs. m6Am's unique relationship with PCF11 means m6Am function is enhanced when PCF11 is reduced, which occurs during all-trans-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m6Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m6Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m6Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma's therapeutic response.
Collapse
Affiliation(s)
- Huihui An
- Shenzhen Bay Laboratory, Shenzhen, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yifan Hong
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | | | | | - Yi Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaoqi Lu
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Ming Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jessica Sook Yuin Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | | |
Collapse
|
15
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
16
|
Qi F, Gao N, Li J, Zhou C, Jiang J, Zhou B, Guo L, Feng X, Ji J, Cai Q, Yang L, Zhu R, Que X, Wu J, Xi W, Qin W, Zhang J. A multidimensional recommendation framework for identifying biological targets to aid the diagnosis and treatment of liver metastasis in patients with colorectal cancer. Mol Cancer 2024; 23:239. [PMID: 39449040 PMCID: PMC11515508 DOI: 10.1186/s12943-024-02155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The quest to understand the molecular mechanisms of tumour metastasis and identify pivotal biomarkers for cancer therapy is increasing in importance. Single-omics analyses, constrained by their focus on a single biological layer, cannot fully elucidate the complexities of tumour molecular profiles and can thus overlook crucial molecular targets. In response to this limitation, we developed a multiobjective recommendation system (RJH-Metastasis 1.0) anchored in a multiomics knowledge graph to integrate genome, transcriptome, and proteome data and corroborative literature evidence and then conducted comprehensive analyses of colorectal cancer with liver metastasis (CRCLM). A total of 25 key genes significantly associated with CRCLM were recommended by our system, and GNB1, GATAD2A, GBP2, MACROD1, and EIF5B were further highlighted. Specifically, GNB1 presented fewer mutations but elevated RNA transcription and protein expression in CRCLM patients. The role of GNB1 in promoting the malignant behaviours of colon cancer cells was demonstrated via in vitro and in vivo studies. Aberrant expression of GNB1 could be regulated by METTL1-driven m7G modification. METTL1 knockdown decreased m7G modification in the 3' UTR of GNB1, increasing its mRNA transcription and translation during liver metastasis. Furthermore, GNB1 induced the formation of an immunosuppressive microenvironment by promoting the CLEC2C-KLRB1 interaction between memory B cells and KLRB1+PD-1+CD8+ cells. GNB1 expression and the efficacy of PD-1 antibody-based treatment in CRCLM patients were significantly correlated. In summary, our recommendation system can be used for effective exploration of key molecules in colorectal cancer, among which GNB1 was identified as a critical CRCLM promoter and immunotherapy biomarker in colorectal cancer patients.
Collapse
Affiliation(s)
- Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, P. R. China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Bin Zhou
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiaohui Feng
- Department of Oncology, Loujiang New City Hospital of Taicang (Taicang Branch of Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine), Suzhou, 215400, P. R. China
| | - Jun Ji
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Rongjia Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xinyi Que
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
17
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
18
|
Sugita A, Kano R, Ishiguro H, Yanagisawa N, Kuruma S, Wani S, Tanaka A, Tabuchi Y, Ohkuma Y, Hirose Y. Cap-Specific m 6Am Methyltransferase PCIF1/CAPAM Regulates mRNA Stability of RAB23 and CNOT6 through the m 6A Methyltransferase Activity. Cells 2024; 13:1689. [PMID: 39451207 PMCID: PMC11506431 DOI: 10.3390/cells13201689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Chemical modifications of cellular RNAs play key roles in gene expression and host defense. The cap-adjacent N6,2'-O-dimethyladenosine (m6Am) is a prevalent modification of vertebrate and viral mRNAs and is catalyzed by the newly discovered N6 methyltransferase PCIF1. However, its role in gene expression remains unclear due to conflicting reports on its effects on mRNA stability and translation. In this study, we investigated the impact of siRNA-mediated transient suppression of PCIF1 on global mRNA expression in HeLa cells. We identified a subset of differentially expressed genes (DEGs) that exhibited minimal overlap with previously reported DEGs. Subsequent validation revealed that PCIF1 positively and negatively regulates RAB23 and CNOT6 expression, respectively, at both the mRNA and protein levels. Mechanistic analyses demonstrated that PCIF1 regulates the stability of these target mRNAs rather than their transcription, and rescue experiments confirmed the requirement of PCIF1's methyltransferase activity for these regulations. Furthermore, MeRIP-qPCR analysis showed that PCIF1 suppression significantly reduced the m6A levels of RAB23 and CNOT6 mRNAs. These findings suggest that PCIF1 regulates the stability of specific mRNAs in opposite ways through m6A modification, providing new insights into the role of m6Am in the regulation of gene expression.
Collapse
Affiliation(s)
- Ai Sugita
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Ryoya Kano
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Hiroyasu Ishiguro
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Natsuki Yanagisawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Soichiro Kuruma
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Shotaro Wani
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Aki Tanaka
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yoshiaki Ohkuma
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
- Department of Biochemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yutaka Hirose
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (A.S.); (R.K.); (H.I.); (N.Y.); (S.K.); (S.W.); (A.T.); (Y.O.)
| |
Collapse
|
19
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
20
|
Song W, Liu L, Liang H, Cheng H, He W, Yin Q, Zhang Z, Lin W, Li H, Li Q, Liu W, Zhang D, Chen D, Yuan Q. m 6Am Methyltransferase PCIF1 Regulates Periodontal Inflammation. J Dent Res 2024; 103:1130-1140. [PMID: 39290151 DOI: 10.1177/00220345241271078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
N6,2'-O-dimethyladenosine (m6Am), a common mRNA modification in eukaryotic capped mRNAs, plays a pivotal role in cellular functions and disease progression. However, its involvement in host inflammation remains elusive. Here, we demonstrate that loss of m6Am methyltransferase phosphorylated CTD interacting factor 1 (PCIF1) attenuates periodontal inflammation in whole-body and myeloid lineage-specific knockout mouse models. Pcif1 deletion inhibits macrophage phagocytosis and migration through m6Am-Csf1r signaling. In addition, colony-stimulating factor-1 receptor (CSF1R) is identified as a potential target for the treatment of periodontitis. We thus reveal a previously unrecognized role for PCIF1-mediated m6Am modification in governing macrophage responses and periodontal inflammation.
Collapse
Affiliation(s)
- W Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - H Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Q Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Q Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - D Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Nabeel-Shah S, Pu S, Burke GL, Ahmed N, Braunschweig U, Farhangmehr S, Lee H, Wu M, Ni Z, Tang H, Zhong G, Marcon E, Zhang Z, Blencowe BJ, Greenblatt JF. Recruitment of the m 6A/m6Am demethylase FTO to target RNAs by the telomeric zinc finger protein ZBTB48. Genome Biol 2024; 25:246. [PMID: 39300486 PMCID: PMC11414060 DOI: 10.1186/s13059-024-03392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A), the most abundant internal modification on eukaryotic mRNA, and N6, 2'-O-dimethyladenosine (m6Am), are epitranscriptomic marks that function in multiple aspects of posttranscriptional regulation. Fat mass and obesity-associated protein (FTO) can remove both m6A and m6Am; however, little is known about how FTO achieves its substrate selectivity. RESULTS Here, we demonstrate that ZBTB48, a C2H2-zinc finger protein that functions in telomere maintenance, associates with FTO and binds both mRNA and the telomere-associated regulatory RNA TERRA to regulate the functional interactions of FTO with target transcripts. Specifically, depletion of ZBTB48 affects targeting of FTO to sites of m6A/m6Am modification, changes cellular m6A/m6Am levels and, consequently, alters decay rates of target RNAs. ZBTB48 ablation also accelerates growth of HCT-116 colorectal cancer cells and modulates FTO-dependent regulation of Metastasis-associated protein 1 (MTA1) transcripts by controlling the binding to MTA1 mRNA of the m6A reader IGF2BP2. CONCLUSIONS Our findings thus uncover a previously unknown mechanism of posttranscriptional regulation in which ZBTB48 co-ordinates RNA-binding of the m6A/m6Am demethylase FTO to control expression of its target RNAs.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | | | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada
| | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
22
|
Lin M, Hua Z, Li Z. FTO diversely influences sensitivity of neuroblastoma cells to various chemotherapeutic drugs. Front Pharmacol 2024; 15:1384141. [PMID: 39295930 PMCID: PMC11409730 DOI: 10.3389/fphar.2024.1384141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
Chemotherapy resistance is a significant factor in treatment failure in patients with neuroblastoma (NB), and it directly affects patient prognosis. Therefore, identifying novel therapeutic targets to enhance chemosensitivity is essential to improve the cure rate and prognosis of patients with NB. In this study, we investigated the role of FTO in chemosensitivity of NB cells to various chemotherapeutic drugs. Our results showed that high FTO expression was positively correlated with increased survival probability and favorable prognostic factors in patients with NB. FTO overexpression inhibited cell proliferation, whereas FTO knockdown promoted cell proliferation in NB cells. FTO expression alteration had contrasting effects on NB cells' sensitivity to etoposide but had no significant impact on sensitivity to cisplatin. Downregulation of FTO reduced the sensitivity of NB cells to paclitaxel, whereas upregulation of FTO enhanced its sensitivity. Additionally, the sensitivities between patients with lower and higher FTO expression to various chemotherapeutic drugs or small-molecule inhibitors were different. Thus, FTO affects the sensitivities of NB cells differently depending on the different chemotherapeutic drugs and small-molecule inhibitors. This finding may guide physicians and patients choose the appropriate chemotherapeutic drugs or small-molecule inhibitors for treatment.
Collapse
Affiliation(s)
- Meizhen Lin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m 6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell Biosci 2024; 14:108. [PMID: 39192357 DOI: 10.1186/s13578-024-01286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
Collapse
Affiliation(s)
- Zewei Gao
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuan Zha
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
24
|
Jin H, Shi Z, Zhou T, Xie S. Regulation of m6Am RNA modification and its implications in human diseases. J Mol Cell Biol 2024; 16:mjae012. [PMID: 38509021 PMCID: PMC11345611 DOI: 10.1093/jmcb/mjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
N 6,2'-O-dimethyladenosine (m6Am) is a prevalent modification frequently found at the 5' cap-adjacent adenosine of messenger RNAs (mRNAs) and small nuclear RNAs (snRNAs) and the internal adenosine of snRNAs. This dynamic and reversible modification is under the regulation of methyltransferases phosphorylated CTD interacting factor 1 and methyltransferase-like protein 4, along with the demethylase fat mass and obesity-associated protein. m6Am RNA modification plays a crucial role in the regulation of pre-mRNA splicing, mRNA stability, and translation, thereby influencing gene expression. In recent years, there has been growing interest in exploring the functions of m6Am and its relevance to human diseases. In this review, we provide a comprehensive overview of the current knowledge concerning m6Am, with a focus on m6Am-modifying enzymes, sequencing approaches for its detection, and its impacts on pre-mRNA splicing, mRNA stability, and translation regulation. Furthermore, we highlight the roles of m6Am in the context of obesity, viral infections, and cancers, unravelling its underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Hao Jin
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhouyuanjing Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
25
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
26
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
27
|
Zeng X, Lu Y, Zeng T, Liu W, Huang W, Yu T, Tang X, Huang P, Li B, Wei H. RNA demethylase FTO participates in malignant progression of gastric cancer by regulating SP1-AURKB-ATM pathway. Commun Biol 2024; 7:800. [PMID: 38956367 PMCID: PMC11220007 DOI: 10.1038/s42003-024-06477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Gastric cancer (GC) is the 5th most prevalent cancer and the 4th primary cancer-associated mortality globally. As the first identified m6A demethylase for removing RNA methylation modification, fat mass and obesity-associated protein (FTO) plays instrumental roles in cancer development. Therefore, we study the biological functions and oncogenic mechanisms of FTO in GC tumorigenesis and progression. In our study, FTO expression is obviously upregulated in GC tissues and cells. The upregulation of FTO is associated with advanced nerve invasion, tumor size, and LNM, as well as the poor prognosis in GC patients, and promoted GC cell viability, colony formation, migration and invasion. Mechanistically, FTO targeted specificity protein 1 and Aurora Kinase B, resulting in the phosphorylation of ataxia telangiectasia mutated and P38 and dephosphorylation of P53. In conclusion, the m6A demethylase FTO promotes GC tumorigenesis and progression by regulating the SP1-AURKB-ATM pathway, which may highlight the potential of FTO as a diagnostic biomarker for GC patients' therapy response and prognosis.
Collapse
Affiliation(s)
- Xueliang Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yao Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Taohui Zeng
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wenyu Liu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weicai Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xuerui Tang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Panpan Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bei Li
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
28
|
Sfeir N, Kajdan M, Jalaguier S, Bonnet S, Teyssier C, Pyrdziak S, Yuan R, Bousquet E, Maraver A, Bernex F, Pirot N, Boissière‐Michot F, Castet‐Nicolas A, Lapierre M, Cavaillès V. RIP140 regulates transcription factor HES1 oscillatory expression and mitogenic activity in colon cancer cells. Mol Oncol 2024; 18:1510-1530. [PMID: 38459621 PMCID: PMC11161732 DOI: 10.1002/1878-0261.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.
Collapse
Affiliation(s)
- Nour Sfeir
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Stéphan Jalaguier
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Sandrine Bonnet
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Samuel Pyrdziak
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Rong Yuan
- Department of Medical Microbiology, Immunology and Cell Biology, School of MedicineSouthern Illinois UniversitySpringfieldILUSA
| | - Emilie Bousquet
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Antonio Maraver
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Florence Boissière‐Michot
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
- Translational Research UnitMontpellier Cancer Institute Val d'AurelleFrance
| | - Audrey Castet‐Nicolas
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Marion Lapierre
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de MontpellierFrance
- INSERM, U1194France
- Université de MontpellierFrance
- Institut régional du Cancer de MontpellierFrance
| |
Collapse
|
29
|
Tat TT, Raza S, Khan S, Watson TL, Jung SY, Kiss DL. PCIF1 is partly cytoplasmic, dynamically localizes to stress granules and binds mRNA coding regions upon oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593175. [PMID: 38766247 PMCID: PMC11100685 DOI: 10.1101/2024.05.08.593175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PCIF1 (Phosphorylated CTD-Interacting Factor 1) is the mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase that catalyzes the formation of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) by methylating adenosines at the first transcribed position of capped mRNAs. While previous studies assumed that PCIF1 was nuclear, cell fractionation and immunofluorescence both show that a population of PCIF1 is localized to the cytoplasm. Further, PCIF1 redistributes to stress granules upon oxidative stress. Immunoprecipitation studies with stressed cells show that PCIF1 also physically interacts with G3BP and other stress granule components. In addition, PCIF1 behaves as a stress granule component as it disassociates from stress granules upon recovery from stress. Overexpressing full-length PCIF1 also inhibits stress granule formation, while knocking out PCIF1 slows stress granule disassembly. Next, our enhanced crosslinking and immunoprecipitation (eCLIP) data show that PCIF1 binds mRNAs in their coding sequences rather than cap-proximal regions. Further PCIF1's association with mRNAs increased upon NaAsO2 stress. In contrast to eCLIP data, ChIP-Seq experiments show that PCIF1 is predominantly associated with transcription start sites rather than gene bodies, indicating that PCIF1's association with mature mRNA is not co-transcriptional. Collectively, our data suggest that PCIF1 has cytoplasmic RNA surveillance role(s) independent of transcription-associated cap-adjacent mRNA modification, particularly during the stress response.
Collapse
Affiliation(s)
- Trinh T. Tat
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Sabeen Raza
- Technology Operations, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Shaheerah Khan
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Tiara L. Watson
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Pharmacology, Baylor College of Medicine, Houston TX
| | - Daniel L. Kiss
- Center for RNA Therapeutics, Baylor College of Medicine, Houston TX
- Department of Cardiovascular Sciences, Baylor College of Medicine, Houston TX
- Houston Methodist Academic Institute, Baylor College of Medicine, Houston TX
- Weil Cornell Medical College, 6670 Bertner Ave, Houston, TX 77030 USA
- Houston Methodist Cancer Center, 6670 Bertner Ave, Houston, TX 77030 USA
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
30
|
Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, Lu M, Cui D, Wu Y. RNA methylation: A potential therapeutic target in autoimmune disease. Int Rev Immunol 2024; 43:160-177. [PMID: 37975549 DOI: 10.1080/08830185.2023.2280544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Collapse
Affiliation(s)
- Lele Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Tian Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuchao Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xueke Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mei Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
31
|
Jiang M, Han J, Ma Q, Chen X, Xu R, Wang Q, Zheng J, Wang W, Song J, Huang Y, Chen Y. Nicotine-derived NNK promotes CRC progression through activating TMUB1/AKT pathway in METTL14/YTHDF2-mediated m6A manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133692. [PMID: 38341886 DOI: 10.1016/j.jhazmat.2024.133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cigarette smoking substantially promotes tumorigenesis and progression of colorectal cancer; however, the underlying molecular mechanism remains unclear. Among 662 colorectal cancer patients, our investigation revealed a significant correlation between cigarette smoking and factors, such as large tumor size, poor differentiation, and high degree of invasion. Among the nicotine-derived nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) emerged as the most critical carcinogen, which significantly promoted the malignant progression of colorectal cancer both in vivo and in vitro. The results of methylated RNA immunoprecipitation and transcriptome sequencing indicated that NNK upregulated transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) via N6-adenosine methylation, which was regulated by methyltransferase-like 14 (METTL14) and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Elevated TMUB1 levels were associated with a higher risk of cancer invasion and metastasis, leading to a high mortality risk in patients with colorectal cancer. Additionally, TMUB1 promoted lysine63-linked ubiquitination of AKT by interacting with AMFR, which led to the induction of malignant proliferation and metastasis in colorectal cancer cells exposed to NNK. In summary, this study provides a new insight, indicating that targeting TMUB1 expression via METTL14/YTHDF2 mediated N6-adenosine methylation may be a potential therapeutic and prognostic target for patients with colorectal cancer who smoke.
Collapse
Affiliation(s)
- Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingyi Han
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qun Ma
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xue Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Renjie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qing Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jia Zheng
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, PR China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
32
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
33
|
Zhang C, Chen J, Ren J, Li X, Zhang Y, Huang B, Xu Y, Dong L, Cao Y. N 6-methyladenosine levels in peripheral blood RNA: a potential diagnostic biomarker for colorectal cancer. Cancer Cell Int 2024; 24:96. [PMID: 38439072 PMCID: PMC10913687 DOI: 10.1186/s12935-024-03289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is dysregulated in various cancers, including colorectal cancer (CRC). Herein, we assess the diagnostic potential of peripheral blood (PB) m6A levels in CRC. METHODS We collected PB from healthy controls (HCs) and patients with CRC, analyzed PB RNA m6A levels and the expression of m6A-related demethylase genes FTO and ALKBH5, cocultured CRC cells with PB mononuclear cells (PBMCs), and constructed an MC38 cancer model. RESULTS PB RNA m6A levels were higher in the CRC than that in HCs. The area under the curve (AUC) of m6A levels (0.886) in the CRC was significantly larger compared with carbohydrate antigen 199 (CA199; 0.666) and carcinoembryonic antigen (CEA; 0.834). The combination of CEA and CA199 with PB RNA m6A led to an increase in the AUC (0.935). Compared with HCs, the expression of FTO and ALKBH5 was decreased in the CRC. After coculturing with CRC cells, the PBMCs RNA m6A were significantly increased, whereas the expression of FTO and ALKBH5 decreased. Furthermore, m6A RNA levels in the PB of MC38 cancer models were upregulated, whereas the expression of FTO and ALKBH5 decreased. CONCLUSIONS PB RNA m6A levels are a potential diagnostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingyi Ren
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyu Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yaqin Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yihan Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Dong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
34
|
Zhang FY, Wu L, Zhang TN, Chen HH. KCTD15 acts as an anti-tumor factor in colorectal cancer cells downstream of the demethylase FTO and the m6A reader YTHDF2. Commun Biol 2024; 7:262. [PMID: 38438714 PMCID: PMC10912199 DOI: 10.1038/s42003-024-05880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Potassium Channel Tetramerization Domain Containing 15 (KCTD15) participates in the carcinogenesis of several solid malignancies; however, its role in colorectal cancer (CRC) remains unclear. Here we find that KCTD15 exhibits lower expression in CRC tissues as compared to para-carcinoma tissues. Tetracycline (tet)-induced overexpression and knockdown of KCTD15 confirms KCTD15 as an anti-proliferative and pro-apoptotic factor in CRC both in vitro and in xenografted tumors. N6-methyladenosine (m6A) is known to affect the expression, stabilization, and degradation of RNAs with this modification. We demonstrate that upregulation of fat mass and obesity-associated protein (FTO), a classical m6A eraser, prevents KCTD15 mRNA degradation in CRC cells. Less KCTD15 RNA is recognized by m6A 'reader' YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) in FTO-overexpressed cells. Moreover, KCTD15 overexpression decreases protein expression of histone deacetylase 1 (HDAC1) but increases acetylation of critical tumor suppressor p53 at Lys373 and Lys382. Degradation of p53 is delayed in CRC cells post-KCTD15 overexpression. We further show that the regulatory effects of KCTD15 on p53 are HDAC1-dependent. Collectively, we conclude that KCTD15 functions as an anti-growth factor in CRC cells, and its expression is orchestrated by the FTO-YTHDF2 axis. Enhanced p53 protein stabilization may contribute to KCTD15's actions in CRC cells.
Collapse
Affiliation(s)
- Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
35
|
Ramasamy D, Thippannah M, Maharajan HRP, Balaiah M, Seshadri RA, Kodous AS, Herceg Z, Mehta A, Rao AKDM, Mani S. Transcriptome-wide profiling identifies colon cancer-associated m6A transcripts and potential RNA methyl modifiers. Mol Biol Rep 2024; 51:299. [PMID: 38345740 DOI: 10.1007/s11033-024-09217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | - Megha Thippannah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
- Radiation Biology Department, National Centre for Radiation Research & Technology, Egyptian Atomic-Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Zdenko Herceg
- Epigenomics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anurag Mehta
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India
| | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India.
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India.
| |
Collapse
|
36
|
Amalric A, Attina A, Bastide A, Buffard M, Mateus S, Planque C, Rivals E, Hirtz C, David A. Mass Spectrometry-Based Pipeline for Identifying RNA Modifications Involved in a Functional Process: Application to Cancer Cell Adaptation. Anal Chem 2024; 96:1825-1833. [PMID: 38275837 PMCID: PMC10851184 DOI: 10.1021/acs.analchem.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Cancer onset and progression are known to be regulated by genetic and epigenetic events, including RNA modifications (a.k.a. epitranscriptomics). So far, more than 150 chemical modifications have been described in all RNA subtypes, including messenger, ribosomal, and transfer RNAs. RNA modifications and their regulators are known to be implicated in all steps of post-transcriptional regulation. The dysregulation of this complex yet delicate balance can contribute to disease evolution, particularly in the context of carcinogenesis, where cells are subjected to various stresses. We sought to discover RNA modifications involved in cancer cell adaptation to inhospitable environments, a peculiar feature of cancer stem cells (CSCs). We were particularly interested in the RNA marks that help the adaptation of cancer cells to suspension culture, which is often used as a surrogate to evaluate the tumorigenic potential. For this purpose, we designed an experimental pipeline consisting of four steps: (1) cell culture in different growth conditions to favor CSC survival; (2) simultaneous RNA subtype (mRNA, rRNA, tRNA) enrichment and RNA hydrolysis; (3) the multiplex analysis of nucleosides by LC-MS/MS followed by statistical/bioinformatic analysis; and (4) the functional validation of identified RNA marks. This study demonstrates that the RNA modification landscape evolves along with the cancer cell phenotype under growth constraints. Remarkably, we discovered a short epitranscriptomic signature, conserved across colorectal cancer cell lines and associated with enrichment in CSCs. Functional tests confirmed the importance of selected marks in the process of adaptation to suspension culture, confirming the validity of our approach and opening up interesting prospects in the field.
Collapse
Affiliation(s)
- Amandine Amalric
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Aurore Attina
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Amandine Bastide
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Marion Buffard
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- LIRMM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Stéphanie Mateus
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Chris Planque
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Eric Rivals
- LIRMM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Alexandre David
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| |
Collapse
|
37
|
Shao C, Han Y, Huang Y, Zhang Z, Gong T, Zhang Y, Tian X, Fang M, Han X, Li M. Targeting key RNA methylation enzymes to improve the outcome of colorectal cancer chemotherapy (Review). Int J Oncol 2024; 64:17. [PMID: 38131226 PMCID: PMC10783943 DOI: 10.3892/ijo.2023.5605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
RNA methylation modifications are closely linked to tumor development, migration, invasion and responses to various therapies. Recent studies have shown notable advancements regarding the roles of RNA methylation in tumor immunotherapy, the tumor microenvironment and metabolic reprogramming. However, research on the association between tumor chemoresistance and N6‑methyladenosine (m6A) methyltransferases in specific cancer types is still scarce. Colorectal cancer (CRC) is among the most common gastrointestinal cancers worldwide. Conventional chemotherapy remains the predominant treatment modality for CRC and chemotherapy resistance is the primary cause of treatment failure. The expression levels of m6A methyltransferases, including methyltransferase‑like 3 (METTL3), METTL14 and METTL16, in CRC tissue samples are associated with patients' clinical outcomes and chemotherapy efficacy. Natural pharmaceutical ingredients, such as quercetin, have the potential to act as METTL3 inhibitors to combat chemotherapy resistance in patients with CRC. The present review discussed the various roles of different types of key RNA methylation enzymes in the development of CRC, focusing on the mechanisms associated with chemotherapy resistance. The progress in the development of certain inhibitors is also listed. The potential of using natural remedies to develop antitumor medications that target m6A methylation is also outlined.
Collapse
Affiliation(s)
- Chiyun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanjie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuying Huang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Yajie Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xiaokang Tian
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Mingzhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xuan Han
- School of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
38
|
Yu L, Gao Y, Bao Q, Xu M, Lu J, Du W. Effects of N6-methyladenosine modification on metabolic reprogramming in digestive tract tumors. Heliyon 2024; 10:e24414. [PMID: 38293446 PMCID: PMC10826742 DOI: 10.1016/j.heliyon.2024.e24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification within cells, participates in various biological and pathological processes, including self-renewal, invasion and proliferation, drug resistance, and stem cell characteristics. The m6A methylation plays a crucial role in tumors by regulating multiple RNA processes such as transcription, processing, and translation. Three protein types are primarily involved in m6A methylation: methyltransferases (such as METTL3, METTL14, ZC3H13, and KIAA1429), demethylases (such as FTO, ALKBH5), and RNA-binding proteins (such as the family of YTHDF, YTHDC1, YTHDC2, and IGF2BPs). Various metabolic pathways are reprogrammed in digestive tumors to meet the heightened growth demands and sustain cellular functionality. Recent studies have highlighted the extensive impact of m6A on the regulation of digestive tract tumor metabolism, further modulating tumor initiation and progression. Our review aims to provide a comprehensive understanding of the expression patterns, functional roles, and regulatory mechanisms of m6A in digestive tract tumor metabolism-related molecules and pathways. The characterization of expression profiles of m6A regulatory factors and in-depth studies on m6A methylation in digestive system tumors may provide new directions for clinical prediction and innovative therapeutic interventions.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan Gao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
39
|
Zhao R, Hu Z, Zhang X, Huang S, Yu G, Wu Z, Yu W, Lu J, Ruan B. The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors. Cell Commun Signal 2024; 22:68. [PMID: 38273295 PMCID: PMC10809652 DOI: 10.1186/s12964-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activation of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, including uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT pathway in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK-STAT inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mechanisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhangmin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
40
|
Cao X, Wang M, Huang Y, Zhang M, Zheng F, Zhang G, Su J, Yuan Y, Guo C. Determination of dimethylated nucleosides in serum from colorectal cancer patients by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123973. [PMID: 38142502 DOI: 10.1016/j.jchromb.2023.123973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
RNA modifications play a crucial regulatory role in a variety of biological processes and are closely related to numerous diseases, including cancer. The diversity of metabolites in serum makes it a favored biofluid for biomarkers discovery. In this work, a robust and accurate hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was established for simultaneous determination of dimethylated nucleosides in human serum. Using the established method, we were able to accurately quantify the concentrations of N6-2'-O-dimethyladenosine (m6Am), N2,N2-dimethylguanosine (m2,2G), and 5,2'-O-dimethyluridine (m5Um) in serum samples from 53 healthy controls, 57 advanced colorectal adenoma patients, and 39 colorectal cancer (CRC) patients. The results showed that, compared with healthy controls and advanced colorectal adenoma patients, the concentrations of m6Am and m2,2G were increased in CRC patients, while the concentration of m5Um was decreased in CRC patients. These results indicate that these three dimethylated nucleosides could be potential biomarkers for early detection of colorectal cancer. Interestingly, the level of m5Um was gradually decreased from healthy controls to advanced colorectal adenoma patients to CRC patients, indicating m5Um could also be used to evaluate the level of malignancy of colorectal tumor. In addition, this study will contribute to the investigation on the regulatory mechanisms of RNA dimethylation in the onset and development of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Mingwei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Mengwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fengjin Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Genyin Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
41
|
Benak D, Kolar F, Zhang L, Devaux Y, Hlavackova M. RNA modification m 6Am: the role in cardiac biology. Epigenetics 2023; 18:2218771. [PMID: 37331009 DOI: 10.1080/15592294.2023.2218771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Epitranscriptomic modifications have recently emerged into the spotlight of researchers due to their vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6,2'-O-dimethyladenosine (m6Am) is one of the most prevalent chemical marks on RNA and is dynamically regulated by writers (PCIF1, METTL4) and erasers (FTO). The presence or absence of m6Am in RNA affects mRNA stability, regulates transcription, and modulates pre-mRNA splicing. Nevertheless, its functions in the heart are poorly known. This review summarizes the current knowledge and gaps about m6Am modification and its regulators in cardiac biology. It also points out technical challenges and lists the currently available techniques to measure m6Am. A better understanding of epitranscriptomic modifications is needed to improve our knowledge of the molecular regulations in the heart which may lead to novel cardioprotective strategies.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lu Zhang
- Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
42
|
Sun Z, Sun X, Qin G, Li Y, Zhou G, Jiang X. FTO promotes proliferation and migration of bladder cancer via enhancing stability of STAT3 mRNA in an m6A-dependent manner. Epigenetics 2023; 18:2242688. [PMID: 37538000 PMCID: PMC10405749 DOI: 10.1080/15592294.2023.2242688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
N6-Methyladenosine (m6A) plays a key role in the occurrence and development of various cancers. Fat mass and obesity-associated protein (FTO) was is involved in multiple cancers owing to its demethylase activity, and the molecular mechanism underlying FTO-promoted bladder cancer proliferation and migration via the regulation of RNA stability requires further investigation. In the present study, FTO was upregulated in bladder cancer and related to poor prognosis. Gain- and loss-of-function experiments showed that the upregulation of FTO promoted bladder cancer proliferation and migration. Mechanistic studies showed that FTO enhanced the stability of signal transducer and activator of transcription 3 (STAT3) mRNA in an m6A-dependent manner, thereby increasing STAT3 expression, which subsequently promoted P-STAT3 expression and activated STAT3 signalling pathway. Overall, this study revealed that the critical role of FTO in the progression of bladder cancer and could provide a novel avenue to regulate oncogene STAT3.
Collapse
Affiliation(s)
- Zhuang Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolu Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Guoliang Qin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guanwen Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Song S, Wang Q, Xie J, Dai J, Ouyang D, Huang G, Guo Y, Chen C, Wu M, Huang T, Ruan J, Cheng X, Lin X, He Y, Rozhkova EA, Chen Z, Yang H. Dual-Responsive Turn-On T 1 Imaging-Guided Mild Photothermia for Precise Apoptotic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301437. [PMID: 37379009 DOI: 10.1002/adhm.202301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.
Collapse
Affiliation(s)
- Sijie Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qi Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiangao Xie
- Fujian Medical University Union Hospital, Fuzhou, 350108, P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Dilan Ouyang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuheng Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Mengnan Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingwen Ruan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaofeng Cheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
44
|
Li K, Chen J, Zhang C, Cheng M, Chen S, Song W, Yang C, Ling R, Chen Z, Wang X, Xiong G, Ma J, Zhu Y, Yuan Q, Liu Q, Peng L, Chen Q, Chen D. The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma. J Clin Invest 2023; 133:e170173. [PMID: 37643007 PMCID: PMC10575729 DOI: 10.1172/jci170173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
PCIF1 can mediate the methylation of N6,2'-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.
Collapse
Affiliation(s)
- Kang Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Caihua Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunlong Yang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Ma
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Fengtai District, Beijing, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Chevalier C, Dorignac J, Ibrahim Y, Choquet A, David A, Ripoll J, Rivals E, Geniet F, Walliser NO, Palmeri J, Parmeggiani A, Walter JC. Physical modeling of ribosomes along messenger RNA: Estimating kinetic parameters from ribosome profiling experiments using a ballistic model. PLoS Comput Biol 2023; 19:e1011522. [PMID: 37862386 PMCID: PMC10659217 DOI: 10.1371/journal.pcbi.1011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 09/17/2023] [Indexed: 10/22/2023] Open
Abstract
Gene expression is the synthesis of proteins from the information encoded on DNA. One of the two main steps of gene expression is the translation of messenger RNA (mRNA) into polypeptide sequences of amino acids. Here, by taking into account mRNA degradation, we model the motion of ribosomes along mRNA with a ballistic model where particles advance along a filament without excluded volume interactions. Unidirectional models of transport have previously been used to fit the average density of ribosomes obtained by the experimental ribo-sequencing (Ribo-seq) technique in order to obtain the kinetic rates. The degradation rate is not, however, accounted for and experimental data from different experiments are needed to have enough parameters for the fit. Here, we propose an entirely novel experimental setup and theoretical framework consisting in splitting the mRNAs into categories depending on the number of ribosomes from one to four. We solve analytically the ballistic model for a fixed number of ribosomes per mRNA, study the different regimes of degradation, and propose a criterion for the quality of the inverse fit. The proposed method provides a high sensitivity to the mRNA degradation rate. The additional equations coming from using the monosome (single ribosome) and polysome (arbitrary number) ribo-seq profiles enable us to determine all the kinetic rates in terms of the experimentally accessible mRNA degradation rate.
Collapse
Affiliation(s)
- Carole Chevalier
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Yahaya Ibrahim
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- Department of Physics, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina, Nigeria
| | - Armelle Choquet
- Institut de Génétique Fonctionelle (IGF), Montpellier University, CNRS, Montpellier, France
| | - Alexandre David
- Institut de Génétique Fonctionelle (IGF), Montpellier University, CNRS, Montpellier, France
| | - Julie Ripoll
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Montpellier University, CNRS, Montpellier, France
| | - Eric Rivals
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Montpellier University, CNRS, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Nils-Ole Walliser
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
46
|
Vignon M, Bastide A, Attina A, David A, Bousquet P, Orti V, Vialaret J, Lehmann S, Periere DD, Hirtz C. Multiplexed LC-MS/MS quantification of salivary RNA modifications in periodontitis. J Periodontal Res 2023; 58:959-967. [PMID: 37349891 DOI: 10.1111/jre.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE To analyse the salivary epitranscriptomic profiles as periodontitis biomarkers using multiplexed mass spectrometry (MS). BACKGROUND The field of epitranscriptomics, which relates to RNA chemical modifications, opens new perspectives in the discovery of diagnostic biomarkers, especially in periodontitis. Recently, the modified ribonucleoside N6-methyladenosine (m6A) was revealed as a crucial player in the etiopathogenesis of periodontitis. However, no epitranscriptomic biomarker has been identified in saliva to date. MATERIALS AND METHODS Twenty-four saliva samples were collected from periodontitis patients (n = 16) and from control subjects (n = 8). Periodontitis patients were stratified according to stage and grade. Salivary nucleosides were directly extracted and, in parallel, salivary RNA was digested into its constituent nucleosides. Nucleoside samples were then quantified by multiplexed MS. RESULTS Twenty-seven free nucleosides were detected and an overlapping set of 12 nucleotides were detected in digested RNA. Among the free nucleosides, cytidine and three other modified nucleosides (inosine, queuosine and m6Am) were significantly altered in periodontitis patients. In digested RNA, only uridine was significantly higher in periodontitis patients. Importantly there was no correlation between free salivary nucleoside levels and the levels of those same nucleotides in digested salivary RNA, except for cytidine, m5C and uridine. This statement implies that the two detection methods are complementary. CONCLUSION The high specificity and sensitivity of MS allowed the detection and quantification of multiple nucleosides from RNA and free nucleosides in saliva. Some ribonucleosides appear to be promising biomarkers of periodontitis. Our analytic pipeline opens new perspectives for diagnostic periodontitis biomarkers.
Collapse
Affiliation(s)
- Margaux Vignon
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Aurore Attina
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Philippe Bousquet
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Valérie Orti
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Jérôme Vialaret
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Christophe Hirtz
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
47
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
48
|
Wu Y, Pu X, Wu S, Zhang Y, Fu S, Tang H, Wang X, Xu M. PCIF1, the only methyltransferase of N6,2-O-dimethyladenosine. Cancer Cell Int 2023; 23:226. [PMID: 37779183 PMCID: PMC10544176 DOI: 10.1186/s12935-023-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
N6-methyladenosine(m6A), is the most abundant post-transcriptional modification of mRNA in biology. When the first nucleotide after the m7G cap is adenosine, it is methylated at the N6 position to form N6,2-O-dimethyladenosine (m6Am). m6Am is a reversible modification located at the first transcribed nucleotide, which is present in about 30% of cellular mRNAs, thus m6Am can have a significant impact on gene expression in the transcriptome. Phosphorylated CTD interaction factor 1(PCIF1), the unique and specific methyltransferase of m6Am, has been shown to affect mRNA stability, transcription, and translation. Several studies have shown that PCIF1 is clearly associated with tumor, viral, and endocrine diseases. Moreover, PCIF1 may be related to the tumor microenvironment, immune cell typing, and programmed cell death protein 1(PD-1) drug resistance. Here, we summarize the mechanism of PCIF1 involvement in mRNA modifications, and outline m6Am modifications and diseases in which PCIF1 is involved. We also summarized the role of PCIF1 in immune and immune checkpoint blockade(ICB) treatment, and predicted the possibility of PCIF1 as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Sihui Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yiran Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Shengqiao Fu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Haowen Tang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
49
|
He C, Teng X, Wang L, Ni M, Zhu L, Liu J, Lv W, Hu J. The implications of N6-methyladenosine (m6A) modification in esophageal carcinoma. Mol Biol Rep 2023; 50:8691-8703. [PMID: 37598390 PMCID: PMC10520198 DOI: 10.1007/s11033-023-08575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
Esophageal carcinoma (EC) is always diagnosed at advanced stage and its the mortality rate remains high. The patients usually miss the best opportunity for treatment because of non-specific symptoms and the survival rates are low. N6-methyladenosine (m6A) the predominant modification in eukaryotic messenger RNA(mRNA), serves vital roles in numerous bioprocess. This chemical modification is dynamic, reversible and consists of three regulators: m6A methyltransferases (writers), demethylases (erasers) and m6A-binding proteins (readers). Recently, a growing number of evidences have indicated relationships between m6A and EC. Whereas, lacking of cognition about the molecular mechanism of m6A modification in esophageal carcinoma. We will focus on the biological function roles of m6A modification in the tumorigenesis and development of EC. Recent studies showed that immunotherapy had a positive impact on EC. The relationship between m6A and immunotherapy in EC deserves further research and discussion. We will also discuss the potential clinical applications regarding diagnosis, treatment and prognosis of m6A modification for EC and provide perspectives for further studies.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Teng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoqi Ni
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiacong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
50
|
Benak D, Benakova S, Plecita-Hlavata L, Hlavackova M. The role of m 6A and m 6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1223583. [PMID: 37484960 PMCID: PMC10360938 DOI: 10.3389/fendo.2023.1223583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Stepanka Benakova
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|