1
|
Qin C, Wu X, Zhou W, Li M, Bi S, Tang L, Huang H, Tu W, Yuan X, Ang EH, Sun W, Chen L, Liu Z, He B, Lyu L, Wu Y, Liu W, Wang H. Urea/Thiourea Imine Linkages Provide Accessible Holes in Flexible Covalent Organic Frameworks and Dominates Self-Adaptivity and Exciton Dissociation. Angew Chem Int Ed Engl 2024:e202418830. [PMID: 39501715 DOI: 10.1002/anie.202418830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 11/22/2024]
Abstract
Unraveling the robust self-adaptivity and minimal energy-dissipation of soft reticular materials for environmental catalysis presents a compelling yet unexplored avenue. Herein, a top-down strategy, tailoring from the unique linkage basis, flexibility degree, skeleton electronics to trace-guest adaptability, is proposed to fill the understanding gap between micro-soft covalent organic frameworks (COFs) and photocatalytic performance. The thio(urea)-basis-dominated linkage within benzotrithiophene-based COFs induce the framework contraction/swelling (intralayer micro-flexibility) in response to tetrahydrofuran or water. Adaptability of micro-flexible thiourea-COF with pore hydrophilicity not only contributes to the favorable mass transfer, but also enhances the accessible redox active sites, culminating in nearly 100 % removal of micropollutant with low-energy dissipation in wastewater. The incorporating urea/thiourea into imine linkage facilitates polarization reduction and exciton dissociation within skeleton wall, inducing strong localization for holes. This transformation facilitates interchain charge transport and unbalanced distribution conducive to oxidative holes-mediated micropollutant decomposition.
Collapse
Affiliation(s)
- Chencheng Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenyan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Miao Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Shuai Bi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Hao Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P. R. China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhaoli Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200, Wuhan, China
| | - Lai Lyu
- Institute of Rural Revitalization, Guangzhou University, Guangzhou, 510006, China
| | - Yan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Hou Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Ramos Sarmiento K, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory provides a plausible explanation for why larger vertebrates and taller humans have more diverse gut microbiomes. THE ISME JOURNAL 2024; 18:wrae114. [PMID: 38904949 PMCID: PMC11253425 DOI: 10.1093/ismejo/wrae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SARs) in many other ecosystems. Here, we expand these observations to several large datasets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using a gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA 98109, United States
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Kenneth J Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
- Science Institute, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
3
|
van Prehn J, Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic Guidance for C. difficile Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:33-56. [PMID: 38175470 DOI: 10.1007/978-3-031-42108-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Diagnosis of Clostridioides difficile infection (CDI) can be challenging. First of all, there has been debate on which of the two reference assays, cell cytotoxicity neutralization assay (CCNA) or toxigenic culture (TC), should be considered the gold standard for CDI detection. Although the CCNA suffers most from suboptimal storage conditions and subsequent toxin degradation, TC is reported to falsely increase CDI detection rates as it cannot differentiate CDI patients from patients asymptomatically colonised by toxigenic C. difficile. Several rapid assays are available for CDI detection and fall into three broad categories: (1) enzyme immunoassays for glutamate dehydrogenase, (2) enzyme immunoassays or single-molecule array assays for toxins A/B and (3) nucleic acid amplification tests detecting toxin genes. All three categories have their own limitations, being suboptimal specificity and/or sensitivity or the inability to discern colonised patients from CDI patients. In light of these limitations, multi-step algorithmic testing has been advocated by international guidelines (IDSA/SHEA and ESCMID) in order to optimize diagnostic accuracy. As a result, a survey performed in 2018-2019 in Europe revealed that most of all hospital sites reported using more than one test to diagnose CDI. CDI incidence rates are also influenced by sample selection criteria, as several studies have shown that if not all unformed stool samples are tested for CDI, many cases may be missed due to an absence of clinical suspicion. Since methods for diagnosing CDI remain imperfect, there has been a growing interest in alternative testing strategies like faecal microbiota biomarkers, immune modulating interleukins, cytokines and imaging methods. At the moment, these alternative methods might play an adjunctive role, but they are not suitable to replace conventional CDI testing strategies.
Collapse
Affiliation(s)
- Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands.
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland.
| | - Monique J T Crobach
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Amoe Baktash
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Nikolas Duszenko
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland
| |
Collapse
|
4
|
Patel N, Gorseth A, Belfiore G, Stornelli N, Lowry C, Thomas L. Fluoroquinolone-associated adverse events of interest among hospitalized veterans affairs patients with community-acquired pneumonia who were treated with a fluoroquinolone: A focus on tendonitis, Clostridioides difficile infection, and aortic aneurysm. Pharmacotherapy 2024; 44:49-60. [PMID: 37699580 DOI: 10.1002/phar.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023]
Abstract
STUDY OBJECTIVE The objectives of this study were to (i) quantify the incidence of three concerning fluoroquinolone adverse events of interest (FQAEI, i.e., adverse tendon event (TE), clostridioides difficile infection (CDI), and aortic aneurysm/dissection (AAD)), (ii) identify the patient-level factors that predict these events, and (iii) develop clinical risk scores to estimate the predicted probabilities of each FQAEI based on patient-level covariates available on clinical presentation. DESIGN Retrospective cohort study. SETTING Upstate New York Veterans' Healthcare Administration from 2011 to 2016. PATIENTS Hospitalized patients with community-acquired pneumonia receiving care in the Upstate New York Veterans' Healthcare Administration from 2011 to 2016. INTERVENTION N/A. MEASUREMENTS The outcomes of interest for this study were the occurrence of TE, CDI, and AAD. We also evaluated a composite of these three outcomes, FQAEI. MAIN RESULTS The study population consisted of 1071 patients. The overall incidence of FQAEI, TE, AAD, and CDI was 6.5%, 1.8%, 4.5%, and 0.3%, respectively. For each outcome evaluated, the probability of the event of interest was predicted by the presence of certain comorbidities, previous healthcare exposure, choice of specific FQ antibiotic, or therapy duration. Concomitant steroids, pneumonia in preceding 180 days, and creatinine clearance <30 mL/min predicted FQAEI. CONCLUSIONS Individual frequencies of three important FQAEIs were quantified, and risk scores were developed to estimate the probabilities of experiencing these events to help clinicians individualize treatment decisions for patients and reduce the potential risks of select FQAEIs.
Collapse
Affiliation(s)
- Nimish Patel
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Samuel S. Stratton Veteran's Affairs Medical Center, Albany, New York, USA
| | - Allison Gorseth
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
- Department of Pharmacy, Hartford Hospital, Hartford, Connecticut, USA
| | - Gina Belfiore
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Nicholas Stornelli
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
- Department of Pharmacy Services, Carilion Roanoke Memorial Hospital, Roanoke, Virginia, USA
| | - Colleen Lowry
- Samuel S. Stratton Veteran's Affairs Medical Center, Albany, New York, USA
| | - Lodise Thomas
- Samuel S. Stratton Veteran's Affairs Medical Center, Albany, New York, USA
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
5
|
Fu L, Duan H, Cai Y, Chen X, Zou B, Yuan L, Liu G. Moxibustion ameliorates osteoarthritis by regulating gut microbiota via impacting cAMP-related signaling pathway. Biomed Pharmacother 2024; 170:116031. [PMID: 38113621 DOI: 10.1016/j.biopha.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.
Collapse
Affiliation(s)
- Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yisi Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuelan Chen
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Binhua Zou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Qin C, Yang Y, Wu X, Chen L, Liu Z, Tang L, Lyu L, Huang D, Wang D, Zhang C, Yuan X, Liu W, Wang H. Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination. Nat Commun 2023; 14:6740. [PMID: 37875482 PMCID: PMC10597987 DOI: 10.1038/s41467-023-42513-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
The pre-designable structure and unique architectures of covalent organic frameworks (COFs) render them attractive as active and porous medium for water crisis. However, the effect of functional basis with different metrics on the regulation of interfacial behavior in advanced oxidation decontamination remains a significant challenge. In this study, we pre-design and fabricate different molecular interfaces by creating ordered π skeletons, incorporating different pore sizes, and engineering hydrophilic or hydrophobic channels. These synergically break through the adsorption energy barrier and promote inner-surface renewal, achieving a high removal rate for typical antibiotic contaminants (like levofloxacin) by BTT-DATP-COF, compared with BTT-DADP-COF and BTT-DAB-COF. The experimental and theoretical calculations reveal that such functional basis engineering enable the hole-driven levofloxacin oxidation at the interface of BTT fragments to occur, accompanying with electron-mediated oxygen reduction on terphenyl motif to active radicals, endowing it facilitate the balanced extraction of holes and electrons.
Collapse
Affiliation(s)
- Chencheng Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Yi Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, 210009, Nanjing, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Zhaoli Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Lai Lyu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Chang Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| | - Hou Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China.
| |
Collapse
|
7
|
Martinez E, Crevecoeur S, Thirion C, Grandjean J, Fall PA, Hayette MP, Michel M, Taminiau B, Louis E, Daube G. Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field. Microorganisms 2023; 11:2527. [PMID: 37894185 PMCID: PMC10609531 DOI: 10.3390/microorganisms11102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is an anaerobic spore-forming Gram-positive bacterium. C. difficile carriage and 16S rDNA profiling were studied in three clinical groups at three different sampling times: inflammatory bowel disease (IBD) patients, C. difficile infection (CDI) patients and healthcare workers (HCWs). Diversity analysis was realized in the three clinical groups, the positive and negative C. difficile carriage groups and the three analysis periods. Concerning the three clinical groups, β-diversity tests showed significant differences between them, especially between the HCW group and IBD group and between IBD patients and CDI patients. The Simpson index (evenness) showed a significant difference between two clinical groups (HCWs and IBD). Several genera were significantly different in the IBD patient group (Sutterella, Agathobacter) and in the CDI patient group (Enterococcus, Clostridioides). Concerning the positive and negative C. difficile carriage groups, β-diversity tests showed significant differences. Shannon, Simpson and InvSimpson indexes showed significant differences between the two groups. Several genera had significantly different relative prevalences in the negative group (Agathobacter, Sutterella, Anaerostipes, Oscillospira) and the positive group (Enterococcus, Enterobacteriaceae_ge and Enterobacterales_ge). A microbiota footprint was detected in C. difficile-positive carriers. More experiments are needed to test this microbiota footprint to see its impact on C. difficile infection.
Collapse
Affiliation(s)
- Elisa Martinez
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Sebastien Crevecoeur
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Carine Thirion
- Department of Clinical Sciences, Immunopathology—Infectious Diseases and General Internal Medicine, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Jessica Grandjean
- Department of Gastroenterology, University Hospital CHU of Liege, 4000 Liège, Belgium
| | | | - Marie-Pierre Hayette
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liege, 4000 Liège, Belgium
| | - Moutschen Michel
- Department of Clinical Sciences, Immunopathology—Infectious Diseases and General Internal Medicine, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Bernard Taminiau
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Edouard Louis
- Department of Gastroenterology, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Georges Daube
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
8
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
9
|
Sarmiento KR, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory and the gut: why taller people tend to harbor more diverse gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552554. [PMID: 37609334 PMCID: PMC10441360 DOI: 10.1101/2023.08.08.552554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | - Kenneth J. Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Granata G, Schiavone F, Taglietti F, Petrosillo N. Clostridioides difficile and Enterococci's Interplay in the Human Gut: Bacterial Alliance or Competition? A Systematic Literature Review. J Clin Med 2023; 12:4997. [PMID: 37568399 PMCID: PMC10420055 DOI: 10.3390/jcm12154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Clostridioides difficile and Enterococcus spp. are two common bacterial pathogens populating the human microbiota. We possess scant data on how Clostridioides difficile interacts with Enterococcus spp. in the gut microbiota in subjects colonized with Clostridioides difficile or during a Clostridioides difficile infection. We carried out a systematic review of studies on Enterococcus spp. and Clostridioides difficile's interaction in the gut microbiota and on the effect of Enterococcus spp. gut colonization on CDI development. Studies on Enterococcus spp. and Clostridioides difficile's interaction in the gut microbiota and on the effect of Enterococcus spp. gut colonization on CDI were searched using the search terms "clostridium", "clostridioides", "difficile" and "enterococcus" on the MEDLINE and SCOPUS databases. PubMed was searched until 1 May 2023. An English language restriction was applied. The risk of bias in the included studies was not assessed. Quantitative and qualitative information was summarized in textual descriptions. Fourteen studies, published from August 2012 to November 2022, on Clostridioides difficile and Enterococcus spp.'s interaction in the gut microbiota met the inclusion criteria. The studies included in our systematic review reported evidence that the Enterococcus spp. intestinal burden represents a risk factor for the occurrence of CDI. There is supporting evidence that Enterococcus spp. play a role in CDI development and clinical outcomes.
Collapse
Affiliation(s)
- Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy;
| | - Francesco Schiavone
- Divers and Raiders Group Command “Teseo Tesei” COMSUBIN, Medical Service, Italian Navy, 19025 Portovenere, Italy
| | - Fabrizio Taglietti
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy;
| | - Nicola Petrosillo
- Infection Prevention & Control-Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00127 Rome, Italy;
| |
Collapse
|
11
|
Vehreschild MJGT, Biehl LM, Dane A, de Kraker MEA, Timbermont L, van Werkhoven CH. An obituary on DAV-132-authors' viewpoint on the current limits of pivotal trials in clinical microbiome research. J Antimicrob Chemother 2023:7143694. [PMID: 37100455 DOI: 10.1093/jac/dkad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Affiliation(s)
- Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lena M Biehl
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aaron Dane
- Danestat Consulting Limited, Macclesfield, UK
| | - Marlieke E A de Kraker
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - C Henri van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Wang M, Feng H. Is it feasible to perform microbiota analysis without matching antibiotic usage? Crit Care 2023; 27:147. [PMID: 37072785 PMCID: PMC10114463 DOI: 10.1186/s13054-023-04435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/20/2023] Open
Affiliation(s)
- Mingqiang Wang
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China.
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China.
- Department of Neurology, The First People's Hospital of Pinghu, Pinghu, China.
| | - Huijun Feng
- Department of Neurology, The First People's Hospital of Pinghu, Pinghu, China
| |
Collapse
|
13
|
Bublitz A, Brauer M, Wagner S, Hofer W, Müsken M, Deschner F, Lesker TR, Neumann-Schaal M, Paul LS, Nübel U, Bartel J, Kany AM, Zühlke D, Bernecker S, Jansen R, Sievers S, Riedel K, Herrmann J, Müller R, Fuchs TM, Strowig T. The natural product chlorotonil A preserves colonization resistance and prevents relapsing Clostridioides difficile infection. Cell Host Microbe 2023; 31:734-750.e8. [PMID: 37098342 DOI: 10.1016/j.chom.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.
Collapse
Affiliation(s)
- Arne Bublitz
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Madita Brauer
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany; Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Stefanie Wagner
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Walter Hofer
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Felix Deschner
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Lena-Sophie Paul
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Ulrich Nübel
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany; Microbial Genome Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jürgen Bartel
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Andreas M Kany
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Steffen Bernecker
- Department of Microbial Drugs, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany; Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany.
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany.
| |
Collapse
|
14
|
Effelsberg N, Buchholz M, Kampmeier S, Lücke A, Schwierzeck V, Angulo FJ, Brestrich G, Martin C, Moïsi JC, von Eiff C, Mellmann A, von Müller L. Frequency of Diarrhea, Stool Specimen Collection and Testing, and Detection of Clostridioides Difficile Infection Among Hospitalized Adults in the Muenster/Coesfeld Area, Germany. Curr Microbiol 2022; 80:37. [PMID: 36526801 PMCID: PMC9757625 DOI: 10.1007/s00284-022-03143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI) often manifests as diarrhea, particularly in adults of older age or with underlying comorbidities. However, only severe cases are notifiable in Germany. Moreover, failure to collect a stool specimen from inpatients with diarrhea or incomplete testing may lead to underdiagnosis and underreporting of CDI. We assessed the frequency of diarrhea, stool specimen collection, and CDI testing to estimate CDI underdiagnosis and underreporting among hospitalized adults. In a ten-day point-prevalence study (2019-2021) of nine hospitals in a defined area (Muenster/Coesfeld, North Rhine-Westphalia, Germany), all diarrhea cases (≥ 3 loose stools in 24 h) among adult inpatients were captured via medical record screening and nurse interviews. Patient characteristics, symptom onset, putative origin, antibiotic consumption, and diagnostic stool sampling were collected in a case report form (CRF). Diagnostic results were retrieved from the respective hospital laboratories. Among 6998 patients screened, 476 (7%) diarrhea patients were identified, yielding a hospital-based incidence of 201 cases per 10,000 patient-days. Of the diarrheal patients, 186 (39%) had a stool sample collected, of which 160 (86%) were tested for CDI, meaning that the overall CDI testing rate among diarrhea patients was 34%. Toxigenic C. difficile was detected in 18 (11%) of the tested samples. The frequency of stool specimen collection and CDI testing among hospitalized diarrhea patients was suboptimal. Thus, CDI incidence in Germany is likely underestimated. To assess the complete burden of CDI in German hospitals, further investigations are needed.
Collapse
Affiliation(s)
- Natalie Effelsberg
- Institute of Hygiene, University Hospital Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Meike Buchholz
- Institute of Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südring 41, 48653, Coesfeld, Germany
| | - Stefanie Kampmeier
- Institute of Hygiene, University Hospital Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Andrea Lücke
- Institute of Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südring 41, 48653, Coesfeld, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Frederick J Angulo
- Medical Development and Scientific/Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Catherine Martin
- Medical Development and Scientific/Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Jennifer C Moïsi
- Medical Development and Scientific/Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, Robert-Koch-Str. 41, 48149, Münster, Germany.
- National Reference Center for C. Difficile, Münster, Germany.
| | - Lutz von Müller
- Institute of Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südring 41, 48653, Coesfeld, Germany
- National Reference Center for C. Difficile, Münster, Germany
| |
Collapse
|
15
|
Clostridioides difficile in Foods with Animal Origins; Prevalence, Toxigenic Genes, Ribotyping Profile, and Antimicrobial Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4868409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clostridioides difficile is an important nosocomial pathogen and is considered as a reason of diarrhea and gastrointestinal infections. As a majority of community-originated C. difficile cases are not related to antibiotic prescription and hospitalization, the food portion as a vector of infection transmission has been raised. An existing survey was aimed evaluating the prevalence, antimicrobial resistance, profile of toxigenic genes, and ribotypes of C. difficile isolated from raw meat and carcass surface swab samples. In total, 485 raw meat and carcass surface swab samples were collected. C. difficile was isolated via culture and a diverse biochemical examination. The assessment of minimum inhibitory concentration (MIC) was addressed to evaluate the antibiotic resistance of isolates. Toxin genes detection and ribotyping were used for isolates characterization. The prevalence of C. difficile contamination in all examined samples was 3.71%. The bacterium was detected in 2.91% of raw meat and 4.48% of carcass surface swab samples. Raw sheep meat (5%) and sheep carcass swab (7.50%) samples harbored the highest C. difficile prevalence. The highest rate of antibiotic resistance was observed toward clindamycin (38.88%), ciprofloxacin (38.88%), metronidazole (44.44%), erythromycin (72.22%), and tetracycline (77.77%). C. difficile bacteria showed the minimum rate of resistance meropenem (16.66%) and chloramphenicol (16.66%). TcdA, tcdB, cdtA, and cdtB toxigenic genes were detected in 22.22%, 44.44%, and 16.66% of isolates, respectively. TcdB + tcdA (27.77%) were the most prevalent combined toxigenic gene profile. Both 027 and 078 ribotypes were identified in C. difficile isolates. The role of raw meat and carcass surface swab samples as toxigenic and antibiotic-resistant C. difficile strains vectors was signified. This study authorizes that food animals, particularly sheep and cattle, are C. difficile carriers at slaughter stages and ribotypes are equal in human cases. Subsequently, contamination of carcasses occurs inside the slaughterhouse.
Collapse
|
16
|
Abstract
Antibiotics have transformed modern medicine. They are essential for treating infectious diseases and enable vital therapies and procedures. However, despite this success, their continued use in the 21st century is imperiled by two orthogonal challenges. The first is that the microbes targeted by these drugs evolve resistance to them over time. The second is that antibiotic discovery and development are no longer cost-effective using traditional reimbursement models. Consequently, there are a dwindling number of companies and laboratories dedicated to delivering new antibiotics, resulting in an anemic pipeline that threatens our control of infections. The future of antibiotics requires innovation in a field that has relied on highly traditional methods of discovery and development. This will require substantial changes in policy, quantitative understanding of the societal value of these drugs, and investment in alternatives to traditional antibiotics. These include narrow-spectrum drugs, bacteriophage, monoclonal antibodies, and vaccines, coupled with highly effective diagnostics. Addressing the antibiotic crisis to meet our future needs requires considerable investment in both research and development, along with ensuring a viable marketplace that encourages innovation. This review explores the past, present, and future of antimicrobial therapy.
Collapse
Affiliation(s)
- Michael A Cook
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
17
|
Liu MY, Challa M, McCoul ED, Chen PG. Economic Viability of Penicillin Allergy Testing to Avoid Improper Clindamycin Surgical Prophylaxis. Laryngoscope 2022; 133:1086-1091. [PMID: 35904127 DOI: 10.1002/lary.30329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients mislabeled with a penicillin allergy are often unnecessarily given prophylactic clindamycin. Thus, otolaryngologists may cause harm due to clindamycin's associated risk of Clostridioides difficile infections (CDI) and surgical site infections (SSI). The objective of this study was to determine the economic feasibility of penicillin allergy testing in preventing unnecessary clindamycin use among patients with an unconfirmed penicillin allergy prior to otolaryngologic surgery. METHODS A break-even analysis was performed using the average cost of penicillin allergy testing and a CDI/SSI to calculate the absolute risk reduction (ARR) in baseline CDI/SSI rate due to clindamycin required for penicillin testing to be economically sustainable. The binomial distribution was used to calculate the probability that current penicillin testing can achieve this study's ARR. RESULTS Preoperative penicillin testing was found to be economically sustainable if it could decrease the baseline CDI rate by an ARR of 1.06% or decrease the baseline SSI rate by an ARR of 1.34%. The probability of penicillin testing achieving these ARRs depended on the baseline CDI and SSI rates. When the CDI rate was at least 5% or the SSI rate was at least 7%, penicillin allergy testing was guaranteed to achieve economic sustainability. CONCLUSION In patients mislabeled with a penicillin allergy, preoperative penicillin allergy testing may be an economically sustainable option to prevent the unnecessary use of prophylactic clindamycin during otolaryngologic surgery. Current practice guidelines should be modified to recommend penicillin allergy testing in patients with an unconfirmed allergy prior to surgery. LEVEL OF EVIDENCE N/A Laryngoscope, 2022.
Collapse
Affiliation(s)
- Matthew Y Liu
- Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Megana Challa
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edward D McCoul
- Department of Otorhinolaryngology, Ochsner Health System, New Orleans, Louisiana, USA.,Department of Otolaryngology - Head and Neck Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Philip G Chen
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Gut Microbiota Composition Associated with Clostridioides difficile Colonization and Infection. Pathogens 2022; 11:pathogens11070781. [PMID: 35890026 PMCID: PMC9322938 DOI: 10.3390/pathogens11070781] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is an anaerobic Gram-positive and spore-forming bacterium. The majority of C. difficile strains produce two toxins, A and B, associated with the development of acute diarrhea and/or colitis. In this review, two situations are distinguished: C. difficile infection (CDI) and asymptomatic colonization (AC). The main objective of this review is to explore the available data related to the link between the gut microbiota and the development of CDI. The secondary aim is to provide more information on why some people colonized with toxigenic C. difficile develop an infection while others show no signs of disease. Several factors, such as the use of antibiotics and proton pump inhibitors, hospitalization, and age, predispose individuals to C. difficile colonization and/or C. difficile infection. The gut microbiota of people with AC showed decreased abundances of Prevotella, Alistipes, Bacteroides, Bifidobacterium, Dorea, Coprococcus, and Roseburia. The gut microbiota of people suffering from CDI showed reductions in the abundances of Lachnospiraceae, Ruminococcaceae, Blautia spp., Prevotella spp., Dialister spp., Bifidobacterium spp., Roseburia spp., Anaerostipes spp., Faecalibacterium spp. and Coprococcus spp., in comparison with healthy people. Furthermore, increases in the abundances of Enterococcaceae and Enterococcus were associated with C. difficile infection.
Collapse
|
19
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
20
|
Wu Z, Xu Q, Gu S, Chen Y, Lv L, Zheng B, Wang Q, Wang K, Wang S, Xia J, Yang L, Bian X, Jiang X, Zheng L, Li L. Akkermansia muciniphila Ameliorates Clostridioides difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Front Microbiol 2022; 13:841920. [PMID: 35663882 PMCID: PMC9159907 DOI: 10.3389/fmicb.2022.841920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile is a common cause of nosocomial infection. Antibiotic-induced dysbiosis in the intestinal microbiota is a core cause of C. difficile infection (CDI). Akkermansia muciniphila plays an active role in maintaining gastrointestinal balance and might offer the protective effects on CDI as probiotics. Here, we investigated the effects and mechanisms of A. muciniphila on CDI. C57BL/6 mice (n = 29) were administered A. muciniphila Muc T (3 × 109 CFUs, 0.2 mL) or phosphate-buffered saline (PBS) by oral gavage for 2 weeks. Mice were pretreated with an antibiotic cocktail and subsequently challenged with the C. difficile strain VPI 10463. A. muciniphila treatment prevented weight loss in mice and reduced the histological injury of the colon. And it also alleviated inflammation and improved the barrier function of the intestine. The administration effects of A. muciniphila may be associated with an increase in short-chain fatty acid production and the maintenance of bile acids' steady-state. Our results provide evidence that administration of A. muciniphila to CDI mice, with an imbalance in the microbial community structure, lead to a decrease in abundance of members of the Enterobacteriaceae and Enterococcaceae. In short, A. muciniphila shows a potential anti-CDI role by modulating gut microbiota and the metabolome.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bacterial Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
21
|
Caballero Alfonso AY, Mora Lagares L, Novic M, Benfenati E, Kumar A. Exploration of structural requirements for azole chemicals towards human aromatase CYP19A1 activity: Classification modeling, structure-activity relationships and read-across study. Toxicol In Vitro 2022; 81:105332. [PMID: 35176449 DOI: 10.1016/j.tiv.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023]
Abstract
Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.
Collapse
Affiliation(s)
- Ana Y Caballero Alfonso
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Liadys Mora Lagares
- Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novic
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy
| | - Anil Kumar
- Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
22
|
Kiersnowska ZM, Lemiech-Mirowska E, Semczuk K, Michałkiewicz M, Sierocka A, Marczak M. Level of Knowledge of Medical Staff on the Basis of the Survey in Terms of Risk Management, Associated with Clostridioides difficile Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7060. [PMID: 34280996 PMCID: PMC8297162 DOI: 10.3390/ijerph18137060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
Infections caused by the toxigenic strains of Clostridioides difficile in the hospital environment pose a serious public health problem. The progressive increase in hospital infections in Poland indicates that risk management is a tool that is not used in an effective way and significantly differs from the goals set by the Leading Authorities, the Ministry of Health and its subordinate units. Systematic education of medical personnel constitutes the basic element of rational risk management aimed at reducing the number of infections as it allows for the transfer of knowledge, development of appropriate organizational procedures, and improves internal communication. This paper presents the results of a survey conducted in hospital facilities throughout Poland. The study dealt with what medical personnel know about channels of transmission and prevention of Clostridioides difficile infections in the hospital setting, professional training and risk management in terms of reducing the number of infections. The survey reveals that Clostridioides difficile continues to be a serious problem in the inpatient care system. Procedures and management strategies implemented by hospitals in order to limit the spread of the pathogen are predominantly focused on short-term action, which does not lead to a real improvement in terms of hospitalized patients' safety. The infection risk management system was assessed at a fairly low level. The obtained research results confirmed the research hypotheses that had been formulated.
Collapse
Affiliation(s)
- Zofia Maria Kiersnowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| | - Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland
| | - Katarzyna Semczuk
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Michał Michałkiewicz
- Faculty of Environmental Engineering and Energy, Institute of Environmental Engineering and Building Installations, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland; (E.L.-M.); (A.S.); (M.M.)
| |
Collapse
|
23
|
Berkell M, Mysara M, Xavier BB, van Werkhoven CH, Monsieurs P, Lammens C, Ducher A, Vehreschild MJGT, Goossens H, de Gunzburg J, Bonten MJM, Malhotra-Kumar S. Microbiota-based markers predictive of development of Clostridioides difficile infection. Nat Commun 2021; 12:2241. [PMID: 33854066 PMCID: PMC8047037 DOI: 10.1038/s41467-021-22302-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-induced modulation of the intestinal microbiota can lead to Clostridioides difficile infection (CDI), which is associated with considerable morbidity, mortality, and healthcare-costs globally. Therefore, identification of markers predictive of CDI could substantially contribute to guiding therapy and decreasing the infection burden. Here, we analyze the intestinal microbiota of hospitalized patients at increased CDI risk in a prospective, 90-day cohort-study before and after antibiotic treatment and at diarrhea onset. We show that patients developing CDI already exhibit significantly lower diversity before antibiotic treatment and a distinct microbiota enriched in Enterococcus and depleted of Ruminococcus, Blautia, Prevotella and Bifidobacterium compared to non-CDI patients. We find that antibiotic treatment-induced dysbiosis is class-specific with beta-lactams further increasing enterococcal abundance. Our findings, validated in an independent prospective patient cohort developing CDI, can be exploited to enrich for high-risk patients in prospective clinical trials, and to develop predictive microbiota-based diagnostics for management of patients at risk for CDI.
Collapse
Affiliation(s)
- Matilda Berkell
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Mohamed Mysara
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Cornelis H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | | - Maria J G T Vehreschild
- Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|