1
|
Hwang I, Kim DU, Choi JW, Yoo DJ. Toward Practical Multivalent Ion Batteries with Quinone-Based Organic Cathodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48823-48835. [PMID: 37970790 DOI: 10.1021/acsami.3c11270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multivalent ion batteries have emerged as promising solutions to meet the future demands of energy storage applications, offering not only high energy density but also diverse socio-economic advantages. Among the various options for cathodes, quinone-based organic compounds have gained attention as suitable active materials for multivalent ion batteries due to their well-aligned ion channels, flexible structures, and competitive electrochemical performance. However, the charge carriers associated with anions that are often exploited in multivalent ion battery systems operate by way of a "non-rocking-chair" mechanism, which requires the use of an excess amount of electrolyte and results in a significant decrease in the energy density. In this review, by categorizing the various charge carriers exploited in previous studies on multivalent ion batteries, we summarize recently reported quinone-based organic cathodes for multivalent ion batteries and emphasize the importance of accurately identifying the charge carriers for calculating the energy density. We also propose potential future directions toward the practical realization of multivalent ion batteries, in link with their efficient energy storage applications.
Collapse
Affiliation(s)
- Insu Hwang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Uk Kim
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Joo Yoo
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Cui F, Li J, Lai C, Li C, Sun C, Du K, Wang J, Li H, Huang A, Peng S, Hu Y. Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries. Nat Commun 2024; 15:8108. [PMID: 39284820 PMCID: PMC11405694 DOI: 10.1038/s41467-024-51570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Conventionally, rocking-chair batteries capacity primarily depends on cation shuttling. However, intrinsically high-charge-density metal-ions, such as Al3+, inevitably cause strong Coulombic ion-lattice interactions, resulting in low practical energy density and inferior long-term stability towards rechargeable aluminium batteries (RABs). Herein, we introduce tunable quantum confinement effects and tailor a family of anion/cation co-(de)intercalation superlattice cathodes, achieving high-voltage anion charge compensation, with extra-capacity, in RABs. The optimized superlattice cathode with adjustable van der Waals not only enables facile traditional cation (de)intercalation, but also activates O2- compensation with an extra anion reaction. Furthermore, the constructed cathode delivers high energy-density (466 Wh kg-1 at 107 W kg-1) and one of the best cycle stability (225 mAh g-1 over 3000 cycles at 2.0 A g-1) in RABs. Overall, the anion-involving redox mechanism overcomes the bottlenecks of conventional electrodes, thereby heralding a promising advance in energy-storage-systems.
Collapse
Affiliation(s)
- Fangyan Cui
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingzhen Li
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Chen Lai
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Changzhan Li
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chunhao Sun
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kai Du
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Aoming Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
| |
Collapse
|
3
|
Jiao S, Han X, Bu X, Huang Z, Li S, Wang W, Wang M, Liu Y, Song WL. d-Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo-Porphyrin for Enhanced AlCl 2 + Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409904. [PMID: 39254348 DOI: 10.1002/adma.202409904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
The positive electrodes of non-aqueous aluminum ion batteries (AIBs) frequently encounter significant issues, for instance, low capacity in graphite (mechanism: anion de/intercalation and large electrode deformation induced) and poor stability in inorganic positive electrodes (mechanism: multi-electron redox reaction and dissolution of active materials induced). Here, metallo-porphyrin compounds (employed Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ as the ion centers) are introduced to effectively enhance both the cycling stability and reversible capacity due to the formation of stable conjugated metal-organic coordination and presence of axially coordinated active sites, respectively. With the regulation of electronic energy levels, the d-orbitals in the redox reactions and electron transfer pathways can be rearranged. The 5,10,15,20-tetraphenyl-21H,23H-porphine nickle(II) (NiTPP) presents the highest specific capacity (177.1 mAh g-1), with an increment of 32.1% and 77.1% in comparison with the capacities of H2TPP and graphite, respectively, which offers a new route for developing high-capacity positive electrodes for stable AIBs.
Collapse
Affiliation(s)
- Shuqiang Jiao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xue Han
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xudong Bu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shijie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Xiao K, Xiao BH, Li JX, Cao S, Liu ZQ. Efficient asymmetric diffusion channel in MnCo 2O 4 spinel for ammonium-ion batteries. Proc Natl Acad Sci U S A 2024; 121:e2409201121. [PMID: 39240973 PMCID: PMC11406291 DOI: 10.1073/pnas.2409201121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/08/2024] Open
Abstract
Transition metal oxides ion diffusion channels have been developed for ammonium-ion batteries (AIBs). However, the influence of microstructural features of diffusion channels on the storage and diffusion behavior of NH4+ is not fully unveiled. In this study, by using MnCo2O4 spinel as a model electrode, the asymmetric ion diffusion channels of MnCo2O4 have been regulated through bond length optimization strategy and investigate the effect of channel size on the diffusion process of NH4+. In addition, the reducing channel size significantly decreases NH4+ adsorption energy, thereby accelerating hydrogen bond formation/fracture kinetics and NH4+ reversible diffusion within 3D asymmetric channels. The optimized MnCo2O4 with oxygen vacancies/carbon nanotubes composite exhibits impressive specific capacity (219.2 mAh g-1 at 0.1 A g-1) and long-cycle stability. The full cell with 3,4,9,10-perylenetetracarboxylic diimide anode demonstrates a remarkable energy density of 52.3 Wh kg-1 and maintains 91.9% capacity after 500 cycles. This finding provides a unique approach for the development of cathode materials in AIBs.
Collapse
Affiliation(s)
- Kang Xiao
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006
| | - Bo-Hao Xiao
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou 510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006
| |
Collapse
|
5
|
Luo Z, Peng X, Wang L, Luo B. Insights into Mechanistic Aspect of Organic Materials for Aluminum-Ion Batteries. CHEMSUSCHEM 2024:e202401397. [PMID: 39257025 DOI: 10.1002/cssc.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) with organic electrode materials have garnered significant attention due to their excellent safety profile, cost-effectiveness, and eco-friendly nature. This review examines the fundamental properties of organic compounds and their effects on battery performance, with a primary focus on how changes in ion interactions and charge storage mechanisms at active sites influence overall performance. The aim is to propose innovative design approaches for AIBs that overcome the constraints associated with various types of organic materials. The review also discusses the application of advanced analytical tools, providing insights to better understand the electrochemical process of AIBs.
Collapse
Affiliation(s)
- Zhiruo Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
6
|
Luo LW, Zhang C, Ma W, Han C, Ai X, Chen Y, Xu Y, Ji X, Jiang JX. Regulating the Double-Way Traffic of Cations and Anions in Ambipolar Polymer Cathodes for High-Performing Aluminum Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406106. [PMID: 39108043 DOI: 10.1002/adma.202406106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Indexed: 09/28/2024]
Abstract
The strong Coulombic interactions between Al3+ and traditional inorganic crystalline cathodes present a significant obstacle in developing high-performance rechargeable aluminum batteries (RABs) that hold promise for safe and sustainable stationary energy storage. While accommodating chloroaluminate ions (AlCl4 -, AlCl2+, etc.) in redox-active organic compounds offers a promising solution for RABs, the issues of dissolution and low ionic/electronic conductivities plague the development of organic cathodes. Herein, electron donors are synthetically connected with acceptors to create crosslinked, bipolar-conjugated polymer cathodes. These cathodes exhibit overlapped redox potential ranges for both donors and acceptors in highly concentrated AlCl3-based ionic liquid electrolytes. This approach strategically enables on-site doping of the polymer backbones during redox reactions involving both donor and acceptor units, thereby enhancing the electron/ion transfer kinetics within the resultant polymer cathodes. Based on the optimal donor/acceptor combination, the bipolar polymer cathodes can deliver a high specific capacity of 205 mAh g-1 by leveraging the co-storage of AlCl4 - and AlCl2+. The electrodes exhibit excellent rate performance, a stable cycle life of 60 000 cycles, and function efficiently at high mass loadings, i.e., 100 mg cm-2, and at low temperatures, i.e., -30 °C. The findings exemplify the exploration of high-performing conjugated polymer cathodes for RABs through rational structural design.
Collapse
Affiliation(s)
- Lian-Wei Luo
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenyan Ma
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Changzhi Han
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xuan Ai
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yunhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Jia-Xing Jiang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
7
|
Yang Z, Meng P, Jiang M, Zhang X, Zhang J, Fu C. Intermolecular Hydrogen Bonding Networks Stabilized Organic Supramolecular Cathode for Ultra-High Capacity and Ultra-Long Cycle Life Rechargeable Aluminum Batteries. Angew Chem Int Ed Engl 2024; 63:e202403424. [PMID: 38545934 DOI: 10.1002/anie.202403424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 04/25/2024]
Abstract
Rechargeable aluminum batteries (RABs) are a promising candidate for large-scale energy storage, attributing to the abundant reserves, low cost, intrinsic safety, and high theoretical capacity of Al. However, the cathode materials reported thus far still face challenges such as limited capacity, sluggish kinetics, and undesirable cycle life. Herein, we propose an organic cathode benzo[i] benzo[6,7] quinoxalino [2,3-a] benzo [6,7] quinoxalino [2,3-c] phenazine-5,8,13,16,21,24-hexaone (BQQPH) for RABs. The six C=O and six C=N redox active sites in each molecule enable BQQPH to deliver a record ultra-high capacity of 413 mAh g-1 at 0.2 A g-1. Encouragingly, the intermolecular hydrogen bonding network and π-π stacking interactions endow BQQPH with robust structural stability and minimal solubility, enabling an ultra-long lifetime of 100,000 cycles. Moreover, the electron-withdrawing carbonyl group induces a reduction in the energy level of the lowest unoccupied molecular orbital and expands the π-conjugated system, which considerably enhances both the discharge voltage and redox kinetics of BQQPH. In situ and ex situ characterizations combined with theoretical calculations unveil that the charge storage mechanism is reversible coordination/dissociation of AlCl2 + with the N and O sites in BQQPH accompanied by 12-electron transfer. This work provides valuable insights into the design of high-performance organic cathode materials for RABs.
Collapse
Affiliation(s)
- Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Lu Y, Hu C, Hu Y, Zhang W, Li Z. Carbonyl and imine conjugated frameworks for aqueous Organo-Aluminum batteries with high specific capacity and low dissolution. J Colloid Interface Sci 2024; 665:181-187. [PMID: 38522158 DOI: 10.1016/j.jcis.2024.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Carbonyl or imine-based compounds have received a great deal of attention due to their high specific capacity and designability as cathodes for aqueous rechargeable organo-aluminum batteries. However, the inherent low conductivity and high solubility of carbonyl and imine-based compounds severely affect the cycling stability of aluminum batteries. Therefore, it is urgent to find an organic cathodes material with low solubility and good cycling performance. In this work, dibenzo[a,c]dibenzo[5,6:7,8]quinoxalino[2,3-i]phenazine-10,21-dione (DDQP) were synthesized by simple dehydration condensation to form new imine covalent bonds, which led to the synthesis of imine-conjugated backbone structures with carbonyl, extended π-conjugation planes, and increased active sites, resulting in increased specific capacities. Its storage mechanism with Al(OTF)2+ has also been confirmed. This monovalent ion usually possesses a lower coulombic interaction, which leads to a reduced solubility of DDQP during redox processes and improves its cyclic stability. The specific capacity of DDQP is 252.22 mAh/g at a current density of 400 mA g-1. After cycling, the discharge specific capacity remains at 219 mAh/g. Surprisingly, the conductivity of the battery also is improved by this structure of multiple active sites. And it can be further confirmed by theoretical calculations that the synthesis of DDQP realigns the arrangement of the electron cloud, enhances the electron affinity, and reduces the energy gap. This study provides a new reference for improving the performance of aqueous organic aluminum batteries.
Collapse
Affiliation(s)
- Yong Lu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Changde Hu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yunhai Hu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
Zhu Q, Fu D, Ji Q, Yang Z. A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion. Molecules 2024; 29:2522. [PMID: 38893398 PMCID: PMC11173979 DOI: 10.3390/molecules29112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Macrocycles composed of diverse aromatic or nonaromatic structures, such as cyclodextrins (CDs), calixarenes (CAs), cucurbiturils (CBs), and pillararenes (PAs), have garnered significant attention due to their inherent advantages of possessing cavity structures, unique functional groups, and facile modification. Due to these distinctive features enabling them to facilitate ion insertion and extraction, form crosslinked porous structures, offer multiple redox-active sites, and engage in host-guest interactions, macrocycles have made huge contributions to electrochemical energy storage and conversion (EES/EEC). Here, we have summarized the recent advancements and challenges in the utilization of CDs, CAs, CBs, and PAs as well as other novel macrocycles applied in EES/EEC devices. The molecular structure, properties, and modification strategies are discussed along with the corresponding energy density, specific capacity, and cycling life properties in detail. Finally, crucial limitations and future research directions pertaining to these macrocycles in electrochemical energy storage and conversion are addressed. It is hoped that this review is able to inspire interest and enthusiasm in researchers to investigate macrocycles and promote their applications in EES/EEC.
Collapse
Affiliation(s)
- Qijian Zhu
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Danfei Fu
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| | - Qing Ji
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
10
|
Bitenc J, Pirnat K, Lužanin O, Dominko R. Organic Cathodes, a Path toward Future Sustainable Batteries: Mirage or Realistic Future? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1025-1040. [PMID: 38370280 PMCID: PMC10870817 DOI: 10.1021/acs.chemmater.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024]
Abstract
Organic active materials are seen as next-generation battery materials that could circumvent the sustainability and cost limitations connected with the current Li-ion battery technology while at the same time enabling novel battery functionalities like a bioderived feedstock, biodegradability, and mechanical flexibility. Many promising research results have recently been published. However, the reproducibility and comparison of the literature results are somehow limited due to highly variable electrode formulations and electrochemical testing conditions. In this Perspective, we provide a critical view of the organic cathode active materials and suggest future guidelines for electrochemical characterization, capacity evaluation, and mechanistic investigation to facilitate reproducibility and benchmarking of literature results, leading to the accelerated development of organic electrode active materials for practical applications.
Collapse
Affiliation(s)
- Jan Bitenc
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Klemen Pirnat
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Olivera Lužanin
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Robert Dominko
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
- Alistore-European
Research Institute, CNRS FR 3104, Hub de l’Energie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
11
|
Huang C, Yang Y, Li M, Qi X, Pan C, Guo K, Bao L, Lu X. Ultrahigh Capacity from Complexation-Enabled Aluminum-Ion Batteries with C 70 as the Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306244. [PMID: 37815787 DOI: 10.1002/adma.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Restricted by the available energy storage modes, currently rechargeable aluminum-ion batteries (RABs) can only provide a very limited experimental capacity, regardless of the very high gravimetric capacity of Al (2980 mAh g-1 ). Here, a novel complexation mechanism is reported for energy storage in RABs by utilizing 0D fullerene C70 as the cathode. This mechanism enables remarkable discharge voltage (≈1.65 V) and especially a record-high reversible specific capacity (750 mAh g-1 at 200 mA g-1 ) of RABs. By means of in situ Raman monitoring, mass spectrometry, and density functional theory (DFT) calculations, it is found that this elevated capacity is attributed to the direct complexation of one C70 molecule with 23.5 (super)halogen moieties (superhalogen AlCl4 and/or halogen Cl) in average, forming (super)halogenated C70 ·(AlCl4 )m Cln-m complexes. Upon discharging, decomplexation of C70 ·(AlCl4 )m Cln-m releases AlCl4 - /Cl- ions while preserving the intact fullerene cage. This work provides a new route to realize high-capacity and long-life batteries following the complexation mechanism.
Collapse
Affiliation(s)
- Chenli Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Ying Yang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an, 710071, P. R. China
| | - Xiaoqun Qi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
- School of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou, 570228, P.R.China
| |
Collapse
|
12
|
Yao L, Ju S, Xu T, Wang W, Yu X. MXene-Based Mixed Conductor Interphase for Dendrite-Free Flexible Al Organic Battery. ACS NANO 2023; 17:25027-25036. [PMID: 38059750 DOI: 10.1021/acsnano.3c07611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Al batteries are promising post-Li battery technologies for large-scale energy storage applications owing to their low cost and high theoretical capacity. However, one of the challenges that hinder their development is the unsatisfactory plating/stripping of the Al metal anode. To circumvent this issue, an ultrathin MXene layer is constructed on the surface of Al by in situ chemical reactions at room temperature. The as-prepared flexible MXene film acts like armor to protect the Al-metal by its high ionic conductivity and high mechanical flexibility. The MXene endow the Al anode with a long cyclic life of more than 5000 h at ultrahigh current density of 50 mA cm-2 for Al//Al batteries and a retention of 100% over 200 cycles for 355 Wh kg-1 PTO//Al batteries. This work provides fresh insights into the formation and regulation of stable electrode-electrolyte interfaces as well as effective strategies for improving Al metal batteries.
Collapse
Affiliation(s)
- Long Yao
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Wenbin Wang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Lu Y, Wu G, Zhao X, Wang X, Zhang W, Li Z. Application of triphenylphosphine organic compounds constructed with O, S, and Se in aluminum ion batteries. J Colloid Interface Sci 2023; 651:296-303. [PMID: 37542904 DOI: 10.1016/j.jcis.2023.07.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Due to their high reactivity and theoretical capacity, chalcogen elements have been favored and applied in many battery studies. However, the high surface charge density and high solubility of these elements as electrode materials have hindered their deeper exploration due to the shuttle effect. In this article, organic structural triphenylphosphine is used as a molecular main chain structure, and chalcogen elements O, S, and Se are introduced to combine with P as active sites. This approach not only takes advantage of the beneficial effects of the aromatic ring on the physical and chemical properties of the chalcogen element but also allows for the optimization of its advantages. By utilizing Triphenylphosphine selenide (TP-Se) as the cathode material in aluminum-ion batteries(AIBs), a high-performance Al-organic battery was fabricated, which exhibited a high initial capacity of 180.6 mAh g-1 and stable cycling for up to 1000 cycles. Based on density functional theory (DFT) calculations, TP-Se exhibits a smaller energy gap, which renders it favorable for chemical reactions. Moreover, the calculated results suggest that TP-Se tends to undergo redox reactions with AlCl2+. The molecular structure of triphenylphosphine and its combination with Se offers an enticing pathway for designing cathode materials in aluminum-organic batteries.
Collapse
Affiliation(s)
- Yong Lu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Gaohong Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohui Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaoxu Wang
- Deep Potential Technology, Beijing 100080, China; AI for Science Institute, Beijing 100080, China.
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
14
|
Lu Y, Chen M, Wang Y, Hu Y, Wang X, Zhang W, Li Z. Interaction Mechanism between Cyano-Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries. SMALL METHODS 2023; 7:e2300663. [PMID: 37462249 DOI: 10.1002/smtd.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Indexed: 10/20/2023]
Abstract
Aluminum ion batteries (AIBs) are widely regarded as the most potential large-scale metal ion battery because of its high safety and environment-friendly characteristics. To solve the problem of weak electrical conductivity of organic materials, different structures of cyano organic molecules with electrophilic properties are selected as the cathode materials of aluminum batteries. Through experimental characterization and density functional theory theoretical calculation, Phthalonitrile is the best cathode material among the five organic molecules and proved that the C≡N group is the active site for insertion/extraction of AlCl2 + ions. The first cycle-specific capacity of the assembled flexible package battery is as high as 191.92 mAh g-1 , the discharge-specific capacity is 112.67 mAh g-1 after 1000 cycles, and the coulombic efficiency is ≈97%. At the same time, the influences of different molecular structures and functional groups on the battery are also proved. These research results lay a foundation for selecting safe and stable organic aluminum batteries and provide a new reference for developing high-performance AIBs.
Collapse
Affiliation(s)
- Yong Lu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Mingjun Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yi Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yunhai Hu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xiaoxu Wang
- Deep Potential Technology, Beijing, 100080, China
- AI for Science Institute, Beijing, 100080, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| |
Collapse
|
15
|
Yu Z, Wang W, Zhu Y, Song WL, Huang Z, Wang Z, Jiao S. Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer. Nat Commun 2023; 14:5596. [PMID: 37699878 PMCID: PMC10497635 DOI: 10.1038/s41467-023-41361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Achieving high energy density and long cycling life simultaneously remains the most critical challenge for aluminum-ion batteries (AIBs), especially for high-capacity conversion-type positive electrodes suffering from shuttle effect in strongly acidic electrolytes. Herein, we develop a layered quasi-solid AIBs system with double reaction zones (DRZs, Zone 1 and Zone 2) to address such issues. Zone 1 is designed to accelerate reaction kinetics by improving wetting ability of quasi-solid electrolyte to active materials. A composite three-dimensional conductive framework (Zone 2) interwoven by gel network for ion conduction and carbon nanotube network as electronic conductor, can fix the active materials dissolved from Zone 1 to allow for continuing electrochemical reactions. Therefore, a maximum electron transfer is realized for the conversion-type mateials in DRZs, and an ultrahigh capacity (400 mAh g-1) and an ultralong cycling life (4000 cycles) are achieved. Such strategy provides a new perspective for constructing high-energy-density and long-life AIBs.
Collapse
Affiliation(s)
- Zhijing Yu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yong Zhu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei-Li Song
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhe Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
16
|
Meng P, Huang J, Yang Z, Jiang M, Wang Y, Zhang W, Zhang J, Sun B, Fu C. Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries. NANO-MICRO LETTERS 2023; 15:188. [PMID: 37515609 PMCID: PMC10387020 DOI: 10.1007/s40820-023-01160-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/31/2023]
Abstract
Aluminum-ion batteries (AIBs) have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve, light weight, low cost, and good safety of Al. However, the development of AIBs faces challenges due to the usage of AlCl3-based ionic liquid electrolytes, which are expensive, corrosive, and sensitive to humidity. Here, we develop a low-cost, non-corrosive, and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea (MU) ligand. Through optimizing the molar ratio to achieve the unique solvation structure, the formed Al(ClO4)3·9H2O/MU hydrated deep eutectic electrolyte (AMHEE) with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al. When combining with vanadium oxide nanorods positive electrode, the Al-ion full battery delivers a high discharge capacity of 320 mAh g-1 with good capacity retention. The unique solvation structure with a low desolvation energy of the AMHEE enables Al3+ insertion/extraction during charge/discharge processes, which is evidenced by in situ synchrotron radiation X-ray diffraction. This work opens a new pathway of developing low-cost, safe, environmentally friendly and high-performance electrolytes for practical and sustainable AIBs.
Collapse
Affiliation(s)
- Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jian Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yibo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Zhang
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Baode Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
17
|
Huang Z, Du X, Ma M, Wang S, Xie Y, Meng Y, You W, Xiong L. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202358. [PMID: 36732888 DOI: 10.1002/cssc.202202358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.
Collapse
Affiliation(s)
- Zhen Huang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xianfeng Du
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingbo Ma
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shixin Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuehong Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yi Meng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzhi You
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lilong Xiong
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
Zheng J, Xu T, Xia G, Cui WG, Yang Y, Yu X. Water-Stabilized Vanadyl Phosphate Monohydrate Ultrathin Nanosheets toward High Voltage Al-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207619. [PMID: 36775918 DOI: 10.1002/smll.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Indexed: 05/04/2023]
Abstract
Al ion batteries (AIBs) are attracting considerable attention owing to high volumetric capacity, low cost, and high safety. However, the strong electrostatic interaction between Al3+ and host lattice leads to discontented cycling life and inferior rate capability. Herein, a new strategy of employing water molecules contained VOPO4 ·H2 O to boost Al3+ migration via the charge shielding effect of water is reported. It is revealed that VOPO4 ·H2 O with water lubrication effect and smaller steric hindrance owns high capacity and fast Al3+ diffusion, while the loss of unstable water upon cycling leads to a rapid performance degradation. To address this problem, ultrathin VOPO4 ·H2 O@MXene nanosheets are fabricated via the formed TiOV bond between VOPO4 ·H2 O and MXene. The MXene aided exfoliation results in enhanced VOwater bond strength between H2 O and VOPO4 that endows the obtained composite with strong water holding ability, contributing to the extraordinary cycling stability. Consequently, the VOPO4 ·H2 O@MXene delivers a high discharge potential of 1.8 V and maintains discharge capacities of 410 and 374.8 mAh g-1 after 420 and 2000 cycles at the current densities of 0.5 and 1.0 A g-1 , respectively. This work provides a new understanding of water-contained AIBs cathodes and vital guidance for developing high-performance AIBs.
Collapse
Affiliation(s)
- Jiening Zheng
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
19
|
Liu T, Lv G, Liu M, Zhao C, Liao L, Liu H, Shi J, Zhang J, Guo J. Synergistic Transition-Metal Selenide Heterostructure as a High-Performance Cathode for Rechargeable Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11906-11913. [PMID: 36843285 DOI: 10.1021/acsami.2c23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We synthesize and characterize a rechargeable aluminum battery cathode material composed of heterostructured Co3Se4/ZnSe embedded in a hollow carbon matrix. This heterostructure is synthesized from a metal-organic framework composite, in which ZIF-8 is grown on the surface of ZIF-67 cube. Both experimental and theoretical studies indicate that the internal electric field across the heterostructure interface between Co3Se4 and ZnSe promotes the fast transport of electron and Al-ion diffusion. As a result, the heterostructured Co3Se4/ZnSe demonstrates superior specific capacity and cycle stability compared to the single-phase Co3Se4 and ZnSe cathode materials.
Collapse
Affiliation(s)
- Tianming Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Meng Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Changchun Zhao
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jiayan Shi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jian Zhang
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Gordon LW, Wang J, Messinger RJ. Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107374. [PMID: 36706465 DOI: 10.1016/j.jmr.2023.107374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.
Collapse
Affiliation(s)
- Leo W Gordon
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Jonah Wang
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA
| | - Robert J Messinger
- Department of Chemical Engineering, The City College of New York, CUNY, 160 Convent Ave., New York, NY 10031, USA.
| |
Collapse
|
21
|
Yang Z, Huang X, Meng P, Jiang M, Wang Y, Yao Z, Zhang J, Sun B, Fu C. Phenoxazine Polymer-based p-type Positive Electrode for Aluminum-ion Batteries with Ultra-long Cycle Life. Angew Chem Int Ed Engl 2023; 62:e202216797. [PMID: 36545849 DOI: 10.1002/anie.202216797] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g-1 at 0.2 A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.
Collapse
Affiliation(s)
- Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, P. R. China
| | - Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yibo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhenpeng Yao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Baode Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
22
|
Li L, Ma Y, Cui F, Li Y, Yu D, Lian X, Hu Y, Li H, Peng S. Novel Insight into Rechargeable Aluminum Batteries with Promising Selenium Sulfide@Carbon Nanofibers Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209628. [PMID: 36480021 DOI: 10.1002/adma.202209628] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Due to the unique electronic structure of aluminum ions (Al3+ ) with strong Coulombic interaction and complex bonding situation (simultaneously covalent/ionic bonds), traditional electrodes, mismatching with the bonding orbital of Al3+ , usually exhibit slow kinetic process with inferior rechargeable aluminum batteries (RABs) performance. Herein, to break the confinement of the interaction mismatch between Al3+ and the electrode, a previously unexplored Se2.9 S5.1 -based cathode with sufficient valence electronic energy overlap with Al3+ and easily accessible structure is potentially developed. Through this new strategy, Se2.9 S5.1 encapsulated in multichannel carbon nanofibers with free-standing structure exhibits a high capacity of 606 mAh g-1 at 50 mA g-1 , high rate-capacity (211 mAh g-1 at 2.0 A g-1 ), robust stability (187 mAh g-1 at 0.5 A g-1 after 3,000 cycles), and enhanced flexibility. Simultaneously, in/ex-situ characterizations also reveal the unexplored mechanism of Sex Sy in RABs.
Collapse
Affiliation(s)
- Linlin Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yanchen Ma
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Fangyan Cui
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yan Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Deshuang Yu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xintong Lian
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
23
|
Chen Y, Fan K, Gao Y, Wang C. Challenges and Perspectives of Organic Multivalent Metal-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200662. [PMID: 35364614 DOI: 10.1002/adma.202200662] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Rechargeable organic multivalent metal-ion batteries (MMIBs) have attracted a surge of interest as promising alternatives for large-scale energy storage applications because they can combine the advantages of both organic electrodes and multivalent metal-ion batteries. However, the development of organic MMIBs is hampered by many factors, which mean they lag far behind organic alkali-metal- (e.g., Li-, Na-, and K-) ion batteries. Herein, the challenges that are specifically faced by organic MMIBs are analyzed and the strategies that can probably solve such challenges are then discussed. As a special challenge that organic MMIBs are facing, the charge-storage mechanism is particularly underlined to deeply understand the structure-property relationships for guiding the future design of high-performance organic electrodes for MMIBs. The perspectives are thereby elaborated in this review with the outlook of practical applications of organic MMIBs.
Collapse
Affiliation(s)
- Yuan Chen
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Fan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanbo Gao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
24
|
Cui F, Han M, Zhou W, Lai C, Chen Y, Su J, Wang J, Li H, Hu Y. Superlattice-Stabilized WSe 2 Cathode for Rechargeable Aluminum Batteries. SMALL METHODS 2022; 6:e2201281. [PMID: 36351768 DOI: 10.1002/smtd.202201281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Rechargeable aluminum batteries (RABs), with abundant aluminum reserves, low cost, and high safety, give them outstanding advantages in the postlithium batteries era. However, the high charge density (364 C mm-3 ) and large binding energy of three-electron-charge aluminum ions (Al3+ ) de-intercalation usually lead to irreversible structural deterioration and decayed battery performance. Herein, to mitigate these inherent defects from Al3+ , an unexplored family of superlattice-type tungsten selenide-sodium dodecylbenzene sulfonate (SDBS) (S-WSe2 ) cathode in RABs with a stably crystal structure, expanded interlayer, and enhanced Al-ion diffusion kinetic process is proposed. Benefiting from the unique advantage of superlattice-type structure, the anionic surfactant SDBS in S-WSe2 can effectively tune the interlayer spacing of WSe2 with released crystal strain from high-charge-density Al3+ and achieve impressively long-term cycle stability (110 mAh g-1 over 1500 cycles at 2.0 A g-1 ). Meanwhile, the optimized S-WSe2 cathode with intrinsic negative attraction of SDBS significantly accelerates the Al3+ diffusion process with one of the best rate performances (165 mAh g-1 at 2.0 A g-1 ) in RABs. The findings of this study pave a new direction toward durable and high-performance electrode materials for RABs.
Collapse
Affiliation(s)
- Fangyan Cui
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingshan Han
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chen Lai
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanhui Chen
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingwen Su
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
25
|
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges. CHEM REC 2022; 22:e202200181. [PMID: 36094785 DOI: 10.1002/tcr.202200181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Indexed: 12/14/2022]
Abstract
The rising energy crisis and environmental concerns caused by fossil fuels have accelerated the deployment of renewable and sustainable energy sources and storage systems. As a result of immense progress in the field, cost-effective, high-performance, and long-life rechargeable batteries are imperative to meet the current and future demands for sustainable energy sources. Currently, lithium-ion batteries are widely used, but limited lithium (Li) resources have caused price spikes, threatening progress toward cleaner energy sources. Therefore, post-Li, batteries that utilize highly abundant materials leading to cost-effective energy storage solutions while offering desirable performance characteristics are urgently needed. Aluminum-ion battery (AIB) is an attractive concept that uses highly abundant aluminum while offering a high theoretical gravimetric and volumetric capacity of 2980 mAh g-1 and 8046 mAh cm-3 , respectively. As a result, intensified efforts have been made in recent years to utilize numerous electrolytes, anodes, and cathode materials to improve the electrochemical performance of AIBs, and potentially create high-performance, low-cost, and safe energy storage devices. Herein, recent progress in the electrolyte, anode, and cathode active materials and their utilization in AIBs and their related characteristics are summarized. Finally, the main challenges facing AIBs along with future directions are highlighted.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Aziz Ahmad
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
26
|
Li T, Hu H, Cai T, Liu X, Zhang Y, Zhao L, Xing W, Yan Z. Ultrafast and Long-Cycle Stable Aluminum Polyphenylene Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30927-30936. [PMID: 35776526 DOI: 10.1021/acsami.2c07222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rechargeable aluminum-ion batteries (RAIBs) are highly sought after due to the extremely high resource reserves and theoretical capacity (2980 mA h/g) of metal aluminum. However, the lack of ideal cathode materials restricts its practical advancement. Here, we report a conductive polymer, polyphenylene, which is produced by the polymerization of molecular benzene as a cathode material for RAIBs with an excellent electrochemical performance. In electrochemical redox, polyphenylene is oxidized and loses electrons to form radical cations [C6H4]3n+ and intercalates with [AlCl4]- anion to achieve electrical neutrality and realize electrochemical energy storage. The stable structure of polyphenylene makes its discharge specific capacity reach 92 mA h/g at 100 mA/g; the discharge plateau is about 1.4 V and exhibits an excellent rate performance and long cycle stability. Under the super high current density of 10 A/g (∼85 C), the charging can be completed in 25 s, and the capacities have almost no decay after 30,000 cycles. Aluminum polyphenylene batteries have the potential to be used as low-cost, easy-to-process, lightweight, and high-capacity superfast rechargeable batteries for large-scale stationary power storage.
Collapse
Affiliation(s)
- Tongge Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Haoyu Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Tonghui Cai
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Xiaoqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Yu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Lianming Zhao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Wei Xing
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| |
Collapse
|
27
|
Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Design Strategies of High-Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201362. [PMID: 35620966 DOI: 10.1002/smll.202201362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable aluminum batteries (RABs) have been paid considerable attention in the field of electrochemical energy storage batteries due to their advantages of low cost, good safety, high capacity, long cycle life, and good wide-temperature performance. Unlike traditional single-ion rocking chair batteries, more than two kinds of active ions are electrochemically participated in the reaction processes on the positive and negative electrodes for nonaqueous RABs, so the reaction kinetics and battery electrochemistries need to be given more comprehensive assessments. In addition, although nonaqueous RABs have made significant breakthroughs in recent years, they are still facing great challenges in insufficient reaction kinetics, low energy density, and serious capacity attenuation. Here, the research progresses of positive materials are comprehensively summarized, including carbonaceous materials, oxides, elemental S/Se/Te and chalcogenides, as well as organic materials. Later, different modification strategies are discussed to improve the reaction kinetics and battery performance, including crystal structure control, morphology and architecture regulation, as well as flexible design. Finally, in view of the current research challenges faced by nonaqueous RABs, the future development trend is proposed. More importantly, it is expected to gain key insights into the development of high-performance positive materials for nonaqueous RABs to meet practical energy storage requirements.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Cheng Chang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
28
|
Peng X, Xie Y, Baktash A, Tang J, Lin T, Huang X, Hu Y, Jia Z, Searles DJ, Yamauchi Y, Wang L, Luo B. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox-Active Sites for High-Performance Aluminium Organic Batteries. Angew Chem Int Ed Engl 2022; 61:e202203646. [PMID: 35332641 PMCID: PMC9325520 DOI: 10.1002/anie.202203646] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/20/2022]
Abstract
The development of cost-effective and long-life rechargeable aluminium ion batteries (AIBs) shows promising prospects for sustainable energy storage applications. Here, we report a heteroatom π-conjugated polymer featuring synergistic C=O and C=N active centres as a new cathode material in AIBs using a low-cost AlCl3 /urea electrolyte. Density functional theory (DFT) calculations reveal the fused C=N sites in the polymer not only benefit good π-conjugation but also enhance the redox reactivity of C=O sites, which enables the polymer to accommodate four AlCl2 (urea)2 + per repeating unit. By integrating the polymer with carbon nanotubes, the hybrid cathode exhibits a high discharge capacity and a long cycle life (295 mAh g-1 at 0.1 A g-1 and 85 mAh g-1 at 1 A g-1 over 4000 cycles). The achieved specific energy density of 413 Wh kg-1 outperforms most Al-organic batteries reported to date. The synergistic redox-active sites strategy sheds light on the rational design of organic electrode materials.
Collapse
Affiliation(s)
- Xiyue Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Yuan Xie
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Ardeshir Baktash
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Jiayong Tang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Tongen Lin
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Xia Huang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials of Education Ministry of ChinaFaculty of Engineering and ManufacturingBeijing University of TechnologyBeijing100124China
| | - Zhongfan Jia
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Debra J. Searles
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt, LuciaQLD, 4072Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
- School of Chemical EngineeringThe University of QueenslandSt. LuciaQLD, 4072Australia
| | - Bin Luo
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQLD, 4072Australia
| |
Collapse
|
29
|
Chen Z, Cui H, Hou Y, Wang X, Jin X, Chen A, Yang Q, Wang D, Huang Z, Zhi C. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Peng X, Xie Y, Baktash A, Tang J, Lin T, Huang X, Hu Y, Jia Z, Searles DJ, Yamauchi Y, Wang L, Luo B. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
| | - Yuan Xie
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
| | - Ardeshir Baktash
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Jiayong Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Tongen Lin
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Xia Huang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials of Education Ministry of China Faculty of Engineering and Manufacturing Beijing University of Technology Beijing 100124 China
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| | - Debra J. Searles
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemistry and Molecular Biosciences The University of Queensland St, Lucia QLD, 4072 Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
- School of Chemical Engineering The University of Queensland St. Lucia QLD, 4072 Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD, 4072 Australia
| |
Collapse
|
31
|
Li Y, Niu R, Xu F, Zhen W, Huang H, Wang J, Zhu W, Zhang C. Enhanced magnetism and persistent insulating state in Mn doped Sr 2IrO 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:235602. [PMID: 35290974 DOI: 10.1088/1361-648x/ac5e05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The influences of Mn substitution at the Ir site of Sr2IrO4are investigated via a comprehensive study of the variation of structural parameters, the transport and magnetic properties of the Sr2Ir1-xMnxO4samples. The incorporation of Mn leads to an increase of the in-plane Ir-O-Ir bond angle, while it is not sufficient to drive the Mott-insulating state to a metallic state. Interestingly, we find a coexistence of Ir4+-O2--Ir4+super-exchange interaction and Mn3+-O2--Mn4+double exchange interaction inx⩾ 0.06 samples. The Mn3+-O2--Mn4+ferromagnetic domains are isolated by the Ir4+-O2--Ir4+antiferromagnetic areas, leading to a severely localized electronic and magnetic states. The electron hopping between the localized states dominates the conductivity of the Sr2Ir1-xMnxO4samples.
Collapse
Affiliation(s)
- Yaodong Li
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Feng Xu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Weili Zhen
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hui Huang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Jingrong Wang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Wenka Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
32
|
Guo Y, Wang W, Lei H, Wang M, Jiao S. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110109. [PMID: 35112402 DOI: 10.1002/adma.202110109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The limited active sites of cathode materials in aluminum-ion batteries restrict the storage of more large-sized Al-complex ions, leading to a low celling of theoretical capacity. To make the utmost of active sites, an alternate storage mechanism of opposite charges (AlCl4 - anions and AlCl2 + cations) in multisites is proposed herein to achieve an ultrahigh capacity in Al-metal-organic framework (MOF) battery. The bipolar ligands (oxidized from 18π to 16π electrons and reduced from 18π to 20π electrons in a planar cyclic conjugated system) can alternately uptake and release AlCl4 - anions and AlCl2 + cations in charge/discharge processes, which can double the capacity of unipolar ligands. Moreover, the high-density active Cu sites (Cu nodes) in the 2D Cu-based MOF can also store AlCl2 + cations for a higher capacity. The rigid and extended MOF structure can address the problems of high solubility and poor stability of small organic molecules. As a result, three-step redox reactions with two-electron transfer in each step are demonstrated in charge/discharge processes, achieving high reversible capacity (184 mAh g-1 ) and energy density (177 Wh kg-1 ) of the optimized cathode in an Al-MOF battery. The findings provide a new insight for the rational design of stable high-energy Al-MOF batteries.
Collapse
Affiliation(s)
- Yuxi Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
33
|
Canever N, Nann T. Unraveling the multivalent aluminium-ion redox mechanism in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Phys Chem Chem Phys 2022; 24:5886-5893. [PMID: 35195123 DOI: 10.1039/d1cp05716b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rechargeable Aluminium-organic batteries are an exciting emerging energy storage technology owing to their low cost and promising high performance, thanks to the ability to allow multiple-electron redox chemistry and multivalent Al-ion intercalation. In this work, we use a combination of Density Functional Theory (DFT) calculations and experimental methods to examine the mechanism behind the charge-discharge reaction of the organic dye 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) in the 1,3-ethylmethylimidazolium (EMIm+) chloroaluminate electrolyte. We conclude that, contrary to previous reports claiming the intercalation of trivalent Al3+, the actual ionic species involved in the redox reaction is the divalent AlCl2+. While a less-than-ideal scenario, this mechanism still allows a theoretical transfer of four electrons per formula unit, corresponding to a remarkable specific capacity of 273 mA h g-1. However, the poor reversibility of the reaction and low cycle life of the PTCDA-based cathode, due to its solubility in the electrolyte, make it an unlikely candidate for a commercial application.
Collapse
Affiliation(s)
- Nicolò Canever
- School of Information and Physical Sciences, The University of Newcastle, Newcastle, New South Wales, Australia.
| | - Thomas Nann
- School of Information and Physical Sciences, The University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
34
|
Wang G, Dmitrieva E, Kohn B, Scheler U, Liu Y, Tkachova V, Yang L, Fu Y, Ma J, Zhang P, Wang F, Ge J, Feng X. An Efficient Rechargeable Aluminium-Amine Battery Working Under Quaternization Chemistry. Angew Chem Int Ed Engl 2022; 61:e202116194. [PMID: 35029009 PMCID: PMC9306608 DOI: 10.1002/anie.202116194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 12/20/2022]
Abstract
Rechargeable aluminium (Al) batteries (RABs) have long-been pursued due to the high sustainability and three-electron-transfer properties of Al metal. However, limited redox chemistry is available for rechargeable Al batteries, which restricts the exploration of cathode materials. Herein, we demonstrate an efficient Al-amine battery based on a quaternization reaction, in which nitrogen (radical) cations (R3 N.+ or R4 N+ ) are formed to store the anionic Al complex. The reactive aromatic amine molecules further oligomerize during cycling, inhibiting amine dissolution into the electrolyte. Consequently, the constructed Al-amine battery exhibits a high reversible capacity of 135 mAh g-1 along with a superior cycling life (4000 cycles), fast charge capability and a high energy efficiency of 94.2 %. Moreover, the Al-amine battery shows excellent stability against self-discharge, far beyond conventional Al-graphite batteries. Our findings pave an avenue to advance the chemistry of RABs and thus battery performance.
Collapse
Affiliation(s)
- Gang Wang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Evgenia Dmitrieva
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V.Helmholtzstraße 2001069DresdenGermany
| | - Benjamin Kohn
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Valeriya Tkachova
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Panpan Zhang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and Technology430074WuhanChina
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Jin Ge
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V.Helmholtzstraße 2001069DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|
35
|
Li L, Zhang Q, He B, Pan R, Wang Z, Chen M, Wang Z, Yin K, Yao Y, Wei L, Sun L. Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104327. [PMID: 34693565 DOI: 10.1002/adma.202104327] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Multifunctional aqueous rechargeable batteries (MARBs) are regarded as safe, cost-effective, and scalable electrochemical energy storage devices, which offer additional functionalities that conventional batteries cannot achieve, which ideally leads to unprecedented applications. Although MARBs are among the most exciting and rapidly growing topics in scientific research and industrial development nowadays, a systematic summary of the evolution and advances in the field of MARBs is still not available. Therefore, the review presented comprehensively and systematically summarizes the design principles and the recent advances of MARBs by categories of smart ARBs and integrated systems, together with an analysis of their device design and configuration, electrochemical performance, and diverse smart functions. The two most promising strategies to construct novel MARBs may be A) the introduction of functional materials into ARB components, and B) integration of ARBs with other functional devices. The ongoing challenges and future perspectives in this research and development field are outlined to foster the future development of MARBs. Finally, the most important upcoming research directions in this rapidly developing field are highlighted that may be most promising to lead to the commercialization of MARBs and to a further broadening of their range of applications.
Collapse
Affiliation(s)
- Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Qichong Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang, 330200, China
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengxiao Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
36
|
Parks FC, Sheetz EG, Stutsman SR, Lutolli A, Debnath S, Raghavachari K, Flood AH. Revealing the Hidden Costs of Organization in Host-Guest Chemistry Using Chloride-Binding Foldamers and Their Solvent Dependence. J Am Chem Soc 2022; 144:1274-1287. [PMID: 35015538 DOI: 10.1021/jacs.1c10758] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preorganization is a key concept in supramolecular chemistry. Preorganized receptors enhance binding by minimizing the organization costs associated with adopting the conformation needed to orient the binding sites toward the guest. Conversely, poorly organized receptors show affinities below what is possible based on the potential of their specific binding interactions. Despite the fact that the organization energy is paid each time like a tax, its value has never been measured directly, though many compounds have been developed to measure its effects. We present a method to quantify the hidden costs of receptor organization by independently measuring the contribution it makes to chloride complexation by a flexible foldameric receptor. This method uses folding energy to approximate organization energy and relies on measurement of the coil-helix equilibrium as a function of solvent. We also rely on the finding, established with rigid receptors, that affinity is inversely related to the solvent dielectric and expect the same for the foldamer's helically organized state. Increasing solvent polarity across nine dichloromethane-acetonitrile mixtures we see an unusual V-shape in affinity (decrease then increase). Quantitatively, this shape arises from weakened hydrogen-bonding interactions with solvent polarity followed by solvent-driven folding into an organized helix. We confirm that dielectric screening impacts the stability of host-guest complexes of flexible foldamers just like rigid receptors. These results experimentally verify the canonical model of binding (affinity depends on the sum of organization and noncovalent interactions). The picture of how solvent impacts complex stability and conformational organization thereby helps lay the groundwork for de novo receptor design.
Collapse
Affiliation(s)
- Fred C Parks
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sydney R Stutsman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alketa Lutolli
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sibali Debnath
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
37
|
Wang G, Dmitrieva E, Kohn B, Scheler U, Liu Y, Tkachova V, Yang L, Fu Y, Ma J, Zhang P, Wang F, Ge J, Feng X. An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Wang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Evgenia Dmitrieva
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V. Helmholtzstraße 20 01069 Dresden Germany
| | - Benjamin Kohn
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Valeriya Tkachova
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Panpan Zhang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering Huazhong University of Science and Technology 430074 Wuhan China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Jin Ge
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V. Helmholtzstraße 20 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
38
|
Zhou W, Du Y, Kang R, Sun X, Zhang W, Wan J, Chen G, Zhang J. Constructing NiCo 2Se 4/NiCoS 4 heterostructures for high-performance rechargeable aluminum battery cathodes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aluminum battery based on the NiCo2Se4/NiCoS4 cathode delivers a capacity of 112 mA h g−1 after 195 cycles. The charge–discharge principle of the NiCo2Se4/NiCoS4 cathode is the Al3+ intercalation and valence state transition of the Ni, Co, and S elements.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yiqun Du
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Rongkai Kang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Ximan Sun
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Wenyang Zhang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jiaqi Wan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guowen Chen
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jianxin Zhang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
39
|
Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Yao L, Ju S, Xu T, Yu X. Spatial Isolation-Inspired Ultrafine CoSe 2 for High-Energy Aluminum Batteries with Improved Rate Cyclability. ACS NANO 2021; 15:13662-13673. [PMID: 34355555 DOI: 10.1021/acsnano.1c04895] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal selenides are attractive cathode materials for rechargeable aluminum batteries (RABs) because of their high specific capacity, superior electrical properties, and low cost. To overcome the associated challenges of low structural stability and poor reaction kinetics, a spatial isolation strategy was applied to develop RAB cathodes comprising ultrafine CoSe2 particles embedded in nitrogen-doped porous carbon nanosheet (NPCS)/MXene hybrid materials; the two-dimensional NPCS structures were derived from the self-assembly of metal frameworks on MXene surfaces. This synthetic strategy enabled control over the particle size of the active materials, even at high pyrolysis temperature, thereby allowing investigations into the effect of size on the electrochemical behavior. Spectroscopic analysis revealed that the CoSe2-NPCS electrode exhibited a high discharge capacity (436 mAh g-1 at 1 A g-1), excellent rate capability (122 mA h g-1 at 5 A g-1), and long-term cycling stability (212 mAh g-1 after 500 cycles at 1 A g-1). Theoretical calculations regarding the Co adsorption affinities at various N-doping sites elucidated the synergistic effects of N-C/MXene hybrids for boosting the reaction kinetics and Co adsorption behavior in this system. This work offers an effective material engineering approach for designing electrodes with high rate stability for high-energy RABs.
Collapse
Affiliation(s)
- Long Yao
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|